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Fig. S1. Additional behavioral characterization of nvy mutants. 
(A) Increased lunges performed by males following pan-neuronal nvy knockdown by another 
UAS-IR strain (JF03349). (B) Reduced expression of Nvy protein in fly heads following the pan-
neuronal nvy knockdown, verified by Western blot. α-Tubulin (Tub) was used as an internal 
control. (C) Transheterozygous nvy mutation increased lunges in group-reared (left) but not in 
single-reared (right) males. Df, Df(2R)Exel6082 (a deficiency that covers the nvy locus, see Fig. 
1C); ∆, ∆nvy. (D) Pan-neuronal Nvy overexpression in fly heads verified by Western blot. (E) 
Distance traveled in pairs of ∆nvy males showed an increase after group-rearing (left) but not in 
single-rearing (right), similarly to lunge numbers. (F) Locomotion of solitary ∆nvy males (i.e., 
not as a pair) was comparable to the wild-type control. (G) Pan-neuronal nvy overexpression 
failed to impair the locomotion of solitary males. (H to K) Lunge numbers normalized by 
distance traveled in male pairs of ∆nvy (H), pan-neuronal nvy RNAi (I), neuron-specific rescue 
of ∆nvy (J), and nvy overexpression (K) showed significant changes consistently with their 
respective phenotypes in raw lunge counts (see Fig. 1 for comparison). *** p < 0.0005, * p < 
0.05, n.s. p ≥ 0.05 [(A,C,E,F-K), Kruskal–Wallis one-way ANOVA and post-hoc Mann–Whitney 
U-test with Bonferroni correction.]  



 
 

 

Fig. S2. Additional analysis related to behavioral transitions in wild-type and ∆nvy males. 
(A) Breakdown of 5 classified behaviors performed by (from left) group-reared ∆nvy males, 
group-reared wild type males, single-reared ∆nvy males, and single-reared wild-type males. The 
diameter of pie charts is proportional to the square root of behavioral events per pair. (B to F) 
Quantification of the number (B1 to F1) and the total duration (B2 to F2) of stopping (B), 
orienting (C), non-orienting (D), lunge (E), and wing extension (F) of group-reared wild-type 
males, group-reared ∆nvy males, single-reared wild-type males, and single-reared ∆nvy males. 
Note that the maximum value of “duration/30 min” in B2–F2 is 60 minutes per pair to account for 
the combined values from both flies. (G) Cumulative plots of inter-lunge intervals in group-
reared wild type males (gray), group-reared ∆nvy males (light pink), single-reared wild-type 
males (black), and single-reared ∆nvy males (dark pink). Note that the x-axis (intervals) is scaled 



 
 

in logarithm. (H, I) Ethograms between 5 classified behaviors for single-reared wild-type (H) 
(replot of Fig. 2C) and single-reared ∆nvy (I) males. Numbers represent transition probabilities 
from the source of arrows. ** p < 0.005, * p < 0.05, n.s. p ≥ 0.05 [(B,D,F,G) Kruskal–Wallis 
one-way ANOVA and post-hoc Mann–Whitney U-test with Bonferroni correction, comparing all 
combinations]  



 
 

 

Fig. S3. Temporal dynamics of locomotor and aggressive behaviors in nvy mutants. 
 (A to C) Male-to-male wing extensions analyzed from the movies used in Fig. 1. RNAi of nvy 
increased the wing extension duration (A), whereas ∆nvy rescue (B) and nvy overexpression did 
not (C). (D to K) Temporal changes of locomotor activities in fly pairs during aggression assays 
in Fig. 1. Locomotion was analyzed in detail for ∆nvy mutants (D and E), nvy RNAi (F and G), 
∆nvy rescue (H and I), and nvy overexpression (J and K), each in 10-min (D, F, H, J) or 1-min 
(E, G, I, K) bins. (L) Raster plots of lunges performed by either wild-type (left) or ∆nvy male 
pairs shown in Fig. 1D. *** p < 0.0005, n.s. p ≥ 0.05 [(A), (B), (C), in black: Kruskal–Wallis 
one-way ANOVA and post-hoc Mann–Whitney U-test with Bonferroni correction; (D), (F), (H), 
(J), in gray: Kruskal–Wallis one-way ANOVA and post-hoc Wilcoxon signed rank test.] 
 
  



 
 

 

Fig. S4. Additional characterization of the behavior of ∆nvy males toward a female 
(A) Wing extension indices of males during the test session of courtship memory assay. Males 
were previously either trained with pre-mated females (“T”) or sham-trained (“S”). (B, C) 
Aggression by ∆nvy males requires behavioral feedback from the opponent. Lunges in 30 min by 
either wild-type or ∆nvy tester males, toward intact (“I”) or decapitated (“D”) wild-type target 
males (B) or pre-mated females (C). *** p < 0.0005, ** p < 0.005, * p < 0.05, n.s. p ≥ 0.05 [(A), 
(B), (C), Kruskal–Wallis one-way ANOVA and post-hoc Mann–Whitney U-test with Bonferroni 
correction.] 
  



 
 

 

Fig. S5. Generation of the nvyLexA knock-in lines, and additional histological/behavioral 
characterization of nvy-expressing neurons. 
(A) Genome schematics of the nvyLexA knock-in alleles. The nvy locus of the parental line (top) 
was targeted by CRISPR/Cas9-mediated cleavage, leading to homologous recombination with 
the plasmid harboring the coding sequences of LexA::p65 and the eye-specific genetic marker 
3XP3-DsRed (middle). After backcrossing with the wild-type strain, the DsRed marker flanked 
by LoxP was excised by crossing with an hs-Cre line (bottom). Predicted distances between the 
recognition sites of two restriction enzymes, NdeI and SpeI, are shown for each genotype. For the 
following Southern blot analysis, one region outside the nvy exon and another region inside the 
LexA::p65 coding sequence were targeted by “external” and “internal” probes, respectively. (B) 
Southern blot analysis of the parental and nvyLexA knock-in lines. NdeI/SpeI-digested genomic 
DNA from each line was hybridized with either the external (top) or internal (bottom) probe. For 
parental lines, the wild-type Canton-S (CS) used for backcrossing and the “double-balancer” 



 
 

(DB: w; Bl/CyO; TM2/TM6B) used to establish the knock-in lines are shown. Note that the 
nvyLexA knock-in lines were maintained with the second chromosome balancer CyO derived from 
the parental DB line. (C) Western blot analysis of Nvy protein extracted from the nvyLexA fly 
heads. (D) Hyperaggressive phenotype induced by trans-heterozygosity of nvyLexA and ∆nvy, and 
its rescue by nvy expression. (E) Immunohistochemistry using anti-Nvy antibody reveals a broad 
expression pattern in the fly brain with signals colocalized with Tdc2-GAL4-driven tdTomato. 
Representative areas containing two OA/TA subpopulations (ASM and VL) mainly co-labeled 
by nvyLexA and Tdc2-GAL4 (see Fig. 4C and 4D) are shown at high magnification. (F) GFP 
expression in nvy-positive (left) or nvy-negative (right) Tdc2 neurons in the VNC is visualized by 
immunohistochemistry. VNC was divided into three regions (“top” being closest to the head) and 
cell counts for each area were shown as means ± S.D. of 5 brains. (G to J) Locomotion changes 
followed by Kir2.1-mediated silencing of Tdc2 subpopulations, analyzed from the movies used 
in Fig. 4E and 4G. Changes in lunge numbers normalized by distance traveled in group-reared 
nvy-positive Tdc2 neurons (G) and single-reared nvy-negative Tdc2 cells (I) were consistent to 
the raw lunge results shown in Fig. 4. Speed during non-orienting locomotion changed 
irrespectively to lunge patterns in flies expressing Kir2.1 in nvy-positive Tdc2 neurons (H), 
whereas both correlated with each other when Kir2.1 was expressed in nvy-negative Tdc2 
neurons (J). *** p < 0.0005, ** p < 0.005, * p < 0.05, n.s. p ≥ 0.05 [(D) Kruskal–Wallis one-way 
ANOVA and post-hoc Mann–Whitney U-test with Bonferroni correction.] 
  



 
 

 
 
 
Fig. S6. Knock-down of octopamine/tyramine biosynthesis genes in the nvy-positive Tdc2 
neurons.  
(A) Decrease in lunges by single-reared males after Tbh and Tdc2 RNAi in the entire Tdc2 
neurons. (B) Neither RNAi of Tbh nor Tdc2 in the nvy-positive Tdc2 neurons significantly 
affected aggressiveness of group- (left) or single-reared (right) males. *** p < 0.0005, ** p < 
0.005, * p < 0.05, n.s. p ≥ 0.05 [(A), (B), Kruskal–Wallis one-way ANOVA and post-hoc Mann–
Whitney U-test with Bonferroni correction.]  



 
 

 

Fig. S7. Additional behavioral data obtained during optogenetic stimulation of nvy-positive 
Tdc2 neurons. 
(A, B), Optogenetic stimulation of nvy-positive Tdc2 neurons at various LED frequencies. The 
stimulation was performed at 2, 10, and 30 Hz for 3 min, each separated by a 3-min interval (A). 
Distance traveled (B; top) and lunges (B; bottom) performed by tester males during each 3-min 
time window are shown in box plots. (C, D) Optogenetic stimulation of nvy-positive Tdc2 



 
 

neurons in solitary testers. Stimulation was performed at 2 Hz for 5 min in the absence of a target 
fly (C). Distance traveled (D; top) and wing extensions (D; bottom) performed by tester males 
during each 5-min time window. (E, F) Speed of the “non-orienting” locomotion during 
optogenetic stimulation of nvy-positive Tdc2 neurons. The original movies used in Fig. 4I were 
reanalyzed. (G, H) Male-to-female lunges and wing extensions during optogenetic stimulation of 
nvy-positive Tdc2 neurons. Male testers were paired with wild-type pre-mated females, and the 
stimulation was performed at 2 Hz for 5 min (G). Lunges (H, top) and wing extensions (H, 
bottom) performed by target males during each 5-min window. The pink area within each raster 
plot indicates the stimulation period (time window “2” in G). *** p < 0.0005, ** p < 0.01, * p < 
0.05, n.s. p ≥ 0.05 [(B), (D), (F), (H), in black: Kruskal–Wallis one-way ANOVA and post-hoc 
Mann–Whitney U-test with Bonferroni correction; in gray: Kruskal–Wallis one-way ANOVA 
and post-hoc Wilcoxon signed rank test.] 
  



 
 

 

Fig. S8. Gross morphology of Tdc2 neurons is similar across sexes. 
(A) Neuronal morphology of Tdc2 neurons in male and female brains. Left: GFP expressed 
under the control of Tdc2-GAL4, along with the neuropil marker Bruchpilot (BRP), were 
visualized by immunohistochemistry using male (top) or female (bottom) brains. Right: same 
images as left with GFP signals visualized in gray scale. (B) Cell counts of Tdc2 neurons in 
males and females. Subtypes of Tdc2-GAL4 neurons were classified according to a previous 
anatomical study (65). (C) Pan-neuronal expression of Nvy in ∆nvy females verified by Western 
blot. α-Tubulin (Tub) was detected as an internal control. n.s. p ≥ 0.05 [(B), unpaired t-test; error 
bars indicate means ± S.D. of 8–9 brains.]  



 
 

 

Fig. S9. Additional biochemical and behavioral data for human MTGs and truncated 
versions of Nvy. 
(A, B) Locomotion by MTGs-expressing male pairs analyzed in Fig. 6C. Pan-neuronal 
expression of human MTGs in the ∆nvy background significantly reduced lunge numbers even 
after normalization by the locomoted distance per pair (B), whereas walking speed during the 
“non-orienting” state was barely affected (B). (C) Pan-neuronal expression of mutated nvy 
transgenes lacking one of the NHR1–4 domains in the ∆nvy background. All UAS-nvy constructs 
contain 3xMyc tags at the N-terminus. α-Tubulin (Tub) was used as an internal control. (D,  E) 
Locomotion by male pairs expressing truncated UAS-nvy constructs analyzed in Fig. 6E. Only 
UAS-nvy lacking the NHR2 domain (nvy∆2) failed to rescue the ∆nvy phenotype for lunge 
numbers normalized by distance traveled per pair (D), which is in agreement with the raw lunge 
result in Fig. 6E. The UAS-nvy∆2 expression did not have a significant impact on the non-
orienting walking speed of the same pairs (E). (F) Homo-multimer formation of Nvy protein 
mediated by the NHR2 domain. Myc-tagged Nvy was co-immunoprecipitated with either HA-
tagged intact Nvy or the mutated version lacking NHR2. Input: 7.5% of lysate used for the 
precipitation. IP, (-): samples precipitated with no antibody. IP, n.i.: samples precipitated with 
normal IgG. IP, Myc: samples precipitated with an anti-Myc antibody. *** p < 0.0005, ** p < 
0.005, * p < 0.05, n.s. p ≥ 0.05 [(A,B,D,E), Kruskal–Wallis one-way ANOVA and post-hoc 
Mann–Whitney U-test with Bonferroni correction.]  



 
 

 



 
 

Fig. S10. Tdc2 neurons in ∆nvy males largely retain their anatomical characteristics. 
(A) Locations of Tdc2 neuronal clones identified in both wild-type and ∆nvy males. 
Nomenclature is based on (65). The image is reproduced from Fig. 4C. (B to H) Images of single 
Tdc2 neuronal clones produced by MultiColor FlpOut, from wild type (left) and ∆nvy (right) 
males. Names of cell types are indicated at the top right corner.  



 
 

 

Fig. S11. Additional analyses of cell clusters and DEGs from single-cell RNA-sequencing of 
Tdc2 neurons. 
(A) FACS results for GFP-labeled Tdc2 cells. GFP-positive cells inside the red lines were 
collected for sequencing. (B) Number of cells used in the sequencing analysis. (C) Co-clustering 
frequency matrix from the iterative clustering analysis with 100 random samplings. The plot 
shows the probability of co-occurrence in the same cluster for given pairs of cells. (D to G) tSNE 
plots of sequenced Tdc2 cells, color-coded for the nvy locus genotypes (D; wild-type in black, 
∆nvy in white), cell clusters (E), and expression levels of Tdc2 (F) or nvy (G). (H) Histogram of 
Tdc2 cells according to the expression level of nvy. (I) Ratio of nvy-expressing cells within each 
cluster. Red intensity corresponds to the level of nvy expression shown in G and H. Total cell 
numbers for each cluster are shown at the center. (J) A volcano plot of DEGs analyzed in all 
Tdc2 cells. Dots are plotted according to the fold change (FC) and the p-value (by Mann–
Whitney U-test) of each gene when the ∆nvy mutant cells were compared against the wild-type 
cells.   



 
 

 

Fig. S12. Additional behavioral data related to RNAi of DEGs in Tdc2 neurons. 
(A to C) Lunges performed by males with Tdc2-GAL4 driving RNAi constructs of down-
regulated DEGs in cluster #5 that did not elevate aggression compared to at least one genetic 
control. UAS-IR constructs were inserted either in attP2 (A), attP40 (B), or VIE260b (C). (D to 
F) Lunges performed by ∆nvy males with Tdc2-GAL4 driving RNAi constructs of up-regulated 
DEGs in cluster #5 that did not reverse high levels of aggression in the homozygous ∆nvy 
background compared to at least one genetic control. UAS-IR constructs were inserted either in 
attP2 (D), attP40 (E), or VIE260b (F). Colored boxes on the genotypes indicate that the genetic 
control results (i.e., Tdc2-GAL4-only controls with empty vectors inserted in each landing site) 



 
 

were replotted in Fig. 7 as a part of the same experiment. (G to K) Lunge numbers normalized 
by distance traveled in the male pairs following Tdc2-GAL4-driven RNAi against up- (G to I) 
and down-regulated (J to K) DEGs, of which lunges were analyzed in Fig. 7F–J. Values were 
mostly consistent with the raw lunge results, except for CG182723 RNAi in ∆nvy background 
(K). (L to P) Locomotion speed during non-orienting by the male pairs analyzed in Fig. 7F–J. 
*** p < 0.0005, ** p < 0.01, * p < 0.05, n.s. p ≥ 0.05 [(A) to (P), Kruskal–Wallis one-way 
ANOVA and post-hoc Mann–Whitney U-test with Bonferroni correction.] 
 
  



 
 

 
 
Fig. S13. Additional expression data related to nvy functions in Tdc2 neurons. 
Nvy immunoreactivities (green) in ASM and VL clusters of Tdc2 neurons (labeled by nuclear-
localizing tdTomato, magenta) from group-reared (A) and single-reared (B) male brains. 
 
  



 
 

Table S3. Results of the nvy-RNAi GAL4 screen. 

  



 
 

Table S1. (separate file) 
Results of the primary RNAi screen (.xlsx file). 
 

Table S2. (separate file) 
Results of the secondary RNAi screen (.xlsx file). 
 

Table S4. (separate file) 
The list of the complete genotypes used in this study (.xlsx file). 
 

Table S5. (separate file) 
Sequences of primers used in this study (.xlsx file). 
 

Table S6. (separate file) 
The list of antibodies, along with concentration and incubation conditions for Western blotting 
experiments (.xlsx file). 
 

Table S7. (separate file) 
Sequences data from scRNAseq experiments (.txt file). Data were filtered and normalized as 
described in Materials and Methods. 
 

Table S8. (separate file) 
The list of software used in this study (.xlsx file). 
 
  



 
 

Movie S1. 
An example of interactions between a pair of group-reared wild-type males (a sample from the 
dataset used in Fig. 1D).  

Movie S2. 
An example of interactions between a pair of group-reared ∆nvy males (a sample from the 
dataset used in Fig. 1D). 

Movie S3. 
An example of interactions between a group-reared wild-type male and a pre-mated female (a 
sample from the dataset used in Fig. 3C). 

Movie S4. 
An example of interactions between a group-reared ∆nvy male and a pre-mated female (a sample 
from the dataset used in Fig. 3C).  

Movie S5. 
Three-dimensional rendering of nvy-positive Tdc2 neurons (a sample from Fig. 4D). 

Movie S6. 
Three-dimensional rendering of nvy-negative Tdc2 neurons (a sample from Fig. 4F). 

Movie S7. 
An example of interactions between a group-reared wild-type male and a group-reared male in 
which CsChrimson was expressed in nvy-positive Tdc2 neurons, before and during the LED 
stimulation (a sample from the dataset used in Fig. 4I). 

Movie S8. 
An example of interactions between a group-reared wild-type male and a male from one of 
genetic controls (which lacks LexAop2-FLP) of the optogenetic experiment in Fig. 4I, before and 
during the LED stimulation. 

Movie S9. 
Three-dimensional rendering of Tdc2 neurons in a wild-type male (a sample from Fig. 7A).  

Movie S10. 
Three-dimensional rendering of Tdc2 neurons in a ∆nvy male (a sample from Fig. 7A). 
 
  



 
 

Data S1. (separate file) 
The complete statistical results for all applicable figures, and coding sequences of DNA 
constructs created in this study.  
 

Data S2. (separate file) 
Custom R codes for scRNAseq data analysis.  
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