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Materials and Methods

Molecular dynamics (MD) simulations

The initial coordinates for RBD/hACE2 complex were obtained from the Protein Data

Bank (PDB ID 6M0J, resolution 2.45 Å)[1] and prepared using the UCSF Chimera[2]

by removing co-crystallized hetero groups (except Zn2+) and water molecules. RBD

mutations were obtained from a site-directed mutation in wild-type RBD using the

Maestro software (academic v. 2020-1) [3]. From the ACE2/RBD complex structure,

protonation states of ionizable residues were computed in an aqueous implicitly

environment at pH 7.0 from the Maestro software academic v. 2020-1 [3] using

PROPKA module [4]. In all protein complexes, then, all glutamic and aspartic

residues were represented as unprotonated; all glutamic residues were kept with

neutral charge; arginine and lysine residues were assumed with a positive charge;

the N- and C-terminal were converted to charged groups. In hACE2, H34, H195,

H345, H374, H378, and H417 were designed as a δ-tautomer; H228, H239, H241,

H265, H373, H401, H505, H535 and H540 were modeled as an ε-tautomer. In RBD,

H519 was designed as a δ-tautomer. The system conditions were prepared using

GROMACS v. 5.1.4[5–8] with the OPLS-AA force field[9]. We used the Swiss-Param

web-based service to build the Zn2+ topology[10]. All systems were explicitly solvated

with TIP3P water models in a triclinic box (81.06 X 91.06 X 135.02 Å³), neutralized

keeping NaCl concentration of 150 mM and minimized until a maximum force of 10.0

kJ.mol-1 or 5,000 steps. The systems were consecutively equilibrated in

isothermal-isochoric (NVT). To equilibrate the system, it was relaxed during a 5000

ps annealing, in which the temperature was increased from 300 to 330 K each 500

ps, and isothermal-isobaric (1 bar; NpT) ensembles at 310 K for 1000 ps. MD

simulations in the NpT ensemble were carried out for 100 ns in a periodic box

considering the minimum distance of 10 Å between any protein atom and box walls.

The Zn2+ positions were restricted throughout the simulations. In order to confirm the

convergence of the simulation between hACE2 and RBD of the Alpha (B.1.1.7) and

Gamma (P.1) variants and wild type (WT), we simulated 300 ns of these complexes,

using the same conditions used in the simulations of 100 ns. Backbone

root-mean-square deviation (RMSD), and backbone root-mean-square fluctuation
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(RMSF) calculations were performed using GROMACS. Hydrogen bonding

occupancies (%) were calculated in virtual molecular dynamics (VMD; v. 1.9.1).

Analysis of Cα cross-correlated displacements were performed using the R-based

package Bio3d[11]. The correlations ranged from -1 (anti-correlated motions) to 1

(correlated motions). Principal component analysis and SASA were calculated using

the GROMACS package. Using molecular dynamics simulation trajectories, we

determined the average structure representing backbone hACE (2373 atoms) and

backbone RBD (1791 atoms) and calculated correlation matrix fitting non-mass

weighted. From the calculated correlation matrix, we determined eigenvalues

diagonalizing the 7119x7119 matrix (representing backbone hACE2) and 5373x5373

matrix (representing backbone RBD). The first and second eigenvalues are shown in

Table S9. From the PC1, we observed 100 snapshots corresponding to MD

trajectories obtained from the first component (supplementary movies S1 and S2).

We used first and second components to verify trajectory scores of hACE2 and also

RBDWT and their variants (Figure S6).

Molecular mechanics combined with Poisson-Boltzmann surface area
(MM-PBSA)

The molecular mechanics combined with the Poisson-Boltzmann surface area

(MM-PBSA) was calculated using the Kumari method[12], which approximates the

solvation contribution to a continuous solvent model and approximates ΔG to a

thermodynamic cycle by modeling a continuous solvent in the Poisson-Boltzmann

area. The charges, radius and concentration of positive ions were +1, 0.95 Å and

0.15 M, respectively. The charges, radius and concentration of negative ions were

-1, 1.81 Å and 0.15 M, respectively. The dielectric constant of the solute, solvent and

vacuum was 32, 80 and 1, respectively. The radius of the solvent probe was 1.4 Å.

The method for mapping the grid was sp14 and the model used to build the dielectric

and ionic limits was smol. In the free-energy calculation, we considered for the

non-polar solvent, the surface tension, probe radius and energy cut-off of 0.023

kJ.mol-1.Å-2, 1.4 Å, 3.85 kJ.mol-1, respectively. Non-polar attractive contribution term

was determined by the probe radius, the density of solvent in the grid and the cubic
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grid spacing for the calculation of the volume integrals of 1.20 Å, 0.03 Å3 and 0, 7 Å,

respectively. The time interval analyzed was 1 ns.

Protein-protein binding assays using surface plasmon resonance (SPR)

The experimental KD (M-1) of the SARS-CoV-2 Spike/hACE2 complex were obtained

by surface plasmon resonance (SPR) assays using a Biacore 8K system (GE

Healthcare). The assays as well as protein cloning, expression and purification were

performed by the ACROBiosystems company. SARS-CoV-2 Spike constructions are

fused to a 10 polyhistidine tag at the C-terminus of the recombinant proteins. Four

different constructions of the Spike RBD as well as four constructions of recombinant

Spike trimers were used in SPR assays: the RBDWT (residues 319 to 537,

SPD-C52H3, ACROBiosystems); the RBDB.1.1.7(Alpha) (N501Y, residues 319 to 537,

SPD-C52Hn, ACROBiosystems); the RBDB.1.351(beta) (K417N, E484K N501Y, residues

319 to 537; SPD-C52Hp, ACROBiosystems); the RBDP.1(Gamma) (K417T, E484K

N501Y, residues 319 to 537; SPD-C52Hr, ACROBiosystems); Spike trimerWT

(residues 16 to 1213 with the following mutations at: R683A, R685A, F817P, A892P,

A899P, A942P, K986P, V987P; SPN-C52H9, ACROBiosystems); Spike

trimerB.1.1.7(Alpha) (residues 16 to 1213 with the following mutations at: R683A, R685A,

F817P, A892P, A899P, A942P, K986P, V987P and additional mutations at:

H69-V70del, Y144del, N501Y, A570D, D614G, P681H, T716I, S982A, D1118H;

SPN-C52H6, ACROBiosystems); Spike trimerB.1.351(Beta) (residues 16 to 1213 with the

following mutations at: R683A, R685A, F817P, A892P, A899P, A942P, K986P, V987P

and additional mutations at: L18F, D80A, D215G, L242-A243-L244del, R246I,

K417N, E484K, N501Y, D614G, A701V; SPN-C52Hk, ACROBiosystems); Spike

trimerP.1(Gamma) (residues 16 to 1213 with the following mutations at: R683A, R685A,

F817P, A892P, A899P, A942P, K986P, V987P and additional mutations at: L18F,

T20N, P26S, D138Y, R190S, K417T, E484K, N501Y, D614G, H655Y, T1027I,

V1176F; SPN-C52Hg, ACROBiosystems). In Spike trimer constructions the proline

substitutions (F817P, A892P, A899P, A942P, K986P, V987P) were introduced to

stabilize the trimeric prefusion state of SARS-CoV-2 Spike protein and alanine

substitutions (R683A and R685A) were introduced to abolish the furin cleavage site.

The human ACE2 (residues from 18 - 740) is fused to a Fc tag at the C-terminus of
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the recombinant protein (MW 110 kDa; AC2-H5257, ACROBiosystems), in which

hACE2 is in a dimer form.

Anti-Human IgG (Fc) antibody was diluted at 25 μg/mL in an immobilization

buffer (10 mM Sodium Acetate pH 5.0 present in GE Human Antibody Capture Kit,

catalog number 29234600 - Cytia), to be covalently immobilized to a CM5 sensor

chip (GE Healthcare, catalog number BR100530 - Cytiva) via their amine groups

using the human antibody capture kit (29234600, GE Healthcare). Immobilization

processes were performed using a flow rate of Anti-Human IgG (Fc) antibody of 10

μL.min-1 during 360 s, where obtained response unit (RU) signals were about

7,000-14,000. Human ACE2 with a C-terminal Fc tag was diluted in a running buffer

(10 mM HEPES, pH 7.4, 3 mM EDTA, 0.005% Tween-20, 150 mM NaCl). The RU

signal obtained was about 150 in the capture hACE2 protein-ligand. After that, serial

dilutions of purified recombinant Spike proteins were injected ranging in

concentrations (as shown in Table S7). Spike proteins were injected at a flow rate of

30 μL.min-1 during association (120 s) and dissociation (300 s). The chip was

regenerated using a regeneration buffer (3M magnesium chloride, present in GE

Human Antibody Capture Kit, GE) at a flow rate of 20 μL.min-1 in 30 s. The resulting

data were fitted to a 1:1 binding model using Biacore Evaluation Software (GE

Healthcare).

Genes and splicing isoforms expression analyses

To investigate the expression profiles of ACE2, FURIN and TMPRSS2, we gathered

Transcripts Per Million (TPM)-normalized gene expression data of 16,705 samples

from 32 healthy tissues directly at The Genotype-Tissue Expression (GTEx) portal

(https://gtexportal.org/). Subject phenotype information (gender and age) of all

analyzed individuals were also collected at the GTEx portal and used for posterior

data stratification. To investigate isoform-based expression levels of ACE2, we

downloaded RNA sequencing datasets from 163 samples (27 tissues) at ENA

projects (accession IDs: PRJEB4337; PRJEB6971). To obtain TPM-normalized

expression values, the datasets were processed using Kallisto [13] with GENCODE

(v37) as reference to the human transcriptome. Boxplots and correlation plots were
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generated using local R scripts. Alignment of translated transcripts was performed

through clustal W [14] using ACE2 transcripts from GENCODE (v37) and ORFfinder

[15].

Supplementary text

Solvent-accessible surface area (SASA) analysis

Such conformational changes affect the solvent-accessible surface area (SASA) of

hACE2 while interacting with RBDWT and its variants (Figure S4). In this regard,

RBDWT and RBDB.1.351 keep SASA values of ~273 and 270 nm², respectively (Figure
S4a,c). Interacting with RBDB.1.1.7, hACE2 decreases SASA value from ~278 to 263

nm² but when it interacts with RBDP.1, SASA value changes from 270 to 260 nm²

(Figure S4a,c). In general, RBD variants and WT did not present significant

differences in SASA along MD trajectory, presenting values ranging between 107.0

and 109.2 nm2 (Figure S4b,d). Taken together, SASA values are associated with

conformational states of hACE2 due to closing of its active site mediated by RBD

and its variants. In order to confirm the convergence of the simulation between

hACE2 and RBD of the Alpha (B.1.1.7) and Gamma (P.1) variants and wild type

(WT), we simulated 300 ns of these complexes, using the same conditions used in

the simulations of 100 ns (Figure S15-17).

Molecular mechanics combined with Poisson-Boltzmann surface area
(MM-PBSA) studies

We also compared the binding free energies between Spike RBD of the

different B.1.1.7, B.1.351 and P.1 variants with RBDWT, using molecular mechanics

combined with Poisson-Boltzmann surface area (MM-PBSA) (Figure S7 and Table
S6). Our results have shown that RBDWT, RBDB.1.351, RBDP.1 and RBDB.1.1.7 present

values ​​of -1100 士 85, -1393 士 84, -1489 士 78 and -1013 士 101 kJ/mol,

respectively (Table S6). Our MM-PBSA data are comparable with values reported in

the literature [16,17]. RBDB1.1.7 presented binding free energy similar to RBDWT, which

we have believed that they present insignificant differences in binding affinity. We

noted that, in interactions between hACE2 and different RBDWT, RBDB.1.351, RBDP.1
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and RBDB.1.1.7, Coulomb energy term has a better contribution for free energy than

remaining terms, having values of -1380 士 86, -1453 士 80, -1461 士 79 and -1285

士 76 kJ/mol, respectively (Table S6). In addition, Van der Waals energy term

presented values of -352 士 341, -368 士 33, -430 士 52 and -297 士 32 kJ/mol,

respectively (Table S6). The change in free energy of polar solvation calculated by

Poisson-Boltzmann equation (Polar) presented a negative contribution for binding

free energy, which presented values of 678 士 87, 472 士 85, 454 士 85 and 612士

147 kJ/mol, respectively (Table S6). The change in the nonpolar interaction energy

under the changes in the protein−solvent accessible surface area (SASA) also were

determined e presented values of -46 士 4, -44 士 4, -52 士 6 and -42 士 6 kJ/mol,

respectively (Table S6). In general, binding free energy ratio between RBDWT and

different RBDB.1.351, RBDP.1 and RBDB.1.1.7 presented values in the range from

~0.9-fold to ~1.4-fold, leading us to believe that the observed reduction between

hACE2 and RBD of these SARS-CoV-2 variants presented a moderate effect in

decreasing binding affinity. Also, we investigated the contribution of each residue to

the binding free energy between RBD and hACE2 (Figure S7). Interestingly, most

contributions are localized on the hACE2/RBD complex interface and are more

frequent in the variants.

Hydrogen bonding occupancy analysis

We calculated hydrogen bonding occupancies of residue pairs of each RBD

variant/hACE2 interface and compared them with WT (Table S3). We noted that

there were gains and losses of hydrogen bonding interactions. These results are

explained due to different movements of the RBD of these variants, when compared

with WT. We observed that residue pairs Q493-scRBD/E35-schACE2,

T449-scRBD/R273-mchACE2, Y449-scRBD/D38-schACE2 , and Y495-scRBD/E406-schACE2

kept the hydrogen bonding interactions in hACE2/RBD complex interface,

demonstrating that such interactions are relevant in the molecular recognition

between hACE2 and RBD. Differently from RBDWT, the three variants gained

intramolecular hydrogen bonding interaction between (N or Y)501-scRBD/G496-mcRBD

but lost between pairs K475-scRBD/E495-scRBD, Y489-scRBD/N487-scRBD and

(K/T/N)417-scRBD/L455-mcRBD (Table S3). Interestingly, we also observed that the
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RBDP.1 presents specific hydrogen bonding between pairs Y501-scRBD/Q498-scRBD.

Conversely, RBDB.1.1.7 presents specific hydrogen bonding interactions between pairs

N487-scRBD/A475-mchACE2, T500-scRBD/G354-mchACE2, Y501-scRBD/K353-mchACE2 and

Y501-scRBD/Y41-schACE2. Comparing hydrogen bonding interactions on the interface

of the complexes RBDWT/hACE2 and RBDP.1/hACE2, we also observed this

interaction between pairs Q498-scRBD/D38-schACE2, T500-scRBD/D355-schACE2 and

Y489-scRBD/Y83-schACE2. Comparing also the complexes RBDWT/hACE2 and

RBDB.1.1.7/hACE2, we also observed hydrogen bonding interactions between pairs

K417-scRBD/D30-schACE2 and K417-scRBD/H34-schACE2. When compared with the

hACE2/RBDWT complex, we have seen the hydrogen bonding interactions between

pairs K31-schACE2/Q493-scRBD, T500-scRBD/Y41-schACE2 and T453-scRBD/T449-mcRBD in

the RBDB.1.351/hACE2 and RBDP.1/hACE2 complexes (Table S3). Also observed in the

B.1.1.7 variant, hydrogen bonding interactions have been seen between

R482-scRBD/E489-scRBD in P.1 and between T453-scRBD T449-mcRBD in B.1.351 (Table
S3).

Cross-correlation analysis

We calculated the correlation matrix of the spatial displacements of Cα atoms

to study internal motions of the hACE2/RBDWT complex and compared them with

different SARS-CoV-2 RBD mutants (Figure S5 and Tables S4 and S5). This

computational strategy assumes the hypothesis that residues, even afar, can

influence the interactions of other residues. The residue pairs that present absolute

correlated and anti-correlated values of more than 0.8 were considered to have more

influence over other complex residues (Table S5). As shown in Tables S4-S5 and

Figure S5, sets of intermolecular and intramolecular correlation pairs changed

between different SARS-CoV-2 RBD mutants and RBDWT. Both correlated and

anticorrelated pairs are affected in E1 and E2 regions of RBD variants, mostly in

B.1.1.7 (Figure S5). The number of intermolecular correlation pairs for RBDWT,

RBDB.1.351, RBDP.1 and RBDB.1.1.7 are 21, 8, 135 and 384, respectively (Table S5).

Among them, only RBDB.1.1.7 presented 76 intramolecular negative correlation pairs

(Table S5). Furthermore, the number of intramolecular positive correlation pairs in

hACE2, caused by each RBD, were 3088, 3656, 4160 and 6852, respectively,
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showing that they increase the internal motions in the host receptor. Conversely, as

shown in Figure S5 e-h and Table S5, the number of intramolecular positive

correlations for RBDWT, RBDB.1.351, RBDP.1 and RBDB.1.1.7 were 436, 466, 458 and 924,

respectively. Interestingly, we did not observe intermolecular anti-correlated pairs

between different hACE2/RBD complexes (Table S5).
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Figure S1.
Structural aspects of the SARS-CoV-2 RBD variants and hACE2. a) Backbone
root-mean-square deviation (RMSD) of hACE2 in complex with RBD (black color)
and RBD variants (red, B.1.351; blue, P.1; green, B.1.1.7). It is an interesting
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behavior for the RBDB.1.1.7 variant in complex with hACE2 that has a RMSD jump
from 2 to 4 Å in ~50 ns. We observed in another independent calculation simulated
for 300 ns that there is the same structural behavior after 50 ns (Figure S15),
converging the calculation in agreement with the dynamics data for 100 ns. We
verified that this jump is related to the closing of the hACE2 enzymatic cavity. b)
Backbone RMSD of RBD (black color) and RBD variants (red, B.1.351; blue, P.1;
green, B.1.1.7). c) Backbone root-mean-square fluctuation (RMSF) of hACE2 in
complex with RBD (black color) and RBD variants (red, B.1.351; blue, P.1; green,
B.1.1.7). d) Backbone RMSF of RBD (black color) and RBD variants (red, B.1.351;
blue, P.1; green, B.1.1.7). e) Probability distributions of the number of hydrogen
bonding interactions of RBD (black color) and its variants (red, B.1.351; blue, P.1;
green, B.1.1.7) in complex with hACE2.
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Figure S2. Backbone root-mean-square fluctuation differences of the hACE2
interacting with RBD variants. a) Relative backbone RMSFhACE2. b) Relative
backbone RMSFRBD. Both panels a-b adopt the hACE2/RBDWT complex as reference.
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Figure S3. Comparison between modeled hACE2/RBDB.1.1.7 (green color) with
trimeric Spike RBDB.1.1.7 obtained by cryo-electron microscopy (blue color, PDB ID
7MJG [18]).
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Figure S4. Solvent-accessible surface area (SASA) information of SARS-CoV-2
RBD variants and hACE2. SASA of a) hACE2 while interacting with b) RBDWT and its
variants. c) hACE2 and d) RBD SASA probability distributions. SASA per residue of
e) hACE2 in complex with f) RBD (black color) and RBD variants (red, B.1.351; blue,
P.1; green, B.1.1.7). RBDWT and its variants did not present significant differences in
SASA along MD trajectory. However, SASA values presented changes in hACE2,
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and such alterations are associated with conformational states of hACE2 due to
closing of its active site mediated by RBD and its variants.

Figure S5. Cross-correlation analysis between SARS-CoV-2 RBD variants and
hACE2. Correlation analysis of MD trajectories of RBD variants and WT. panels a-d
Number of correlation pairs observed in the interaction of RBDWT and their variants
with hACE2. Panels e-h Pairs of Cα exhibiting correlation higher than 0.8 were
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analyzed in the interaction of RBDWT and their variants with hACE2. The red and
blue colors represent positive and negative correlations, respectively.

Figure S6. Molecular dynamics trajectories obtained by principal component
analysis. Using first and second components, painels a-d show trajectory scores of
hACE2 while interacting with a) RBDWT, b) RBDB.1.1.7, c) RBDB.1.351, and d) RBDP.1.
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Figure S7. Binding free energies of RBD and its variants for formation of a complex
with hACE2. Painels b), d), f) and h) show binding free energies as function of time
using MD trajectories of the RBDWT and its variants in complex with hACE2. Painels
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a), c), e) and g) show energy contributions of each residue for binding free energy, in
which blue and white colors represent favorable and unfavorable contributions,
respectively.

Figure S8. Surface plasmon resonance (SPR) sensorgrams using immobilized
recombinant dimer hACE2 and different concentrations of purified recombinant Spike
RBD and their variants, as described on materials and methods. The experimental
data were fitted to a 1:1 binding model using Biacore Evaluation Software (GE
Healthcare) to calculate the kinetics parameters (ka and kd) shown in Table 1 and
Table S7. At least eight different RBD concentrations were used to calculate the KD
values.The results of the three biological replicates of the SPR assays are shown.

S18



Figure S9. Surface plasmon resonance (SPR) sensorgrams using immobilized
recombinant dimer hACE2 and different concentrations of purified recombinant Spike
trimer and their variants, as described on materials and methods. The experimental
data were fitted to a 1:1 binding model using Biacore Evaluation Software (GE
Healthcare) to calculate the kinetics parameters (ka and kd) shown in Table 1 and
Table S7. At least seven different Spike concentrations were used to calculate the KD

values. The results of the three biological replicates of the SPR assays are shown.
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Figure S10. TMPRSS2 is mainly expressed in digestive, endocrine and few other
human tissues or organs. Box colors represent different tissue groups according to
their major functions. Numbers of samples are shown in parentheses.
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Figure S11. FURIN is highly expressed in all human tissues. Box colors represent
different tissue groups according to their major functions. Numbers of samples are
shown in parentheses.

Figure S12. Multiple alignment of translated ACE2 transcripts. Transcripts were
classified by fACE (full-length ACE), which is represented by the canonical isoform
ACE2-201 and have all functional domains; dACE, that lacks RBD domain
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interaction residues; and pACE, representing all other shorter ACE2 isoforms not
neither reported in fACE or dACE classes. Residues marked in red correspond to
direct contact portions of hACE2 with RBD domain.

Figure S13. Tissue-wide TMPRSS2 expression by age and gender. Box colors
represent different tissue groups according to their major functions. Box shades refer
to distinct clinical variables, either age (lighter) or gender (darker).
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Figure S14. Tissue-wide FURIN expression by age and gender. Box colors
represent different tissue groups according to their major functions. Box shades refer
to distinct clinical variables, either age (lighter) or gender (darker).
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Figure S15. Illustration about conformational changes of hACE2. a) Backbone
RMSD of hACE2 in complex with RBDWT. b) Backbone RMSD of hACE2 in complex
with RBDAlpha. Structural superposition of the complexes in times 0, 50, 100 and 300
ns. It is observed that the hACE2 enzymatic cavity closes faster when it interacts
with RBDAlpha than RBDWT, as observed at 50 ns (blue arrow).
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Figure S16. Conformational changes of hACE2 while interacting with RBD of
the Alpha variant and wild type. a) Simulation 1 for 100 ns showing SASA values
of hACE2 in complex with RBDWT. b) Simulation 1 for 100 ns showing SASA values
of hACE2 in complex with RBDB.1.1.7. The panels c) and e) are results of the
independent calculation (300 ns), comparing backbone RMSD of the hACE2 in
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complex with RBDWT. The panels d) and f) are results of the independent calculation
(300 ns), comparing backbone RMSD of the hACE2 in complex with RBDB.1.1.7.
These results were similar to 100 ns, showing that RMSD and SASA values
converged after 50 ns, in agreement with the second simulation (300 ns).

Figure S17. Conformational changes of hACE2, in complex with RBDP.1, and their
relationships with SASA values.
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Table S1.

Insights about SARS-CoV-2 variants. Insights about origin, mutations and number of
countries relating cases associated with each variant. NA, not available.

SARS-CoV-2
Variant

Country First
Detected

Number of countries
that reported the

variant (25 May 2021)
Spike Protein
mutations

B.1.1.7[19]
(Alpha)

United Kingdom,
London 149[20]

Deletion 69/70
Deletion 144/145
N501Y
A570D
D614G
P681H
T716I
S982A
D1118H

B.1.351[21]
(Beta) South Africa 102[20]

L18F
D80A
D215G
Deletion 242/244
R246I
K417N
E484K
N501Y
D614G
A701V

P.1[22]
(Gamma) Brazil, Manaus 59[20]

L18F
T20N
P26S
D138Y
R190S
K417T
E484K
N501Y
D614G
H655Y
T1027I
V1176F

B.1.617.2[23]
(Delta) India 54[20]

T19R
Deletion 157/158
L452R
T478K
D614G
P681R
D950N

B.1.427/429[24,25]
(Epsilon)

United States,
California

29
(01 Abril 2021)[26]

S13I
W152C
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L452R
D614G

B.1.526[27]
(Iota)

United States,
New York NA

L5F
T95I
D253G
E484K
D614G
A701V

B.1.617.1[28]
(kappa) India 41[20]

L452R
E484Q
D614G
P681R
Q1071H

Table S2. Insights about SARS-CoV-2 variants. Compared with wild-type, variants
presented significant increases of transmissibility, symptoms, time of infectivity, viral
load, severity, lethality, binding affinity and replication rate. ND: undetermined
information; NA: unavailable information.

B.1.1.7 P.1 B.1.351 B.1.429/427

Increase of
transmissibility

10 - 75%
[29],[30],[31],[32],[33],[34]

,[35],[36],[37]

12 - 46%
[29],[38],[36] 55%[36],[37] 6-24%[39],[32]

Higher viral load
20 - 30%

[40],[41,42],16,17,[43],[36

]
10 fold [44],[36] ND [41],[36] 2 fold [39]

More severe
disease 40-65%[37],[45],[46] ND[46] ND[46] NA

Higher lethality
8 - 71%

[47],[31],[48],[49],[50],[37]

,[45]
ND [46] ND [46],[51] NA

More binding
affinity to ACE2

in relation to
RBDWT

~2 fold[52] NA ~4.6 fold[52] NA
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Table S3. Hydrogen bonding occupancy (%) of interactions between RBD of
SARS-CoV-2 variants and hACE2. Hydrogen bond occupancy (%) analysis of the
RBD residues and its variants that make contact with hACE2 along different MD
trajectories. Table shows intramolecular and intermolecular interactions in hACE2
and RBD. Cut-off: hydrogen bond distance of 3 Å between hydrogen and nitrogen or
oxygen. sc = side chain and mc = main chain.

HB donor HB acceptor WT B.1.351 P.1 B.1.1.7
R482-scRBD E489-scRBD 90.7 87.7
N487-scRBD A475-mchACE2 15.8
Q493-scRBD E35-schACE2 51.9 40.4 42.8 4.4
Q498-scRBD D38-schACE2 38.7 14.6
E489-mcRBD E489-scRBD 50.0 54.9 33.5 50.1
K31-schACE2 Q493-scRBD 19.6 9.0 16.7
K475-scRBD E495-scRBD 23.4
T449-scRBD R273-mchACE2 26.9 41.3 57.3 27.9
T453-scRBD T449-mcRBD 44.2 41.0

T500-scRBD Y41-schACE2 35.8 10.3 13.7
T500-scRBD D355-schACE2 1.7 19.0
T500-scRBD G354-mchACE2 33.1
Y449-scRBD D38-schACE2 63.2 59.2 56.7 4.7
T453-scRBD T449-mcRBD 33.7 45.8
K484-scRBD E75-schACE2 1.5 1.2
F490-mcRBD E484-scRBD 0.1 66.5

G485-mcRBD E484-scRBD 17.0

K31-schACE2 E484-scRBD ~0.0 47.4

F486-mcRBD E484-scRBD 19.0

Y489-scRBD N487-scRBD 15.4
Y489-scRBD Y83-schACE2 4.1 22.5
Y495-scRBD E406-schACE2 59.2 26.5 15.5 28.9
K417-scRBD D30-schACE2 51.5 28.2
K417-scRBD H34-schACE2 13.5 8.2
K417-scRBD L455-mcRBD 5.4
Y501-scRBD G496-mcRBD 21.3 13.9 1.7
Y501-scRBD Q498-scRBD 25.9
Y501-scRBD K353-mchACE2 18.7
Y501-scRBD Y41-schACE2 2.8
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Table S4. Count of positive and negative correlations using cross-correlation
analysis. correlation analysis of MD trajectories of RBD variants and WT OF
SARS-CoV-2. Total correlation pairs observed in the interaction of RBDWT and its
variants with hACE2.

Correlation Intra-RBD Inter Intra-ACE2

WT positive 25488 50848 161492
negative 11954 64970 194320

B.1.351 positive 7300 67747 190816
negative 30142 48071 164996

P.1 positive 30200 51365 166086
negative 7242 64453 189726

B.1.1.7 positive 24822 46852 176502
negative 12620 58220 179310

Table S5. Count of relevant positive and negative correlations using
cross-correlation analysis. Pairs of Cα exhibiting correlation higher than 0.8 were
analyzed in the interaction of RBDWT and its variants while interacting with hACE2.

Correlation Intra-RBD Inter Intra-ACE2

WT positive 436 21 3088
negative 0 0 0

B.1.351 positive 466 8 3656
negative 0 0 0

P.1 positive 458 135 4160
negative 0 1 0

B.1.1.7 positive 924 384 6852
negative 0 0 76

Table S6. Binding enthalpy/energy between RBD of different SARS-CoV-2 variants
and hACE2. The entropy is not included for binding free energy calculation [12].

Energy (kJ/mol)
Variants vdW Coul Polar SASA ΔG
B.1.351 -368  ± 33 -1453 ± 80 472 ± 85 -44 ± 4 -1393 ± 84

P.1 -430 ± 52 -1461 ± 79 454 ± 85 -52 ± 6 -1489 ± 78
B.1.1.7 -297 ± 32 -1285 ± 76 612 ± 147 -42 ± 6 -1013 ± 101

WT -352 ± 341 -1380 ± 86 678 ± 87 -46 ± 4 -1100 ± 85
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Table S7. Kinetic parameters obtained from surface plasmon resonance (SPR)
assays. More details on material and methods.

Variant
Capture

Level
(RU)

Spike Protein
Concentrations

(nM)

ka

(106 M-1s-1)
kd

(10-4 s-1)
KD

(nM)
Rmax

(RU)
Chi2
(RU2)

RBDWT 176.1 0.488 - 125 6.6 ± 2.0 93.4 ± 1.7 15.0 ± 4.1 44.7 ± 3.1 0.35 ± 0.23

RBDB.1.1.7(Alpha) 174.1 0.244 - 62.5 9.0 ± 3.0 15.5 ± 0.1 1.8 ± 0.5 44.6 ± 4.0 0.05 ± 0.01

RBDB.1.351(Beta) 173.3 0.244 - 62.5 9.0 ± 2.7 40.9 ± 1.3 4.8 ± 1.4 42.6 ± 2.0 0.9 ±0.07

RBDP.1(Gamma) 170.5 0.244 - 62.5 9.0 ± 3.4 27.8 ± 0.9 3.3 ± 1.0 43.1 ± 3.5 0.05 ± 0.01

Spike
trimerWT 169.4 0.488 - 250 0.7 ± 0.2 4.8 ± 0.8 6.7 ± 1.3 174.1 ± 17.6 0.81 ± 0.62

Spike
trimerB.1.1.7(Alpha) 174.5 0.488 - 250 0.8 ± 0.2 1.5 ± 0.1 1.9 ± 0.2 265.0 ± 14.2 1.93 ± 0.39

Spike
trimerB.1.351(Beta) 178.4 0.488 - 125 1.6 ± 0.9 2.1 ± 0.7 1.4 ± 0.3 268.0 ± 0.9 5.70 ± 8.90

Spike
trimerP.1(Gamma) 170.5 0.488 - 250 1.2 ± 0.5 2.4 ± 0.5 2.1 ± 0.3 266.5 ± 15.1 7.92 ± 6.32

Table S8. Experimental KD obtained by different kinetic assays. ND: not determined.

Experimental
assay Construction KD

B.1.351

(nM)
KD

B.1.1.7

(nM) KD
P.1 (nM) KD

WT (nM)

Microscale
thermophoresis[

52]
RBD 87.6 203.7 ND 402.5

bio-layer
interferometry[53

]
RBD ND 22 ND 133

SPR[54] RBD 48.2 13.1 ND 56.9

SPR[55] RBD 4.8 9.1 ND 14

bio-layer
interferometry[56

]
Spike trimer 3.2-13.7 0.1-2.4 ND ND

SPR[57–59] RBD ND ND ND 5.1 - 44.2
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Table S9. Eigenvalues of the principal components 1 and 2, PC1 and PC2
respectively, obtained from diagonalizations of the 7119x7119 correlation matrix
(representing backbone hACE2) and 5373x5373 correlation matrix (representing
backbone RBD).

SARS-CoV-2/hACE2 Protein Eigenvalue
(PC1)

Eigenvalue
(PC2)

WT
hACE2 12.9 6.4

RBDWT 1.7 0.9

B.1.1.7 (Alpha)
hACE2 32.5 4.0

RBDB.1.1.7(Alpha) 2.3 1.0

B.1.351 (Beta)
hACE2 9.5 5.8

RBDB.1.351(Beta) 1.3 1.0

P.1 (Gamma)
hACE2 20.3 3.3

RBDP.1(Gamma) 4.6 2.1
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