
Khan et al.

METHOD

Supplementary material for “Scalable, ultra-fast,
and low-memory construction of compacted de
Bruijn graphs with Cuttlefish 2”
Jamshed Khan1,2, Marek Kokot3, Sebastian Deorowicz3 and Rob Patro1,2*

1 Results
1.1 Choice of frequency thresholds
The frequency threshold f0 of k-mers ((k+ 1)-mers in
case of Cuttlefish 2) for the algorithms when work-
ing with sequencing data was approximated so as to
roughly minimize the misclassification rates of weak
and solid k-mers in these experiments. This was per-
formed based on approximate frequency distributions
of the k-mer frequencies themselves, computed using
the ntCard tool [84]. The heuristic setting-policy of
f0 is inspired from observations by Zhao et al [65]:
the frequency distribution of erroneous k-mers tend to
diminish exponentially, whereas that of error-free k-
mers typically follow a normal distribution; and the
intersecting point of these density functions can be a
reasonable choice for f0, which we approximated with
ntCard [84]. Suppl. Fig. S1 shows some of these ap-
proximate distributions.

1.2 Compacted graph construction for sequencing data
Suppl. Table S1 contains the performance results of
the evaluated tools for compacted de Bruijn graph con-
struction from sequencing data.
Suppl. Table S2 shows the performance results on

the human read set with a frequency cutoff of f0 = 2.

1.3 Compacted graph construction for reference
collections

Suppl. Table S3 shows the performance results of the
evaluated tools for compacted de Bruijn graph con-
struction from reference sequence collections.

1.4 Timing-profile without (k+ 1)-mer (or k-mer)
enumeration

We tested the hypothesis of whether having a uniform
k-mer enumerator for Cuttlefish 2 and BCALM
2 might significantly impact their performance differ-
ence. Suppl. Table S4 demonstrates the timing-profile
*Correspondence: rob@cs.umd.edu
1Department of Computer Science, University of Maryland, College
Park, US
Full list of author information is available at the end of the article

of Cuttlefish 2 compared to BCALM 2, exclud-
ing their similar initial stage: (k + 1)-mer and k-mer
enumeration, respectively.
We find that Cuttlefish 2 still largely outperforms

BCALM 2 in time. As for memory advantage, the
BCALM 2 implementation has a “maximum memory”
parameter, -max-memory, that could be used to restrict
its memory-usage to the given argument value. In all
our experiments, we set the value of -max-memory to
the memory-usage incurred by Cuttlefish 2. But
BCALM 2 did not strictly adhere to these limits:
in both its k-mer counting and the subsequent com-
paction steps. 1 So replacing its k-mer enumeration
step, which uses DSK [85], with KMC 3 would not
necessarily constrain its memory-usage to the ones ob-
served for Cuttlefish 2.

1.5 Validation of the compacted de Bruijn graphs
The validation of a compacted de Bruijn graph consists
of checking three aspects of the graph: (1) complete-
ness: whether the set of maximal unitigs contain all the
k-mers from the original de Bruijn graph; (2) maximal-
ity: whether the output unitigs are actually maximal.
and (3) branch-freeness: that the complete, maximal
cover of the de Bruijn graph contains no paths hav-
ing internal vertices than branch in the underlying de
Bruijn graph.
Theoretically, the Cuttlefish 2 algorithm obtains

all three of these criteria. Completeness is obtained
trivially, and maximality and branch-freeness are ob-
tained as per Theorem 1. We cross-checked the cor-
rectness of the actual implementation by validating
the output graphs of Cuttlefish 2 against those of
BCALM 2 and Bifrost. In doing so, we observed
some small-scale differences in both the k-mer-content
(completeness) and unitig-content (maximality). We
provide some informal reasoning for these differences
here:

1We verified this behavior of BCALM 2 through com-
municating the authors.

mailto:rob@cs.umd.edu

Khan et al. Page 2 of 9

k-mer frequency

D
en

si
ty

 (i
n

m
ill

io
ns

)

0

25

50

75

100

20 40 60 80 100

(a)

k-mer frequency

D
en

si
ty

 (i
n

m
ill

io
ns

)

0

500

1000

1500

2000

20 40 60 80 100

(b)

Figure S1: Frequency distribution of k-mer abundances: (a) for the human read set NIST HG004 with k = 27, and
(b) for the white spruce read set NCBI PRJNA83435 with k = 55. Densities for the frequencies 1 and 2 have been
omitted from the plots, as those dwarf the other frequency densities and skew the plots drastically.

Table S1: Time-, memory-, and disk-performance results for constructing compacted de Bruijn graphs from short-read
sets.

ABySS-Bloom-dBG Bifrost deGSM BCALM 2 Cuttlefish 2

Dataset k
Thread-
count

Small-
memory

Large-
memory

Default
memory

Match
second-best
memory

Un-
restricted
memory

Human
27

8 22h 18m
(39.3 | 0)

20h 23m
(71.3 | 0)

11h 43m
(48.5 | 0)

10h 36m
(235.8 | 737)

04h 23m
(6.7 | 344)

01h 13m
(3.2 | 209)

01h 10m
(6.2 | 209)

01h
(11.3 | 186)

16 11h 38m
(39.3 | 0)

11h 02m
(71.3 | 0)

09h 39m
(48.6 | 0)

07h 08m
(235.8 | 730)

04h 58m
(8.9 | 342)

56m
(3.3 | 209)

56m
(7.6 | 209)

51m
(11.3 | 186)

55
8 16h 32m

(34.0 | 0)
15h 58m
(66.0 | 0)

05h 43m
(43.8 | 0)

16h 50m
(293.2 | 1147)

04h 01m
(7.4 | 296)

02h 20m
(3.5 | 147)

01h 08m
(7.1 | 147)

01h 03m
(11.3 | 142)

16 09h 28m
(34.1 | 0)

08h 37m
(66.1 | 0)

04h 16m
(43.9 | 0)

15h 54m
(293.3 | 1147)

04h 26m
(10.5 | 293)

02h 02m
(3.7 | 147)

01h 11m
(9.5 | 147)

51m
(11.3 | 142)

Human
RNA-seq 27 8 11h 47m

(33.7 | 0)
11h 22m
(65.7 | 0)

06h 04m
(7.2 | 0)

01h 35m
(87.1 | 31)

02h 58m
(3.8 | 217)

30m
(2.9 | 89) – 18m

(80.1 | 85)

16 11h 38m
(39.3 | 0)

07h 38m
(65.7 | 0)

07h 24m
(7.2 | 0)

01h 37m
(87.2 | 31)

02h 46m
(3.9 | 217)

20m
(3.0 | 89) – 12m

(80.1 | 85)

Gut
microbiome

27 16
18h 47m
(42.0 | 0)

20h 12m
(74.0 | 0)

03h 54m
(38.1 | 0)

02h 28m
(157.2 | 362)

02h 34m
(7.7 | 165)

26m
(3.5 | 78)

23m
(6.7 | 78)

20m
(26.8 | 69)

55
1d 17h 43m
(35.9 | 0)

1d 08h 09m
(67.8 | 0)

02h 44m
(46.7 | 0)

06h 53m
(293.3 | 624)

03h 02m
(12.5 | 158)

44m
(4.0 | 52)

25m
(11.3 | 52)

20m
(69.9 | 50)

Soil 27 16
1d 18h 35m
(150.4 | 0)

14h 24m
(275.0 | 0)

15h 28m
(274.1 | 0)

1d 14h 29m
(235.8 | 3287)

19h 39m
(52.0 | 681)

02h 01m
(19.2 | 161)

02h 18m
(40.9 | 161)

01h 35m
(40.9 | 210)

55
07h 57m
(128.9 | 0)

06h 36m
(256.8 | 0)

05h 49m
(157.0 | 0)

1d 11h 05m
(293.3 | 2959)

08h 30m
(27.5 | 419)

03h 02m
(11.1 | 132)

02h 43m
(23.3 | 132)

01h 38m
(23.3 | 234)

White
spruce

27 16 ∗ X X † 2d 06h 12m
(36.8 | 2171)

10h 05m
(14.0 | 1362)

07h 47m
(35.2 | 1362)

07h 13m
(204.2 | 1208)

55 ∗ X X † 2d 09h 59m
(31.6 | 1505)

10h 12m
(23.8 | 897)

10h 08m
(31.1 | 897)

07h 24m
(279.3 | 865)

Each cell contains the running time in wall clock format, and in parentheses: the maximum memory usage and the maximum
intermediate disk-usage separated by |, in gigabytes. All the execution details and other relevant information can be found in
Table 1 (see main text).

Vertex-centric versus Edge-centric de Bruijn graphs

For a given dataset, let its k-mer set be V and (k +

1)-mer set be E. Consider its vertex-centric de Bruijn
graph GV and its edge-centric de Bruijn graph GE. For
ease of exposition, assume that there is no k-mer (or
(k + 1)-mer) filtering performed, and that the graphs

do not have tips 2, which consist of a negligible number
of vertices for real datasets. Both the graphs have the
same vertex set V.
By definition, any edge e1 in GE must also exist in

GV. But this does not necessarily hold true in the op-
posite direction: some edge e ′ = {u, v} in GV could be
2Maximal unitigs with at least one ending side having
no edge.

Khan et al. Page 3 of 9

Table S2: Time- and memory-performance results for constructing compacted de Bruijn graphs from the human read set
NIST HG004, with frequency threshold f0 = 2.

ABySS-Bloom-dBG Bifrost deGSM BCALM 2 Cuttlefish 2

k
Thread-
count

Small-
memory

Large-
memory

Default
memory

Match
second-best
memory

Un-
restricted
memory

27
8 ∆

1d 16h 16m
(77.5)

11h 43m
(48.5)

09h 34m
(235.8)

06h 01m
(8.9)

01h 15m
(3.9)

01h 08m
(8.6)

01h 02m
(11.3)

16 1d 14h 08m
(46.9)

1d 02h 10m
(77.5)

11h 02m
(48.6)

08h 24m
(235.8)

06h 19m
(11.6)

57m
(4.1)

52m
(11.4)

49m
(11.3)

55
8 ∆

1d 08h 20m
(67.1)

05h 43m
(43.8)

17h 23m
(293.2)

05h 51m
(7.7)

02h 21m
(4.1)

01h 10m
(8.5)

01h 04m
(11.3)

16 ∆
16h 29m
(67.1)

04h 16m
(43.9)

15h 31m
(293.2)

06h 08m
(10.6)

02h 05m
(4.3)

01h
(10.4)

46m
(11.3)

Each cell contains the running time in wall clock format, and the maximum memory usage in gigabytes, in parentheses. Details on
executing the different tool implementations can be found in Table 1 (See main text).
The best performance with respect to each metric in each row is highlighted, where only the default-memory mode is considered
for Cuttlefish 2. The ∆’s in the ABySS-Bloom-dBG results denote that the corresponding executions were allowed to run for
at least 2 days, before being explicitly terminated.

Table S3: Time-, memory-, disk-performance results for constructing compacted de Bruijn graphs from whole-genome
reference collections.

Bifrost deGSM BCALM 2 Cuttlefish 2
Dataset

(genome count) k
Thread-
count

Default
memory

Unrestricted
memory

Human gut
(30K)

27
8 06h

(155.1 | 0)

∆

10h 06m
(21.5 | 473)

01h 39m
(15.2 | 111)

01h 39m
(32.5 | 183)

16 05h 30m
(155.1 | 0)

09h 05m
(22.0 | 473)

01h 01m
(15.5 | 111)

59m
(32.5 | 183)

55
8 08h 47m

(279.2 | 0)
11h 49m

(18.6 | 708)
04h 14m

(20.6 | 262)
03h 42m

(44.4 | 480)

16 08h 20m
(279.2 | 0)

09h 45m
(19.2 | 708)

03h 50m
(20.9 | 262)

03h 10m
(44.3 | 480)

Human
(100)

27
8 35h 45m

(355.9 | 0)
19h 23m

(235.8 | 1219) ‡ 04h 32m
(27.7 | 311)

04h 09m
(59.7 | 345)

16 32h 14m
(355.9 | 0)

14h 07m
(235.8 | 1260) ‡ 03h 19m

(28.1 | 311)
02h 49m

(59.7 | 345)

55
8 ∗ † 2d 23h 31m

(302.9 | 2150)
15h 08m

(56.0 | 1288)
13h 47m

(121.8 | 1332)

16 ∗ † ∗ 12h
(56.2 | 1288)

11h 33m
(121.8 | 1332)

Bacterial
archive (661K)

27 16 X X
‡ 16h 38m

(48.7 | 2658)
16h 24m

(104.9 | 2347)

55
4d 10h 11m
(63.3 | 2212)

22h 44m
(59.9 | 2047)

22h 20m
(129.5 | 1974)

Each cell contains the running time in wall clock format, and in parentheses: the maximum memory usage and the maximum
intermediate disk-usage separated by |, in gigabytes. All the execution details and other relevant information can be found in
Table 2 (see main text).

absent in GE—although there exists a (k − 1)-length
overlap between the k-mers u and v, the (k + 1)-mer
u�k−1 v could be absent in E. 3 Thus GV must always
have an equal or greater number of edges than GE.
As a result, GV contains an equal or larger number
of branching, i.e. unitig-flanking vertices than GE. 4

This reduces the number of maximal unitigs reported

3For clarity, we are not considering the k-mer orienta-
tions.
4It could be possible that some of these additional
edges in GV connect two separate maximal unitigs into
one, thus actually reducing branching vertices. The as-
sumption that GE contains no tips prevents this—there
can not exist an edge {x, y} in GV such that, x and y are

in in edge-centric de Bruijn graphs compared to vertex-
centric ones.

Vertex-filtering versus Edge-filtering
Related to the above point, since the fundamental
units of de Bruijn graph construction in Cuttlefish
2 are the edges, this is where error-filtering is per-
formed prior to construction. Conversely, BCALM 2
and Bifrost take a vertex-centric approach to con-
struction and hence filtering is performed on the ver-
tex set. In some corner cases, where unit-abundances
are very close to the selected threshold, this can lead

tip-ends in GE, and connect the two tips they belong
to into one single maximal unitig in GV.

Khan et al. Page 4 of 9

Table S4: Timing performance for constructing compacted de Bruijn graphs, excluding the initial k-mer (or (k+ 1)-mer)
enumeration step.

Dataset k
Thread-
count BCALM 2 Cuttlefish 2

Default
memory

Unrestricted
memory

Short-read sets

Human
27

8 01h 09m 13m 11m
16 01h 06m 09m 07m

55
8 01h 12m 23m 17m
16 01h 14m 15m 14m

Human
RNA-seq 27 8 23m 02m 01m

16 22m 01m 01m
Gut

microbiome
27 16 01h 38m 09m 07m
55 01h 46m 16m 13m

Soil 27 16 04h 56m 01h 17m 01h 04m
55 05h 09m 02h 17m 01h 11m

White
spruce

27 16 18h 24m 01h 30m 52m
55 17h 17m 04h 47m 03h 15m

Whole-genome reference collections

Human gut
(30K)

27
8 08h 24m 01h 22m 01h 24m
16 07h 25m 49m 46m

55 8 09h 09m 03h 44m 03h 15m
16 07h 34m 03h 50m 02h 45m

Human
(100)

27 8 ‡ 03h 02h 41m
16 ‡ 02h 22m 01h 31m

55 8 2d 06h 50m 13h 17m 11h 50m
16 ∗ 10h 16m 09h 25m

Bacterial
archive (661K)

27 16 ‡ 04h 16m 03h 26m
55 1d 08h 36m 10h 50m 10h 32m

Each cell contains the running time in wall clock format, excluding the times incurred by the initial: (a) k-mer enumeration step of
BCALM 2, and (b) (k + 1)-mer enumeration step of Cuttlefish 2. All the execution details and other relevant information can
be found in the Tables 1 and 2 (see main text).

to small-scale differences in which k-mers are filtered
out prior to construction.
Consider a given threshold f0. Any k-mer x present

in the input at least f0 times is a vertex in the vertex-
centric graph. But there may not exist any (k+1)-mer
z in the input that occurs at least f0 times and contains
x, thus x is absent as a vertex in the corresponding
edge-centric graph. On the opposite direction, any k-
mer y, substring of a (k + 1)-mer z that is present in
the input at least f0 times, is a vertex in the edge-
centric graph. It also implies that y has an abundance
of at least f0 in the input, and thus is also a vertex in
the vertex-centric graph.
Therefore, when using a same frequency threshold f0

for k-mers and (k + 1)-mers, vertex-centric de Bruijn
graphs must always have an equal or greater number
of vertices than edge-centric ones.

1.6 Compacted de Bruijn graph properties
Suppl. Table S5 contains some notable characteristics
of the original de Bruijn graphs and their compacted
forms.

1.7 Maximal path cover construction
Suppl. Table S6 provides a comparison of the maxi-
mal unitig based and the maximal path cover based
representations of the de Bruijn graphs.

1.8 Parallel scaling
Suppl. Fig. S2 demonstrates the timing-profile and
speedup for each step of Cuttlefish 2, on the same
setting as described in Sec. 2.7 (see main text), but
with k = 55.

1.9 Application in associative k-mer index construction
The utility of Cuttlefish 2 and any compacted de
Bruijn graph constructor depends upon the down-
stream applications for which it is used. In this proof
of-concept section, we demonstrate the improvement
provided by Cuttlefish 2 over alternative methods
in a pipeline that constructs an associative k-mer in-
dex over a collection of reads or references. These in-
dices, sometimes implicitly, form a fundamental com-
ponent in various computational genomics tasks, such
as in tools for variant detection and genotyping [13],
RNA isoform quantification [86], large-scale sequence
search [87], and k-mer abundance indexing [88].
Given a set V of k-mers, an associative k-mer index

of V consists of a bijective mapping f : V → [0, |V|). It
is different from a minimal perfect hash h : V → [0, |V|)
in that, any alien k-mer v /∈ V can be detected by f as
absent in V, i.e. ∀v /∈V f(v) = −1; but not necessarily
by h.
We investigated the overall performance difference

for a pipeline that uses SSHash [54] to index the k-mer
set—represented with the de Bruijn graph—of several

Khan et al. Page 5 of 9

Table S5: Some properties of the ordinary de Bruijn graph and its compacted form.
de Bruijn graph Compacted de Bruijn graph

Dataset k
Vertices
(×106)

Edges
(×106)

Vertices
(×106)

Edges
(×106)

Max. unitig
length (kbp)

Short-read sets

Human 27 2,490 2,514 58 81 21.0
55 2,867 2,874 24 31 36.7

Human
RNA-seq 27 320 309 66 55 1.1

Gut
microbiome

27 2,580 2,616 205 241 5.6
55 3,107 3,111 167 172 3.9

Soil 27 16,522 16,335 939 752 3.1
55 9,391 9,121 432 162 2.1

White
spruce

27 11,236 11,694 1,244 1,702 7.6
55 20,536 20,725 704 894 17.0

Whole-genome references
Human gut

(30K)
27 13,132 13,340 569 776 92.7
55 17,901 18,048 437 584 368.4

Human
(100)

27 24,094 25,055 2,315 3,276 8.0
55 49,220 50,039 2,122 2,941 19.2

Bacterial
archive (661K)

27 42,330 42,871 1,437 1,978 114.2
55 52,288 52,542 749 1,003 679.6

Table S6: Comparison of the maximal unitig based and the maximal path-cover based representations of de Bruijn graphs.
Maximal Unitigs Maximal Path-cover

Dataset k
k-mer-
count # Unitigs Avg. length

(bp)
Max. length

(bp)
base/
k-mer # Paths Avg. length

(bp)
Max. length

(bp)
base/
k-mer

Short-read sets

Roundworm 27 93,574,387 608,793 179.7 46,859 1.17 218,508 454.2 63,884 1.06
55 96,582,016 292,444 384.3 66,206 1.16 129,203 801.5 79,500 1.07

Gut
microbiome

27 2,579,749,776 204,893,577 38.6 5,633 3.07 97,631,499 52.4 6,871 1.98
55 3,106,506,224 167,337,716 72.6 3,857 3.91 91,760,241 87.9 6,058 2.60

Human 27 2,490,358,687 57,804,370 69.1 21,012 1.60 19,811,145 151.7 21,066 1.21
55 2,866,610,943 23,778,178 174.6 36,697 1.45 8,915,957 375.5 48,560 1.17

Whole-genome references

Roundworm 27 93,471,568 527,960 203 75,221 1.15 173,552 564.6 78,941 1.05
55 96,417,950 165,081 638.1 130,760 1.16 55,385 1,794.9 130,767 1.03

Human 27 2,431,778,046 44,459,296 80.7 29,022 1.48 14,209,926 197.1 29,034 1.15
55 2,737,097,058 12,522,233 272.6 94,673 1.25 4,071,450 726.3 123,699 1.08

7 humans 27 2,498,416,058 54,440,059 71.9 18,424 1.57 17,507,551 168.7 30,285 1.18
55 2,907,442,632 23,169,472 179.5 33,969 1.43 7,608,240 436.1 44,620 1.14

Given a de Bruijn graph G(R, k) = (V, E) and a representation of it P, the base/k-mer metric is computed as
∑
p∈P

|p| / |V|, i.e. the

number of nucleobase characters required in average per k-mer for the literal representation of the paths in P (maximal unitigs
decomposition is also a path-cover). If the 2-bit/nucleobase encoding is used instead of the literal representations, then then the
bits/k-mer requirement would be 1/4’th of the base/k-mer requirement.

datasets of various sizes. In the pipeline, we first ex-
tract the maximal path (or unitig) sequences from the
graph, and then use SSHash to construct a k-mer
index from these sequences. We compare the perfor-
mance of this pipeline when using Cuttlefish 2 to
extract the maximal path cover (or unitigs) versus us-
ing UST (or BCALM 2). Suppl. Table S7 provides a
comparison of the performances.
We observe that, for intermediate or large datasets,

when using UST (or BCALM 2) to extract the max-
imal path cover (or unitigs), the extraction of the se-
quences itself is both the time and the memory bottle-
neck. That is, indexing the extracted sequences with
SSHash is both faster and more memory frugal than
extracting the sequences in the first place, often by a
considerable factor. On the other hand, when we use

Cuttlefish 2 to extract the sequences, the time taken
to extract the sequences, and therefore the time taken
to construct the entire index, is reduced dramatically.
Additionally, the memory usage of Cuttlefish 2 is
often comparable (or in the case of the Gut micro-
biome reads less than) that of SSHash. Thus, replac-
ing UST (or BCALM 2) with Cuttlefish 2 in this
index construction greatly reduces the bottleneck step
of associative index construction, and sometimes even
shifts the bottleneck itself from the task of extract-
ing a maximal path cover (or unitigs) of the de Bruijn
graph to the task of constructing the index from these
sequences.

Khan et al. Page 6 of 9

Processor-thread count

Ti
m

e
(m

in
ut

es
)

0

20

40

60

80

5 10 15 20 25 30

Edge set enumeration

Vertex set enumeration

Hash function construction

DFA-states computation

Maximal unitigs extraction

Parallel scaling: Timing of the steps

(a) Time incurred by each individual step.

Processor-thread count

S
pe

ed
up

0

5

10

15

20

25

5 10 15 20 25 30

Edge set enumeration

Vertex set enumeration

Hash function construction

DFA-states computation

Maximal unitigs extraction

Parallel scaling: Speedup

(b) Speedup of each individual step.

Figure S2: Parallel-scaling metrics for Cuttlefish 2 across 1–32 processor threads, using k = 55 on the (downsampled)
human read set NIST HG004, with the frequency threshold f0 = 3.

Table S7: Time- and memory-performance results for constructing an associative k-mer index using the de Bruijn graph.
Dataset

k-mers
(×106)

Maximal path
cover construction

Index
construction Full pipeline

UST Cuttlefish 2 SSHash UST-
total

Cuttlefish 2-
total

Human
reads 2,490 04h 56m

(13.1)
01h 18m
(3.2)

35m
(3.0)

05h 31m
(13.1)

01h 53m
(3.2)

Gut micro-
biome reads 2,580 03h 10m

(39.2)
53m
(3.3)

26m
(5.9)

03h 36m
(39.2)

01h 20m
(5.9)

Human
genome ref. 2,432 01h 09m

(10.3)
14m
(3.2)

25m
(3.0)

01h 34m
(10.3)

39m
(3.2)

7 human
refs. 2,498 01h 49m

(20.2)
18m
(3.2)

25m
(3.0)

02h 15m
(20.2)

43m
(3.2)

Maximal unitigs
construction

Index
construction Full pipeline

BCALM 2 Cuttlefish 2 SSHash BCALM 2-
total

Cuttlefish 2-
total

Human
reads 2,490 04h 58m

(8.9)
56m
(3.3)

27m
(4.0)

05h 25m
(8.9)

01h 23m
(4.0)

Human
RNA-seq 320 02h 46m

(3.9)
20m
(3.0)

04m
(2.0)

02h 50m
(3.9)

24m
(3.0)

Gut micro-
biome reads 2,580 02h 34m

(7.7)
26m
(3.5)

33m
(7.9)

03h 07m
(7.9)

59m
(7.9)

Each cell contains the running time in wall clock format, and the maximum memory usage in gigabytes, in parentheses. In all the
executions, k is 27, and the maximal path cover and the maximal unitigs are the ones obtained from the experiments performed
in Secs. 2.3, 2.4, and 2.5 (see main text). The dataset descriptions are also present in these sections. All the execution details and
other relevant information can be found in Tables 1, 2, and 3 (see main text). The thread count used for UST and Cuttlefish 2
in the maximal path cover based construction is 8; for BCALM 2 and Cuttlefish 2 in the maximal unitigs based construction,
it is 16. The SSHash implementation is single-threaded.

1.10 Tools and execution commands

For the experiments, we used the following versions
of the tools— (1) ABySS-Bloom-dBG from ABySS
2.0 (v2.3.1) (2) BCALM 2 (v2.2.3) (3) Bifrost
(v1.0.6.5) (4) deGSM (v1.0) (5) ProphAsm (v0.1.1)
(6) UST from ESS-Compress (v2.1), (7) SSHash
(v2.1.0), and (8) Cuttlefish 2 (commit ID 0a049a5).

The following commands have been used in execut-
ing the tools.

• ABySS-Bloom-dBG:
abyss-bloom-dbg -b${bf_size}
-H${bf_hash_num} -j${threads}
-k${k} –kc=${min_count}
–out=${op_file} -v ${ip_files}

• BCALM 2:
bcalm -in ${ip_list}
-kmer-size ${k}
-abundance-min ${min_count}
-nb-cores ${threads}

Khan et al. Page 7 of 9

-max-memory ${memory}
-max-disk ${disk}
-out-tmp ${temp_dir}
-out ${op_file}

• Bifrost:
Bifrost build
-${ip_type_arg} ${ip_list} -k ${k}
-t ${threads} -o ${op_file} -v
where ip_type_arg is either r or s, based on
whether reference-sequences or short-reads are
provided as input, respectively.

• deGSM:
LD_LIBRARY_PATH=${jellyfish_lib_path}
deGSM -k ${k} ${min_count_arg}
-t ${threads} -m ${memory}G
${zipped_arg} ${jellyfish_lib_path}
${op_file}.bwt ${ip_dir}
and
ubwt unipath ${op_file}.bwt
-t ${threads} -o ${op_file}
where min_count_arg is -l ${min_count} or
empty, based on whether short-reads or reference-
sequences are provided as input, respectively; and
${zipped_arg} is -g if the input files are in .gz
format, and empty otherwise.

• ProphAsm:
prophasm -k ${k} ${io_paths}
where ${io_paths} is a concatenation of the
following: -i ${file_name} -o ${op_file}, re-
peated for each different input file, with the same
output file.

• UST:
essCompress -i ${ip_list} -k ${k}
-a ${min_count} -t ${threads}
-o ${op_dir} -u -v
where the -t ${threads} argument has been
added by us to control the number of processor-
cores for it to use—its default setting uses up-to
all the available cores.

• SSHash:
cgexec -g memory:${cgroup_name}
sshash/build/build ${input} ${k}
${minimizer_len} -o ${output}
-d ${temp_dir} --verbose
where the cgroup_name is a Linux control group,
set with an appropriate memory limit to restrict
SSHash’s reported memory usage. This is neces-
sary due to SSHash’s use of the mmap system call,
which results in the counting of unused shared
pages toward the program’s memory usage, par-
ticularly in a memory-rich execution environment
where the program is not under memory pres-
sure. As such, the time command will report a
much higher memory usage than is actually re-
quired by SSHash to run. The cgroup execution

places a hard limit on the memory the program
can use, and applies the requisite memory pres-
sure to ensure that the reported memory usage is
much closer to what is actually required for suc-
cessful execution.

• Cuttlefish 2:
In the following, the ${read_or_ref_arg} is ei-
ther read or ref, based on whether reference-
sequences or short-reads are provided as input,
respectively.
– Compacted de Bruijn graph construction

(with default memory):
cuttlefish build
--${read_or_ref_arg}
-l ${ip_list} -k ${k}
-c ${min_count} -t ${threads}
-w ${temp_dir} -o ${op_prefix}

– Compacted de Bruijn graph construction
(with a given memory threshold):
cuttlefish build
--${read_or_ref_arg}
-l ${ip_list} -k ${k}
-c ${min_count} -t ${threads}
-m ${memory}
-w ${temp_dir} -o ${op_prefix}

– Compacted de Bruijn graph construction
(with unrestricted memory):
cuttlefish build
--${read_or_ref_arg}
-l ${ip_list} -k ${k}
-c ${min_count} -t ${threads}
--unrestrict-memory
-w ${temp_dir} -o ${op_prefix}

– Maximal path-cover construction (with de-
fault memory):
cuttlefish build
--${read_or_ref_arg}
-l ${ip_list} -k ${k}
-c ${min_count} -t ${threads}
-w ${temp_dir} -o ${op_prefix}
--path-cover

– Maximal path-cover construction (with un-
restricted memory):
cuttlefish build
--${read_or_ref_arg}
-l ${ip_list} -k ${k}
-c ${min_count} -t ${threads}
--unrestrict-memory
-w ${temp_dir} -o ${op_prefix}
--path-cover

The scripts used to perform the experiments de-
scribed in the paper are available at https://gith
ub.com/COMBINE-lab/cuttlefish_experiments.

https://github.com/COMBINE-lab/cuttlefish_experiments
https://github.com/COMBINE-lab/cuttlefish_experiments

Khan et al. Page 8 of 9

2 Methods
2.1 Upgrades in the KMC 3 algorithm
We implemented several upgrades in the KMC 3 al-
gorithm to tune it to the efficiency needs for Cuttle-
fish 2. Here we discuss those briefly. Although the
upgrades were designed specifically for usage in Cut-
tlefish 2, those may also be suitable in other bioin-
formatics pipelines, and are publicly available in the
KMC 3 GitHub repository (https://github.com/r
efresh-bio/kmc).

2.1.1 Counting k-mers from existing KMC 3
database

KMC 3 is updated so as to be able to count k ′-mers
from a k-mer database produced by another KMC 3
execution, for some k ′ < k. This allows reducing com-
putational resources needed to determine the set of
vertices, V, as it may be directly computed from the
set of edges, E, without the need of an entire pass over
all the input sequences. This is especially relevant in
the case of sequencing reads. Technically, the KMC 3
API is used in the listing mode to enumerate all k-mers
that are further processed as if they were reads.

2.1.2 Estimate k-mer abundance histogram during
the first stage in KMC 3

This upgrade allows efficient estimation of the total
number of unique k-mers present in the input during
the first stage of KMC 3. The estimation is performed
by our optimized implementation of the ntCard al-
gorithm [84].

2.1.3 Using KMC 3 directly from C++ code with API
A new API to use KMC 3 directly from inside some
C++ code is designed for Cuttlefish 2, and it is usable
in general. Furthermore, it is possible to set parameters
for the second stage of KMC 3 based on the results of
the first stage. The detailed documentation of API is
available in the KMC 3 GitHub repository: https://
github.com/refresh-bio/kmc/wiki/Use-the-KMC-
directly-from-code-through-the-API. Combining
this with the capability to estimate k-mer abundance
histograms, it is possible to bound the memory-usage
of the second stage of KMC 3 such that it uses at
most the peak amount of memory required in the next
steps of Cuttlefish 2.

2.1.4 Storing k-mers without counts in KMC 3
databases

This upgrade affects disk usage. To date, KMC 3 out-
put required at least one byte per k-mer to store a
counter. In some applications, e.g. to build the com-
pacted de Bruijn graph without abundance estimates
for the vertices, the counters are not required and can

be skipped. In practice, this leads to the reduction of
disk usage and, as a consequence, reduction in the total
I/O costs, which in turn affects the running time.

3 Proofs
Lemma 1 The (k+1)-mers z and z induce the same
bidirected edge in a de Bruijn graph G(S, k).

Proof Consider a (k+1)-mer z from some input string
s ∈ S. Let x = prek(z) and y = sufk(z). Then z can
be expressed as z = x�k−1 y.
z induces an edge between the vertices x̂ and ŷ. It

is incident to the back of x̂ when x̂ = x holds, and is
incident to the front when x̂ = x (see Sec. 3.2, main
text).
z’s reverse complement is z = y�k−1x, and it induces

an edge between ŷ and x̂. It is incident to the front
of x̂ if x̂ = x holds, and is incident to the back if
x̂ = x—the same side as that of z’s edge.
It can be proven likewise that the edges are incident

to the same side of ŷ. Therefore, z and z induce edges
between the same vertex-pair {x̂, ŷ}, incident to the
same sides—inducing the same bidirected edge. �

Lemma 2 A side of a vertex can have at most |Σ|
distinct edges in a de Bruijn graph G(S, k).

Proof Consider a vertex v̂ in G(S, k). WLOG, we prove
the claim for the back of v̂.
An edge e connected to v̂ and induced by a (k+ 1)-

mer z is incident to v̂’s back iff: (1) prek(z) = v̂; or
(2) sufk(z) = v̂ (see Sec. 3.2, main text). For case (1),
the possible z’s form the set E1 = {v̂ · c : c ∈ Σ}. For
case (2), the set is E2 = {c ′ · v̂ : c ′ ∈ Σ}, which is the
same as {c · v̂ : c ∈ Σ}, letting c ′ = c 5.
As per Lemma 1, the (k+1)-mers c· v̂ and v̂·c induce

the same bidirected edge, where c ∈ Σ. Thus E1 and
E2 induce the same set of edges. Therefore, the back
of v̂ can have at most |E1| = |E2| = |Σ| distinct edges.
�

Lemma 3 A vertex v̂ is noted to be a flanking vertex
in a de Bruijn graph G(S, k) iff it is an endpoint of a
maximal unitig.

Proof Let Cv be the state-class of v̂’s automaton and p
be the maximal unitig containing v̂. The term branch-
ing in the proof means connecting to multiple distinct
edges.
First, assume that v̂ is marked as a flanking vertex.

We prove that v̂ is an endpoint of p. As per the def-
inition of flanking vertices (see Sec. 3.3.8, main text),
either of the following holds:
5As per our definitions, the set Σ of symbols is closed
under complementing.

https://github.com/refresh-bio/kmc
https://github.com/refresh-bio/kmc
https://github.com/refresh-bio/kmc/wiki/Use-the-KMC-directly-from-code-through-the-API
https://github.com/refresh-bio/kmc/wiki/Use-the-KMC-directly-from-code-through-the-API
https://github.com/refresh-bio/kmc/wiki/Use-the-KMC-directly-from-code-through-the-API

Khan et al. Page 9 of 9

1. Cv is not unique-front unique-back. Then from
Corollary 1, v̂ has at least one side sv with either 0
or > 1 distinct edges. It is not possible to extend p
through sv—either there is no edge, or the addition
introduces an internal branching vertex v̂ in p.

2. Cv is unique-front unique-back, and a side of it, sv,
is connected to a branching side su of a vertex û.
Then p can not be extended through sv, because
the extension includes su as an internal side to p,
which is branching.

In either case, v̂ is an endpoint of p.
Now assume that v̂ is an endpoint of p. We prove

that v̂ is marked as a flanking vertex. Based on the
adjacencies of v̂, either of the following holds:
1. v̂ has at least one side sv that is either empty or

branching. From Corollary 1, Cv is not unique-front
unique-back.

2. v̂ has one unique edge at each side. Say that its side
sv restricts p from extending farther, and sv con-
nects to the side su of a vertex û. The definition of
unitigs implies that su must be branching. This in
turn implies from Corollary 1 that û’s automaton’s
state is from the state-class: (i) either fuzzy-front
fuzzy-back ; or (ii) fuzzy-front unique-back, in which
case su is front; or (iii) unique-front fuzzy-back, in
which case su is back.

In either case, v̂ fulfills the conditions for being a flank-
ing vertex. �

Corollary 1 For the automaton Mv of a vertex v̂
in a de Bruijn graph G(S, k), applying δ on Mv with
all the incident edges of v̂ (in any order) transitions
its state from q0 to qv belonging to the state-class Cv,
such that Cv is:
1. fuzzy-front fuzzy-back, iff v̂ does not have exactly

one unique edge at any of its sides
2. fuzzy-front unique-back, iff v̂ has exactly one unique

edge only at its back
3. unique-front fuzzy-back, iff v̂ has exactly one unique

edge only at its front
4. unique-front unique-back, iff v̂ has exactly one

unique edge at each of its sides.

Proof The proof is trivial from the definition of the
transition function δ, illustrated in detail in Fig. 4 (see
main text). �

Theorem 1 Cuttlefish 2(R, k, f0) is correct.

Proof Following from Corollary 1, the Compute-
Automaton-States algorithm correctly computes
the state-classes of all the automata. Besides, Cut-
tlefish 2’s modeling scheme of a vertex v̂ with an
automaton Mv ensures that if a side sv has a unique

incident edge e, an encoding of e is preserved in Mv’s
state qv, observable from the illustration of δ in Fig. 4
(see main text). Hence, all the internal edges of the
maximal unitigs are retained within the states.
For some vertex v̂ ∈ V, let p be the maximal

unitig containing v̂, and p = (v̂0, e1, v̂1, . . . , e`, v̂`),
with v̂ = v̂i. The Extract-Maximal-Unitigs algorithm
starts two walks wb and wf from v̂i, respectively
through its back and front, using the algorithmWalk-
Maximal-Unitig. WLOG, assume that ei and ei+1
are incident to the front and to the back of v̂i,
respectively. Also, let pf = (v̂0, e1, . . . , ei, v̂i), and
pb = (vi, ei+1, . . . , e`, v̂`). First consider the case that
|pb| > 1, so i < `. Since the back of v̂i is internal to p,
it only has the edge ei+1, encoded in the automaton
Mv’s state. So wb must exit v̂i using ei+1, entering
v̂i+1. Now each v̂j (i < j < `) being an internal vertex
to p, it only has the unique edges ej and ej+1, one per
each side. So wb enters each v̂j with ej and exits it
with ej+1, thus continuing on. And it is not possible
for wb to deviate off p without reaching v̂`, where it
terminates finding v̂` to be flanking. Besides, early ter-
mination at some internal v̂j (i < j < `) does not occur
either, as Lemma 3 implies that no internal vertex is
flanking. Thus wb traverses pb in its entirety. For the
case when |pb| = 1, wb terminates immediately find-
ing v̂i to be flanking. Thus in either case, wb extracts
pb correctly.
By symmetry, wf extracts pf correctly. Therefore p

is correctly constructed by joining pf and pb at v̂i.
Since each v ∈ V is processed in this manner to

compute its containing maximal unitig, Cuttlefish
2 correctly extracts the entire set of maximal unitigs
of G(R, k). �

	Results
	Choice of frequency thresholds
	Compacted graph construction for sequencing data
	Compacted graph construction for reference collections
	Timing-profile without (k + 1)-mer (or k-mer) enumeration
	Validation of the compacted de Bruijn graphs
	Compacted de Bruijn graph properties
	Maximal path cover construction
	Parallel scaling
	Application in associative k-mer index construction
	Tools and execution commands

	Methods
	Upgrades in the KMC 3 algorithm
	Counting k-mers from existing KMC 3 database
	Estimate k-mer abundance histogram during the first stage in KMC 3
	Using KMC 3 directly from C++ code with API
	Storing k-mers without counts in KMC 3 databases

	Proofs

