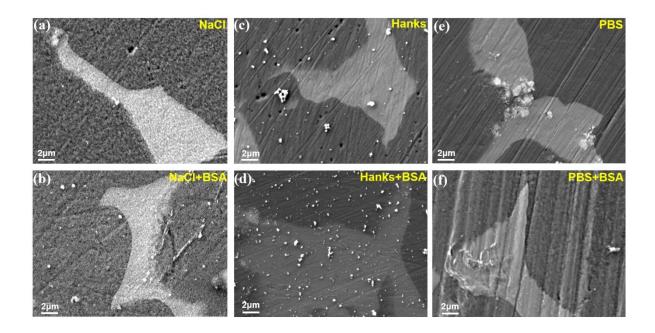
Supporting information

Morphological and surface potential characterization of protein nanobiofilm formation on magnesium alloy oxide: Their role in biodegradation

Ehsan Rahimi^{a,b*} Amin Imani^{c*}, Maria Lekka^d, Francesco Andreatta^a, Yaiza Gonzalez-Garcia^b, Johannes M. C. Mol^b, Edouard Asselin^c, Lorenzo Fedrizzi^a

^aPolytechnic Department of Engineering and Architecture, University of Udine, 33100 Udine, Italy

^bDelft University of Technology, Department of Materials Science and Engineering, Mekelweg 2, 2628 CD Delft, The Netherlands


^cDepartment of Materials Engineering, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada

^dCIDETEC, Basque Research and Technology Alliance (BRTA), 20014 Donostia, San Sebastián, Spain

*Corresponding authors:

E.Rahimi: e.rahimi-2@tudelft.nl

A.Imani: amin.imani@ubc.ca

Figure S1. SEM images of WE 43 Mg-based alloy after 10 minutes immersion in (a) 0.9% NaCl and (b) 0.9% NaCl +4g/L BSA, (c) Hanks and (d) Hanks+4g/L BSA, (e) PBS and (f) PBS+4g/L BSA physiological solutions at 37C° and pH 7.4.