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S1. Supplement.855

S1.1. Derivation of formulas for θs and Bs. The mass density of oligomers856

in the sol is θs(x, t) =
∑
m,b(m+ 2b)cmb. Recall that g(x, t, y, z) =

∑
m,b y

mzb+2cmb.857

By computing the appropriate derivatives of g, it is immediate that θs = (gy + 2gz −858

4g)|y=z=1. From the definition of W̃ , we have that gz = zR − W̃ . Integrating this859

from z = 0 to z = 1 and noting that g(x, t, y, z = 0) = 0, we obtain860

g(x, t, y, 1) =
R

2
−
∫ 1

0

W̃ (x, t, y, z′)dz′,861

and from this it follows that gy(x, t, y, 1) = −
∫ 1

0
W̃ y(x, t, y, z′)dz′. Recalling that862

Wy(x, t, 1, z) = V (x, t, z), this yields gy(x, t, 1, 1) = −
∫ 1

0
V (x, t, z′)dz′. Since also863

W (x, t, z) = W̃ (x, t, 1, z), we have that864

θs(x, t) = −
∫ 1

0

V (x, t, z′)dz′ + (2R− 2W (x, t, 1))− 4
(R

2
−
∫ 1

0

W (x, t, z′)dz′
)

865

= 4

∫ 1

0

W (x, t, z′)dz′ − 2W (x, t, 1)−
∫ 1

0

V (x, t, z′)dz′.866

The concentration of branches on soluble oligomers is Bs(x, t) =
∑
m,b bcmb.867

This is the same as Bs(x, t) = gz(x, t, 1, 1) − 2g(x, t, 1, 1). Since gz(x, t, y, z) =868

zR(x, t) − W̃ (x, t, y, z), we have gz(x, t, 1, 1) = R(x, t) − W̃ (x, t, 1, 1) = R(x, t) −869

W (x, t, 1). As noted above, g(x, t, 1, 1) = R
2 −

∫ 1

0
W (x, t, z′)dz′. Hence, Bs(x, t) =870

2
∫ 1

0
W (x, t, z′)dz′ −W (x, t, 1).871

S1.2. Diffusion of monomer. Suppose monomer diffuses with diffusion coef-872

ficient D1. Then, the monomer concentration c10 evolves according to the equation873

(S1.1) (c10)t = ∇ · (D1∇c10)− 2klc10R− kbc10(R2 −R2
g) + S10.874

Writing ∇·(D1∇c10) = ∇·(D∇c10)+∇·((D1−D)∇c10), we find that the partial dif-875

ferential equation for g is modified by the addition of the term {∇·((D1−D)∇c10)}yz2876

on the right hand side, and that for R by the addition of the term 2∇·((D1−D)∇c10).877

Consequently, the equations for W̃ = zR − gz and W̃ y are modified, respectively, by878

the addition of terms 2z(1−y)∇·((D1−D)∇c10) and −2z∇·((D1−D)∇c10). Hence,879

the equations for W , V , and R are modified, respectively, by the addition of terms880

0, −2z∇ · ((D1 −D)∇c10), and 2∇ · ((D1 −D)∇c10). Similarly, an additional term881

∇ · ((D1 −D)∇c10) appears on the right hand side of the equation for θ.882

S1.3. Relation between Rg and Bg. We can write the equations for W and883

B in the form884

Wt = ∇ · (D∇(W − zRg)− Fz + rW ,885

Bt = ∇ · (D∇Bs) + rB ,886

where887

F (z,x, t) = kl
W 2

2
+ kb

(1

6
(zR−W )3 − 1

2
(R2 −R2

g)z(zR−W )
)
,888

rW (z,x, t) = klzR
2
g − kb

z

2

(
R3 − (3RsR

2
g +R3

g)
)
,889
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890

rB(x, t) = kb
1

6

(
R3 − (3RsR

2
g +R3

g)
)
,891

Rg(x, t) = W (x, t, 1), Rs(x, t) = R−Rg,892

Bs(x, t) = 2

∫ 1

0

W (x, t, z′)dz′ −Rg, Bg(x, t) = B −Bs.893

Note that894

Bg(x, t) = B(x, t)− 2

∫ 1

0

W (x, t, z′)dz′ +Rg(x, t).895

and that Bg(x, t) = Rg(x, t) = 0 for t < t−gel, so B(x, t) − 2
∫ 1

0
W (x, t, z′)dz′ = 0896

for all such t and for all x. If B(x, t) − 2
∫ 1

0
W (x, t, z′)dz′ = 0 for all t ≥ tgel, then897

Bg(x, t) = Rg(x, t) for all t. So we consider,898

∂

∂t

(
B(x, t)− 2

∫ 1

0

W (x, t, z′)dz′
)
.899

Using the equations above, we find that,900

∂

∂t
B(x, t) = ∇ ·

(
D∇

(
2

∫ 1

0

W (x, t, z′)dz′ −Rg(x, t)
))

+ rB(x, t),901

and902

∂

∂t

(∫ 1

0

W (x, t, z′)dz′
)

= −F (1,x, t) + F (0,x, t) +

∫ 1

0

rW (x, t, z′)dz′903

+ ∇ ·
(
D∇

(∫ 1

0

W (x, t, z′)dz′ − 1

2
Rg(x, t)

))
.904

Using these last two equations and after some algebra,905

∂

∂t

(
B(x, t)− 2

∫ 1

0

W (x, t, z′)dz′
)

= rB(x, t) + 2F (1,x, t)− 2

∫ 1

0

rW (x, t, z′)dz′ = 0,906

and consequently Bg(x, t) ≡ Rg(x, t).907

S1.4. Boundary Conditions. We assume that cmb satisfies the boundary con-908

ditions909

(S1.2) −Dn · ∇cmb(x, t) = F10(x, t)δm1δb0.910

Using these conditions and the definition of g(x, t, z, y), we see that911

−Dn · ∇g(x, t, y, z) = F10(x, t)yz2 and −Dn · ∇gz(x, t, y, z) = 2F10(x, t)yz.912

Recalling that Rs(x, t) = gz(x, t, 1, 1), we deduce that Rs satisfies the condition913

(S1.3) −Dn · ∇Rs(x, t) = 2F10(x, t),914

which is consistent with the fact that each monomer has two reactive sites. Since915

R = Rs +Rg, it follows that916

(S1.4) −Dn · ∇R(x, t) = 2F10(x, t)−Dn · ∇Rg.917
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Because reactive sites on the gel do not move, the term −D∇Rg should not be thought918

of as the diffusive flux of gel reactive sites, but instead as the quantity needed to919

account for the inclusion of Rg in R on the left-hand side of Eq. 2.34. Using the920

definition W̃ (x, t, y, z) = zR(x, t) − gz(x, t, y, z), and the boundary conditions just921

derived we find that922

−Dn · ∇W̃ (x, t, y, z) = 2F10(x, t)z(1− y)− zDn · ∇Rg(x, t),923

−Dn · ∇W̃ y(x, t, y, z) = −2F10(x, t)z.924

It follows that925

(S1.5) −Dn ·∇W (x, t, z) = −Dn ·∇Rg(x, t) and −Dn ·∇V (x, t, z) = −2F10(x, t).926

Using Eqs. 2.27-2.28 and Eq. S1.5, we find that927

(S1.6) −Dn · ∇θs(x, t) = F10(x, t) and −Dn · ∇Bs(x, t) = 0.928

We note that the boundary conditions in Eqs. 2.36 hold automatically for θs and929

Bs calculated from (2.27-2.28), but it is important to make explicit use of them in930

discretizing the terms D∆θs and D∆Bs in the PDEs 2.31 and 2.32, respectively. In931

order to determine the monomer distribution c10, we also solve the m = 1, b = 0932

instance of Eqs. 2.18 and 2.33.933

S1.5. Numerical solution of the PDEs. Consider our equations934

Wt = D
(
W − zW |z=1

)
xx

935

−
{kl

2
W 2 +

kb
6

(
zR−W

)3 − kb
2

(
R2 −R2

g

)(
z2R− zW

)}
z

936

+ klzR
2
g −

kb
2
z
(
R3 −

(
3RsR

2
g +R3

g

))
.937

Rt = D(Rs)xx − kl (R2 −R2
g) −

kb
2

(
R3 −

(
3RsR

2
g +R3

g

))
+ 2S10.938

Recalling that Rg = W |z=1 and Rs = R−Rg, these equations have the form:939

Wt = −(F (W,R))z +D
(
W − zW |z=1

)
xx

+ rW (W,R),940

Rt = D(Rs)xx + rR(W,R).941

To solve these equations numerically, we use a fractional step approach, first updating942

W and R to account for transport in z and for the reactions terms rW (W,R) and943

rR(W,R), and then updating them to account for diffusion in x. For the diffusion944

term, we discretize in x using a uniform grid and the usual three-point approximation945

to the second derivative within a Crank-Nicolson scheme. For the reaction terms946

rW (W,R) and rR(W,R), we use an explicit two-stage Runge-Kutta scheme.947

For the transport in z terms in the W PDE, we have to contend with the fact that948

Wz develops a singularity at z = 1 at time t = tgel, while it is smooth for 0 ≤ z < 1949

for all t, and the branch starting from z = 0 is smooth for 0 ≤ z ≤ 1 for t < tgel and950

t > tgel. We do not have a boundary condition for W at z = 1. For these reasons,951

we introduce a grid with much finer spacing close to z = 1, and for each point on this952

grid, we use a blend of the upwind Beam-Warming (BW) scheme and the centered953

Lax-Wendroff (LW) scheme. The blend is z-dependent, reducing to the BW scheme954
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close to z = 1 and to the LW scheme close to z = 0, where we do have a boundary955

condition for W .956

For an equation Wt = F (W )z, both the BW and LW schemes are based on the957

expansion958

(S1.7) W (t+ k, z) = W (t, z)− F (W )zk + (((F ′(W ))2Wz)z)k
2/2 +O(k3).959

For the BW scheme, we approximate F (W )z at zj with a one-sided second order960

finite-difference quotient and we approximate ((Ff ′(W ))2Wz)z) at zj with the usual961

approximation to a variable-coefficient diffusion term, but evaluated at zj−1 rather962

than zj . This introduces an O(h) error for this quantity, but it is multiplied by k2,963

and so the overall scheme is still second-order. For the LW scheme, we use a centered-964

difference approximation to F (W )z at zj and the same approximation to the variable965

coefficient diffusion term as for BW but evaluated at zj . More details about the966

numerical method can be found in [10].967

S1.6. On the Rs steady-state assumption. We examine the origin of the gap968

in Fig, 10b, between the blue dashed line and the asymptotic limits of the colored969

curves as kb →∞. According to the exact relationship Eq. 3.11, fA is given by970

(S1.8) fA =
2

1− Bs

Rs

.971

In calculating the height of the dashed line, we use this formula but make the as-972

sumption that Rs = rss is in steady-state, where rss satisfies Eq. 3.5 and we use an973

asymptotic value of rss to determine Bs(tgel) using Eq. 3.9 for use in the Eq. 3.11.974

Fig. S1a shows the same colored curves as in Fig. 10b, as well as black dashed curves975

calculated from Eq. 3.11 using a numerical solution of Eq. 3.5. The black curves976

asymptote to the blue dashed line, so the use of the asymptotic value for rss is not977

the primary reason for the gap. In Fig. S1b we plot curves Rs(t) vs t for a range of978

source rates S10 and branching rates kb. Each curve ends at the time at which gelation979

occurs for the corresponding S10, kb pair. The ends of the curves are indicated by980

dots and the dot corresponding to the smallest value of kb appears at the right end981

of each curve. For all source rates, S10, steady state is attained by gel time for some982

of the smaller branching rate values. For S10 = 10−5 steady state is attained for kb983

between 10−5 and 101. For the S10 = 105, steady state is attained only for kb between984

10−5 and 10−3. Furthermore, the gap between Rs(tgel) and the steady-state value is985

large, in particular for large values of S10 and kb.986

S1.7. Showing that fA → 3. Our numerical evidence suggests that fA(t) =987

R(t)/M00(t) → 3 as t → tgel if only monomers are present initially and there is no988

additional source of monomers. Here, we show that this must be the case. The key989

equations are990

(S1.9)
dR

dt
= −klR2 − kb

2
R3,991

992

(S1.10)
dY

dt
= klY

2 + kbR
(1

2
R2 +RY + Y 2

)
,993

and994

(S1.11)
dM00

dt
= −kl

2
R2 − kb

3
R3

995
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Fig. S1: ODE model simulations with constant source rate S10 increasing by factors
of 10 from 10−5 (deep blue curve) to 105 (deep red curves) and branching rates kb. (a)
Average functionality fA = Rs

M00
at tgel. Colored curves show results from numerical

solutions of Eqs. 2.10-2.14. Dashed black curves show approximate fA calculated
from Eq. 3.11 using the numerical solution rss of Eq. 3.5. (b) Plots of Rs(t) vs. t. kb
increases by factors of 10 from 10−5 to 105 with the right-most point of each curve
corresponding to kb = 10−5.

Since we are interested in events before gel time, Rs(t) = R(t). Eqs. S1.9 and S1.11 are996

the same as Eqs. 2.10 and 2.15 in the main text, respectively. The gelation indicator997

variable U(t) in the main text is obtained from Y (t) by a Riccati transformation998

Y = − 1
aU

dU
dt where a = kl + kbR [9]. The key point is that U(t) → 0 if and only999

if Y (t) → ∞, so the latter is also an indication of gelation. The relevant initial1000

conditions are R(0) = R0, Y (0) = 0, and M00(0) = R0

2 .1001

Since Eq. S1.9 implies that R(t) is a monotone decreasing of t, we can use R as1002

the independent variable and from Eqs. S1.9-S1.11 we obtain1003

(S1.12)
dY

dR
= −

klY
2 + kbR

(
1
2R

2 +RY + Y 2
)

klR2 + kb
2 R

3
1004

and1005

(S1.13)
dM00

dR
=

kl
2 R

2 + kb
3 R

3

klR2 + kb
2 R

3
.1006

The solution of Eq. S1.12 is1007

(S1.14) Y (R) = −R
kl ln(kbR+ kl)− kb

2 R+ C

kl ln(kbR+ kl)− kbR+ C
.1008

Choosing the constant C so that Y (R0) = 0 yields1009

(S1.15) Y (R) = −R
kl ln

(
kbR+kl
kbR0+kl

)
− kb

2 R+ kb
2 R0

kl ln
(
kbR+kl
kbR0+kl

)
− kbR+ kb

2 R0

.1010

Blow-up of Y (R) occurs for R = R∗ for which the denominator is 0, i.e.1011

(S1.16) kl ln
(klR∗ + kb
klR0 + kb

)
− kbR∗ +

kb
2
R0 = 0.1012

5
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Eq. S1.16 implies that R(tgel) = R∗. To determine tgel, we find the solution of Eq.1013

S1.9 that satisfies the condition R(0) = R0 and obtain1014

(S1.17) tgel =
1

klR∗
− 1

klR0
− kb

2k2l
ln
( (kbR

∗ + kl)R0

(kbR0 + kl)R∗

)
.1015

To find M00(tgel), we begin by solving Eq. S1.13 and imposing the condition M00(R0)1016

= R0

2 to obtain1017

(S1.18) M00(R) =
2R

3
− R0

6
− kl

3kb
ln
( kbR+ kl
kbR0 + kl

)
.1018

Since at gel time R = R∗, the last equation implies that1019

(S1.19) M00(tgel) =
2R∗

3
− R0

6
− kl

3kb
ln
(kbR∗ + kl
kbR0 + kl

)
.1020

Using Eq. S1.16, this becomes1021

(S1.20) M00(tgel) =
R∗

3
=
R(tgel)

3
.1022
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S1.8. Additional Results - Variations in Source Rate λ.
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Fig. S2: PDE model simulations with source rate S10(x, t) given in Eq. 3.12 with
m0 = 8, kb = 4, D = 0.04, λ= 1/4. Snapshots of sol variables (left) gel variables
(middle), and structure variables (right) at the times indicated for each row. Note
change in vertical scale in left column. Black dashed vertical lines show extent of
source’s spatial support.
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Fig. S3: PDE model simulations with source rate S10(x, t) given in Eq. 3.12 with
m0 = 8, kb = 4, D = 0.04, λ= 4.0. Snapshots of sol variables (left) gel variables
(middle), and structure variables (right) at the times indicated for each row. Note
change in vertical scale in left column. Black dashed vertical lines show extent of
source’s spatial support.
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S1.9. Additional Results - Variations in Branching Rate kb.

1024

-0.5 -0.25 0 0.25 0.5
0

0.25

0.5

0.75

1

1.25

(a)

-0.5 -0.25 0 0.25 0.5
0

1

2

3

4

5

6

7

8

(b)

-0.5 -0.25 0 0.25 0.5
0

0.1

0.2

0.3

0.4

0.5

1.5

2

2.5

3

(c)

-0.5 -0.25 0 0.25 0.5
0

0.05

0.1

0.15

0.2

(d)

-0.5 -0.25 0 0.25 0.5
0

1

2

3

4

5

6

7

8

(e)

-0.5 -0.25 0 0.25 0.5
0

0.1

0.2

0.3

0.4

0.5

1.5

2

2.5

3

(f)

-0.5 -0.25 0 0.25 0.5
0

0.05

0.1

(g)

-0.5 -0.25 0 0.25 0.5
0

1

2

3

4

5

6

7

8

(h)

-0.5 -0.25 0 0.25 0.5
0

0.1

0.2

0.3

0.4

0.5

1.5

2

2.5

3

(i)

Fig. S4: PDE model simulations with source rate S10(x, t) given in Eq. (3.12) with
m0 = 8, kb = 16, λ = 1, D = 0.04. Snapshots of sol variables (left) gel variables
(middle), and structure variables (right) at the times indicated for each row. Note
change in vertical scale in left column. Black dashed vertical lines show extent of
source’s spatial support.
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Fig. S5: PDE model simulations with source rate S10(x, t) given in Eq. 3.12 with
m0 = 8, kb = 1, λ = 1, D = 0.04. Snapshots of sol variables (left) gel variables
(middle), and structure variables (right) at the times indicated for each row. Note
change in vertical scale in left column. Black dashed vertical lines show extent of
source’s spatial support.
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S1.10. Additional Results - Variations in Diffusivity D and D1.
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Fig. S6: PDE model simulations with source rate S10(x, t) given in Eq. (3.12) with
m0 = 8, kb = 4, λ = 1, D = 0.16. Snapshots of sol variables (left) gel variables
(middle), and structure variables (right) at the times indicated for each row. Note
change in vertical scale in left column. Black dashed vertical lines show extent of
source’s spatial support.
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Fig. S7: PDE model simulations with source rate S10(x, t) given in Eq. 3.12 with
m0 = 8, kb = 4, λ = 1, D = 0.01. Snapshots of sol variables (left) gel variables
(middle), and structure variables (right) at the times indicated for each row. Note
change in vertical scale in left column. Black dashed vertical lines show extent of
source’s spatial support.
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Fig. S8: PDE model simulations with source rate S10(x, t) given in Eq. 3.12 with
m0 = 8, kb = 4, λ = 1, D = 0, D1 = 0.04. Snapshots of sol variables (left) gel
variables (middle), and structure variables (right) at the times indicated for each row.
Note change in vertical scale in left column. Black dashed vertical lines show extent
of source’s spatial support.
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Fig. S9: PDE model simulations with source rate S10(x, t) given in Eq. 3.12 with
m0 = 8, kb = 4, λ = 1, D = 0, D1 = 0.16. Snapshots of sol variables (left) gel
variables (middle), and structure variables (right) at the times indicated for each row.
Note change in vertical scale in left column. Black dashed vertical lines show extent
of source’s spatial support.
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