
1 Sensitivity analysis

1.1 Inferring the peak seasonality day

To examine the fitness of our seasonality peak estimation, we place a prior of N (Jan 1, 452) on dγ
instead of a fixed date. Figure 1 shows the distribution of the seasonality multiplier cosine curves
Γ(t) inferred with prior on dγ . Figure 2 shows both the inferred seasonality peak day dγ and the
seasonality amplitude γ.

Note that the estimated dγ are shown as a model validation, illustrating the range of seasonality
peak the models and data are consistent with – we do not claim the models and data can infer the
peak with accuracy. Note that the inferred γ in the model inferring the seasonality peak is virtually
unchanged relative to a fixed seasonal peak day model (Figure 2 bottom).
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Fig 1. Distribution of Γ(t) for the combination of Sharma et al. and Brauner et al. seasonal
models with a prior on dγ , with median and 50% and 95% CIs. The underlying Γ(t) curves are
parameterized by the joint posterior distributions on γ and dγ . The dashed red line is the median
Γ(t) inferred with fixed dγ = Jan 1 for comparison.
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Fig 2. Inferred peak seasonality day dγ (top) and γ posterior comparison in models with the peak
day fixed vs with a variable peak day with N (Jan 1, 452) prior (bottom).
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1.2 Sensitivity to peak seasonality day

We test model sensitivity to the choice of peak seasonality day dγ for dγ ∈ {Dec 4, Dec 18, Jan 1,
Jan 15, Jan 29, Feb 12, Feb 26}. We observe that the inferred combined effect of the NPIs and the
inferred seasonality are stable for dγ in December and January with the exception of the combined
NPI effect in Brauner et al. Note that Sharma et al. is particularly robust in this range.
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Fig 3. Sensitivity of Brauner et al. seasonal model to the choice of dγ .
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Fig 4. Sensitivity of Sharma et al. seasonal model to the choice of dγ .

3



1.3 Sensitivity to initial R0 prior

We test our model sensitivity to the choice of the mean of the initial R0,l prior (i.e. location-specific
R0 on the first day of the dataset). We analyse the R0,l prior mean in ranges similar to the
sensitivity analyses in Sharma et al. [1] and Brauner et al. [2].
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Fig 5. Sensitivity of Brauner et al. seasonal model to the initial R0 prior mean.
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Fig 6. Sensitivity of Sharma et al. seasonal model to the initial R0 prior mean.

This analysis is motivated by the seasonal amplitude parameter γ being closely connected with
R0,l via Equations 1 and 4 in the main text. Mis-specifying the initial R̃l could be compensated for
by the model e.g. by a different amplitude γ and therefore also the slope of Γ(t) in the seasonality
multiplier sine curve.

In Figures 5 and 6 we observe the inferred combined effect of the NPIs and the inferred
seasonality to be mostly stable in the Brauner et al model. However, in the Sharma et al. seasonal
model the inferred seasonality amplitude and peak-to-trough reduction are mildly sensitive to the
R0,l prior. (Note that both those parameters are very closely tied together.)
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Note that both original models also exhibit some sensitivity of the effect of NPIs to R0 prior
mean; see Fig S11 in Supplementary material of Brauner et al. [2] and Fig S13 in Supplement of
Sharma et al. [1] (v1).

1.4 Inferred total NPI effects in various models

We compare the inferred total NPI effect in different models and data subsets to verify its stability:
seasonal vs non-seasonal (original) models, and the original full dataset vs the dataset restricted to
temperate Europe countries (“TE” in plot for Brauner et al. model).
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Fig 7. Top: Inferred NPI effects of Brauner et al. datasets with seasonal and non-seasonal
(original) models. Runs marked with ‘TE’ are restricted to temperate Europe countries, runs
marked with ‘all’ were run on the original Brauner et al. dataset. Bottom: Inferred NPI effects of
Sharma et al. dataset with seasonal and non-seasonal (original) models.

Fig 7 compares the estimated NPI effects with and without seasonality for both models.
Switching to a seasonal model produces a small decrease (respectively, increase) in the combined
NPI effect in Brauner et al. (respectively, Sharma et al.) model. While this may be spurious, the
result is consistent with a hypothesis that a part of the seasonality-related change in R0 (i.e., the
proposed spring decrease of R0 in Brauner et al., fall increase in Sharma et al.) is in part attributed
to NPI activations in both models. Recall that Brauner et al. only considers NPI activations in
their model, while the Sharma et al. dataset is dominated by NPI activations compared to
deactivations. However, note that both models do contain noise terms for the growth rate and other
mechanisms to model small or slow changes in R due to unobserved factors, so the extent of this
effect remains unclear.
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1.5 Interaction of seasonality and NPI effects

One potential concern about our estimates is that they could be sensitive to including the
interaction between seasonality and individual estimates of NPI-specific effects (the main inferred
parameters of our model). We now examine these whether including these interactions affect our
estimates of seasonality and NPI effects, using the Sharma et al. seasonal model and dataset. In
addition to examining the robustness of our estimates, this analysis elucidates whether there are
relevant interactions between seasonal forcing and specific non-pharmaceutical interventions.

Recall that the multiplicative reduction in R from NPIs is:

I∏
i=1

exp(−xi,l,tαi) = exp

(
−

I∑
i=0

xi,l,tαi

)
.

In addition to this factor, we introduce interaction terms ai between seasonality forcing Γ(t) and
the effect αi of active NPIs in log-space by adding the following multiplicative factor to R:

exp

(
−

I∑
i=0

xi,l,tαiai log Γ(t)

)
=

I∏
i=1

where
xi,l,t=1

exp(−αi log Γ(t))
ai .

Note that xi,l,t makes the log-space term zero when NPI i is not active, making the interaction
model −αiai log Γ(t) conditional on NPI activation. Also note that due to the log-space
representation of the expression and αi, for consistency we need to use log Γ(t) rather than Γ(t) in
the interaction expression.

We introduce independent variables ai ∼ N(0, 1) into our Sharma et al. seasonal model and
perform inference with otherwise standard parameters, obtaining 4 chains with R̂ < 1.01 and no
divergences. The inferred seasonality amplitude is robust to the introduction of interactions with
NPI effects with median γ = 0.259 (50% CI 0.24− 0.278), c.f. our main Sharma model which has
median γ = 0.275.

Figure 8 shows the inferred seasonality forcing function in the Sharma et al. data window and
for the whole year.
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Fig 8. Inferred seasonality forcing function under interactions of NPIs with seasonality Γ(t)
(green), with seasonality forcing function without interactions (black). Each function is shown as
median with 50% credible interval and 95% credible interval. The x-axis for the left-hand figure
wraps around at 365, such that day 388 corresponds to day 23 of the next year.
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Figure 9 summarizes the effects of the introduced interactions on the inferred values of
individual NPIs. Overall, neither our seasonality estimates nor the NPI-specific estimates are very
sensitive to the parameter interactions, with the exception of ‘Gastronomy closure’, and, to some
extent, ‘Night clubs closed’ and ‘Night time curfew’. In summary, we infer only very limited
interaction between seasonality and transmission control measures.
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Fig 9. Sensitivity of the seasonal model based on Sharma et al. to the introduction of interactions
of the seasonal forcing function with NPI effects.
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1.6 Sensitivity to the choice of seasonal forcing model

To the best of our knowledge, most published work in the epidemiological literature employs a
cosine function to model seasonal forcing (e.g., [3–6] all with over 200 citations). While some more
complex epidemiological models use the Fourier series model of seasonality [7, 8], high-parameter
approaches are susceptible to overfitting and are inadequate for time periods shorter than several
years – this is also the case for modeling approaches with even more parameters, such as flexible
cubic splines. Nonetheless, we analyse the sensitivity of our results to the choice of the model for
seasonal forcing by considering the Fourier series model, of different degrees, as alternative models
of seasonality.

The Fourier series models generalize the cosine models by adding higher cosine harmonics:

Γk(t) = 1 +

k∑
i=1

γi cos(2
iπt+ ϕi),

where γi and ϕi are the amplitude and phase of the i-th harmonic, γ1 corresponding to γ and ϕ1 to
the highest seasonality effect of our basic model.

We jointly model the phase and amplitude of the i-th Fourier term of the seasonal forcing by a
complex variable zi ∼ N (0, 1) + jN (0, 1) where j denotes the complex unit. With this, γi = |zi|
and ϕi = arg(zi) corresponds to the phase of zi. We fix ϕ1 to correspond to the peak seasonality on
January 1 as in our main analysis. Note that other ϕi, i > 1 are distrubuted as the argument of a
complex normal variable, that is with uniform circular distribution on (0, 2π). We otherwise
perform the analysis with the Sharma model and dataset with standard parameters; all models
converge with R̂ < 1.01.

Figure 10 visualizes the difference in the inferred seasonality forcing for the analyzed period and
for the full year.

Fourier series of degree 1 are virtually identical to the standard seasonality results with
γ = 0.272 (50% CI 0.246− 0.297), compared to the estimate of γ = 0.275 for the sinusoidal Sharma
model. For degrees 2 we obtain γ = 0.424 (50% CI 0.388− 0.459). For degree 3, γ = 0.154 (50% CI
0.106− 0.203). While the estimates from the degree 2 and degree 3 models differ from our
sinusoidal estimates, the different estimates have overlapping and none of the credible intervals 0.
For degree 3, the model seems to considerably overfit the seasonal forcing function to available data,
as may be the case of degree 2.

Figure 11 summarizes the sensitivity of our NPI-specific results to the use of Fourier series as an
alternative to the cosine function. In most cases, including for the combined effect of all NPIs, the
inferred effects of the observed NPIs are generally not very sensitive to the choice of Fourier degree.
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Fig 10. Green lines represent the inferred seasonal multiplier under the Fourier series model of
degree 1 (top row), 2 (middle row) and 3 (bottom row), with the baseline seasonality shown in
black. Each plotted with median, 50% credible intervals and 95% credible intervals. The left-hand
column includes the period of the Sharma et al. dataset used for this analysis, while the right-hand
column includes the seasonal model function plotted over the entire year. The x-axis for the
right-hand column wraps around at 365, such that day 388 corresponds to day 23 of the new year.
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Fig 11. Sensitivity of the seasonal model based on Sharma et al. to using the Fourier series model
of degrees 1, 2, and 3 as a alternative functions for seasonal forcing.
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