# **PLOS ONE**

# The Characteristics of Bacteremia among Patients with Acute Febrile Illness Requiring Hospitalization in Indonesia --Manuscript Draft--

| Manuscript Number:    | PONE-D-22-07517R1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Article Type:         | Research Article                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
| Full Title:           | The Characteristics of Bacteremia among Patients with Acute Febrile Illness Requiring Hospitalization in Indonesia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
| Short Title:          | Bacteremia among Patients with Acute Febrile Illness Requiring Hospitalization in Indonesia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
| Corresponding Author: | Herman Kosasih, Ph.D<br>INA-Respond<br>Jakarta, DKI Jakarta INDONESIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
| Keywords:             | bacteremia; Bloodstream infection; Acute febrile illness; hospitalization; Indonesia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
| Abstract:             | Blood culturing remains the "gold standard" for bloodstream infection (BSI) diagnosis,<br>but the method is inaccessible to many developing countries due to high costs and<br>insufficient resources. To better understand the utility of blood cultures among patients<br>in Indonesia, a country where blood cultures are not routinely performed, we evaluated<br>data from a previous cohort study that included blood cultures for all participants. An<br>acute febrile illness study was conducted from July 2013 to June 2016 at eight major<br>hospitals in seven provincial capitals in Indonesia. All participants presented with a<br>fever, and two-sided aerobic blood cultures were performed within 48 hours of hospital<br>admission. Positive cultures were further assessed for antimicrobial resistance (AMR)<br>patterns. Specimens from participants with negative culture results were screened by<br>advanced molecular and serological methods for evidence of causal pathogens. Blood<br>cultures were performed for 1,459 of 1,464 participants, and the 1,030 (70.6%)<br>participants that were negative by dengue NS1 antigen test were included in further<br>analysis. Bacteremia was observed in 92 (8.9%) participants, with the most frequent<br>pathogens being Salmonella spp. (51), Escherichia coli (14), and Staphylococcus<br>aureus (10). Two Salmonella spp. tcases had evidence of AMR, and several E. coli<br>cases were multidrug resistant (6/14, 42.9%) or monoresistant (2/14, 14.3%). Culture<br>contamination was observed in 37 (3.6%) cases. Advanced laboratory assays<br>identified euturable pathogens in participants having negative cultures, with 23.1% to<br>90% of cases being missed by blood cultures. Blood cultures are a valuable dagnostic<br>tool for hospitalized patients presenting with fever. In Indonesia, and chikungunya<br>viruses, would maximize the benefit to the patient while also conserving resources.<br>Blood cultures should also be supplemented with advanced laboratory tests when<br>available. |  |  |  |  |
| Order of Authors:     | Pratiwi Soedarmono                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
|                       | Aly Diana etiological agent name was it                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
|                       | Patricia Tauran                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
|                       | Dewi Lokida                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
|                       | Abu Tholib Aman                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
|                       | Bachti Alisjahbana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
|                       | Dona Arlinda                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
|                       | Emiliana Tjitra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
|                       | Herman Kosasih, Ph.D mention which advanced techniques                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
|                       | Ketut Tuti Parwati Merati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
|                       | Mansyur Arif                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
|                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |

|                        | Muhammad Hussein Gasem                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
|                        | Nugroho Harry Susanto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
|                        | Nurhayati Lukman                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
|                        | Retna Indah Sugiyono                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
|                        | Usman Hadi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
|                        | Vivi Lisdawati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
|                        | Karine G Fouth Tchos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
|                        | Aaron Neal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
|                        | Muhammad Karyana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| Opposed Reviewers:     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
| Response to Reviewers: | Dear Dwij Raj Bhatta, PhD<br>Academic Editor<br>PLOS ONE<br>Thank you very much for the constructive comments and suggestions provided by the<br>reviewers. We have carefully revised the manuscript following the suggestions. Please<br>see the response to each comment/suggestion below.<br>Reviewer #1: This compilation of data from different centers over many years is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
|                        | commendable. This highlights the issues faced in diagnostic microbiology in<br>developing countries. It is an interesting paper with important observations and<br>discussions. Some spellings need review and correction. Recommend to submit after<br>corrections.<br>Response: Thank you very much for your comments, we really appreciate it.<br>We have corrected the spelling errors.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
|                        | Reviewer #2: The Characteristics of Bacteremia among Patients with Acute Febrile<br>Illness Requiring Hospitalization in Indonesia.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
|                        | Evaluation. This report addresses an important subject in Bacteriemia and Acute<br>Febrile illness; i.e., the worrying trend of antimicrobial resistance in bacterial pathogens<br>(Salmonella and Non Salmonella spp). It reports the frequency and distribution of<br>bacterial pathogens in blood culture and its susceptibility pattern isolated from various<br>specimens from a seven medical center in Indonesia, from which similar reports are<br>scarce. Though it is better attempt by Soedarmono et al., to know information on<br>bacteremia and other causative agent of Acute Febrile illeness in Indonesia.                                                                                                                                                                                                                                                                                                                                             |  |  |  |
|                        | Response: Thank you very much for your comments, we really appreciate it.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
|                        | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                        | 1. Give rationale of the study? Why is NS1 antigen screening only performed? What about other viral agents related AFI?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
|                        | Response: We have added more information regarding this issue in the Methods.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
|                        | Lines 135-146 now read: During the baseline visit, blood was collected for cultures, clinically relevant rapid diagnostic tests when available, and dengue virus rapid diagnostic tests. Dengue virus infection remains a significant burden across Indonesia [28,29], with disease incidence increasing in recent years [30]. Though other viral agents are present in Indonesia, none are as prevalent as dengue virus [24,31], and most are challenging to diagnose due to limitations with available rapid diagnostic tests [32,33]. Given the widespread prevalence of dengue virus infection, and the very high specificity (almost 100%) and good sensitivity (70-87%) of NS1 antigen rapid diagnostic tests [34], we employed universal dengue virus screening to rapidly resolve the unknown etiologies of study participants. Participants with negative NS1 antigen tests were further considered for BSIs through blood culture tests and other etiologies, |  |  |  |

as determined through advanced testing at the INA-RESPOND reference laboratory.

2.Why you performed Blood culture 0f 1459 Cases? You have mentioned 1464 were enrolled? What about 5??

Response: We only performed blood culture for 1459 patients, as the remaining 5 subjects did not have enough blood for blood culture test.

Lines 207-210 now read: The remaining 5 participants had insufficient blood specimens for following reasons: 1 adult was in a severe condition (decreased of consciousness), 2 participants (1 child and 1 adult) self-discharged against medical advice, and the guardians of 2 children refused to allow more blood to be drawn. 3.At the end of introduction, please give some update of Acute Febrile illness and their epidemiology in Indonesia.

Response: Thank you very much for the suggestion. We have added some update of acute febrile illness and their epidemiology in Indonesia.

Lines 97-111 now read: The epidemiology of pathogens associated with fever in Indonesia is not well understood, as public health surveillance data is limited and only a few local studies have been conducted [19,21-26]. Among published studies, dengue virus, chikungunya virus, influenza virus, Salmonella Typhi, Rickettsia spp., and Leptospira spp. are consistently the most common causes of acute febrile illness hospitalizations. A study in Papua from November 1997 to February 2000 enrolled 226 hospitalized patients that were negative for malaria, the majority of whom were determined to have typhoid fever (18%), leptospirosis (12%), rickettsioses (8%), and dengue fever (7%) [23]. An observational fever study in Bandung identified dengue virus in 12.4% of fever episodes, followed by S. Typhi (7.4%), and chikungunya virus (7.1%) [24.26.27]. A 2005-2006 study in Semarang found rickettsioses and leptospirosis in 7% and 10%, respectively, of 137 acute undifferentiated fever cases [21]. The parent study of the research presented here found the most prevalent pathogens among participants at eight hospitals in 7 major cities in Indonesia to be dengue virus (27-52%), Rickettsia spp. (2-12%), S. Typhi (0.9-13%), influenza virus (2-6%), Leptospira spp. (0-5%), and chikungunya virus (0-4%) [19].

4. Which are the hospitals included in the study, please mentions the name of hospitals.

Response: We have included the name of hospitals in the Methods.

Lines 121-127 now read: A prospective observational study enrolling febrile patients who required hospitalization was conducted by the Indonesia Research Partnership on Infectious Disease (INA-RESPOND) from July 2013 to June 2016 at eight major hospitals in seven provincial capitals in Indonesia: Dr. Cipto Mangunkusumo Hospital in Jakarta, Sulianti Saroso Infectious Disease Hospital in Jakarta, Dr. Wahidin Sudirohusodo Hospital in Makassar, Dr. Sardjito Hospital in Yogyakarta, Dr. Hasan Sadikin Hospital in Bandung, Sanglah General Hospital in Denpasar, Dr. Soetomo Hospital in Surabaya, and Dr. Kariadi Hospital, in Semarang.

5. How do you calculate sample size? Is it sufficient to draw conclusion regarding bacteremia (causative bacterial pathogens) in Indonesia?

Response: As this study was an observational study to find etiologies of acute febrile illness during a certain period of time (2013-2016), we did not specifically calculate the sample size for drawing the conclusion regarding bacteremia in Indonesia. Since we performed the analysis of blood culture results from almost all participants (>99% participants, approximately 100 adults and 100 children from each hospital), though cannot be generalizable to the Indonesian population at-large, we expected that the data will provide better understanding of the bacteremia in hospitalized population with fever and hopefully will lead to a reduction in mortality from BSIs.

6.What is your inclusion and exclusion criteria? Please mention Clearly.

Response: We have added the inclusion and exclusion criteria.

Lines 128-131 now read: Briefly, inclusion criteria consisted of axillary body temperature 38°C, 1 year of age, and hospitalization within the past 24 hours. Patients were excluded from the study if they had subjective fever for 14 days or were hospitalized in the last 3 months.

7.Please give the ethical approval committee name and approval number and date.

Response: The name of the ethical approval committee and approval number had already provided under the "Ethical Clearance" (lines 197-203); and we have added the date.

Ethical approvals for the AFIRE study were granted by the Institutional Review Boards of the National Institute of Health Research and Development (NIHRD), Indonesia Ministry of Health (KE.01.05/EC/407/2012) dated 23 May 2012, the Faculty of Medicine at the University of Indonesia and RSUPN Dr. Cipto Mangunkusumo Hospital (451/PT02.FK/ETIK/2012) dated 23 July 2012, and RSUD Dr. Soetomo Hospital (192/Panke.KKE/VIII/2012) dated 13 August 2012.

8.How do assure the Quality controls and quality check of your results, either BD 135 Phoenix (Becton Dickinson) or VITEK 2 (bioMérieux, Inc., Durham, North Carolina), System?

Response: Blood culture tests were performed at the hospital's accredited clinical laboratory, which provides patient diagnostic services. All instruments and standards were calibrated appropriately according to manufacturer guidelines. Every site's laboratory performed quality control (QC) to ensure proper performance and sent the QC report to protocol team to be reviewed. All tests were run alongside appropriate positive and negative control to ensure the integrity and accuracy of the results. For example, QC for VITEK 2 system; each new lot number of ID cards is tested with stock culture organisms. Susceptibility cards are tested weekly against stock culture organisms.

The QC organisms uses as follows:

Weekly: AST-GP 67 cards Enterococcus faecalis ATCC 29212 AST-GN 66 cards E. coli ATCC 25922 non fermenter PSA ATCC 27853 fermenter E. coli ATCC 35218 non fermenter ID-NH cards Elkenella corrodens ATCC BAA-1152 New Lots: ID-GP cards Enterococcus casseliflavis ATCC 700327 ID-GN cards Enterobacter hormechei (E.cloacae) ATCC 700323

Lines 163-171 now read: Blood cultures were performed and analyzed at the hospitals' nationally accredited clinical laboratories by trained, certified staff. All instruments and standards were calibrated appropriately according to manufacturer guidelines, and all tests were run alongside appropriate positive and negative control to ensure the integrity and accuracy of the results. Organism identification was considered acceptable when the confidence level in the automated growth identification system was  $\geq$ 95% probability [34]. Quality control tests were performed weekly at all site laboratories, and each new lot of ID cards was tested using validated stocks of culture organisms.

9.What is the volume of blood sample collected and used in culture from children and adults?

Response: This is already stated in the text. Blood volumes of approximately 5-8 mL for adults and 1-3 mL for children were collected from each arm, whenever possible,

|                         | directly into separate aerobic blood culture bottles (lines 150-152).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                         | 10.It is better to give numerator value after percentage values.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                         | Response: We have changed the presentation throughout the manuscript.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                         | 11.Please give the full name of bacteria initially such as Staphylococcus aureus and then short form S. aureus and other bacteria throughout the manuscript.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                         | Response: We have followed your suggestion.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                         | 12.Please mention the more information on infections with dengue virus and bacteremia in Indonesia.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                         | Response: We found no dengue virus and bacteremia co-infection in our study, as mentioned in the Discussion. We have added more informations about dengue virus and bacteremia.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                         | Lines 355-368 now read: Data on co-infections with dengue virus and bacteremia is limited. A literature review of published case reports and studies from January 1943 to March 2016 found 3 studies in Singapore and Taiwan reporting concurrent bacteremia in 0.18-7% of dengue fever cases [40–42]. A concurrent dengue virus and S. Typhi case was also reported from Bandung, Indonesia [43]. In all of these studies, blood was collected for bacterial culture because patients did not improve clinically a few days to a week after dengue fever was diagnosed. Furthermore, in the majority of cases, dengue virus infection was confirmed by serology only (IgM detected or fourfold IgG increase). These reports support our finding that simultaneous infection with bacteria and dengue virus is rare. In our study, bacterial growth observed in 14 participants with positive dengue NS1 antigen tests were considered false positive blood cultures (5 Staphylococcus hominis, 4 Staphylococcus epidermidis, 1 Kocuria rosea, 1 Micrococcus aureus, 1 Staphylococcus waneri).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                         | 13.Please corelate conclusion with your findings.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                         | Response: Thank you very much, we have correlated our conclusion with our findings.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                         | Lines 522-541 now read: We presented aerobic blood culture findings from a multi-<br>centre study of patients with acute febrile illness admitted to eight major hospitals<br>across Indonesia. Our universal use of aerobic blood cultures is unique in Indonesia,<br>the results of which help clarify the epidemiology and burden of BSI, rates of<br>contamination among CAI, and common AMR patterns in Indonesia. Bacteremia was<br>observed in 8.9% participants, with the most frequent pathogens being Salmonella<br>spp., E. coli, and S. aureus. Two Salmonella spp. cases had evidence of AMR, and<br>several E. coli cases were multidrug resistant (42.9%) or monoresistant (14.3%).<br>Culture contamination was observed in 3.6% cases. Our data suggest that blood<br>cultures should be included as a routine diagnostic test, and pre-screening patients for<br>the most common viral infections, such as dengue, influenza and chikungunya viruses,<br>would conserve scarce resources without negatively impacting patient benefit. The<br>routine practice of AMR susceptibility testing on positive blood cultures in Indonesia is<br>encouraging and should be continued to inform clinical decisions on patient treatment<br>in real-time. The country could benefit from clear guidance at the national level,<br>particularly regarding the timing of blood collection prior to antibiotic administration, the<br>prioritization of patients with comorbidities, blood collection practices to reduce<br>environmental contamination, and the supplementation of blood cultures with<br>molecular assays to combat false-negative results. Additionally, Indonesia could<br>greatly benefit from a nationwide program for the systematic collection and<br>dissemination of blood culture and AMR results. |
| Additional Information: |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Question                | Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Financial Disclosure    | This project has been funded in whole or in part with MOH Indonesia and Federal funds from the National Institute of Allergy and Infectious Diseases, National Institutes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

Enter a financial disclosure statement that describes the sources of funding for the work included in this submission. Review the <u>submission guidelines</u> for detailed requirements. View published research articles from <u>PLOS ONE</u> for specific examples.

This statement is required for submission and **will appear in the published article** if the submission is accepted. Please make sure it is accurate.

#### Unfunded studies

Enter: The author(s) received no specific funding for this work.

#### **Funded studies**

Enter a statement with the following details:

- Initials of the authors who received each award
- Grant numbers awarded to each author
- The full name of each funder
- URL of each funder website
- Did the sponsors or funders play any role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript?
- NO Include this sentence at the end of your statement: The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
- YES Specify the role(s) played.

#### \* typeset

## **Competing Interests**

Use the instructions below to enter a competing interest statement for this submission. On behalf of all authors, disclose any <u>competing interests</u> that could be perceived to bias this work—acknowledging all financial support and any other relevant financial or non-financial competing interests.

This statement is **required** for submission and **will appear in the published article** if the submission is accepted. Please make of Health, under contract Nos. HHSN261200800001E and HHSN261201500003I. The content of this publication does not necessarily reflect the views or policies of the Department of Health and Human Services, nor does mention of trade names, commercial products, or organizations imply endorsement by the U.S. Government.

The authors have declared that no competing interests exist.

| sure it is accurate and that any funding<br>sources listed in your Funding Information<br>later in the submission form are also<br>declared in your Financial Disclosure<br>statement. |                                                                                                                                                                      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| View published research articles from <u>PLOS ONE</u> for specific examples.                                                                                                           |                                                                                                                                                                      |
| NO authors have competing interests                                                                                                                                                    |                                                                                                                                                                      |
| Enter: The authors have declared that no competing interests exist.                                                                                                                    |                                                                                                                                                                      |
| Authors with competing interests                                                                                                                                                       |                                                                                                                                                                      |
| Enter competing interest details beginning with this statement:                                                                                                                        |                                                                                                                                                                      |
| I have read the journal's policy and the<br>authors of this manuscript have the following<br>competing interests: [insert competing<br>interests here]                                 |                                                                                                                                                                      |
|                                                                                                                                                                                        |                                                                                                                                                                      |
| * typeset                                                                                                                                                                              |                                                                                                                                                                      |
| Ethics Statement                                                                                                                                                                       | Ethical approvals for the AFIRE study were granted by the Institutional Review Boards                                                                                |
|                                                                                                                                                                                        | of the National Institute of Health Research and Development (NIHRD), Indonesia                                                                                      |
| Enter an ethics statement for this submission. This statement is required if                                                                                                           | Ministry of Health (KE.01.05/EC/407/2012), the Faculty of Medicine at the University of Indonesia and RSUPN Dr. Cipto Mangunkusumo Hospital (451/PT02.FK/ETIK/2012), |
| the study involved:                                                                                                                                                                    | and RSUD Dr. Soetomo Hospital (192/Panke.KKE/VIII/2012). All eligible patients who                                                                                   |
| Human participants                                                                                                                                                                     | agreed to participate in the study provided written informed consent before enrollment.                                                                              |
| Human specimens or tissue                                                                                                                                                              |                                                                                                                                                                      |
| <ul><li>Vertebrate animals or cephalopods</li><li>Vertebrate embryos or tissues</li></ul>                                                                                              |                                                                                                                                                                      |
| <ul> <li>Field research</li> </ul>                                                                                                                                                     |                                                                                                                                                                      |
| Write "N/A" if the submission does not                                                                                                                                                 |                                                                                                                                                                      |
| require an ethics statement.                                                                                                                                                           |                                                                                                                                                                      |
|                                                                                                                                                                                        |                                                                                                                                                                      |
| General guidance is provided below.                                                                                                                                                    |                                                                                                                                                                      |
| Consult the <u>submission guidelines</u> for                                                                                                                                           |                                                                                                                                                                      |
| detailed instructions. Make sure that all information entered here is included in the                                                                                                  |                                                                                                                                                                      |
| Methods section of the manuscript.                                                                                                                                                     |                                                                                                                                                                      |
|                                                                                                                                                                                        |                                                                                                                                                                      |

## Format for specific study types

# Human Subject Research (involving human participants and/or tissue)

- Give the name of the institutional review board or ethics committee that approved the study
- Include the approval number and/or a statement indicating approval of this research
- Indicate the form of consent obtained (written/oral) or the reason that consent was not obtained (e.g. the data were analyzed anonymously)

#### Animal Research (involving vertebrate

#### animals, embryos or tissues)

- Provide the name of the Institutional Animal Care and Use Committee (IACUC) or other relevant ethics board that reviewed the study protocol, and indicate whether they approved this research or granted a formal waiver of ethical approval
- Include an approval number if one was obtained
- If the study involved non-human primates, add additional details about animal welfare and steps taken to ameliorate suffering
- If anesthesia, euthanasia, or any kind of animal sacrifice is part of the study, include briefly which substances and/or methods were applied

#### **Field Research**

Include the following details if this study involves the collection of plant, animal, or other materials from a natural setting:

- Field permit number
- Name of the institution or relevant body that granted permission

## **Data Availability**

Authors are required to make all data underlying the findings described fully available, without restriction, and from the time of publication. PLOS allows rare exceptions to address legal and ethical concerns. See the <u>PLOS Data Policy</u> and FAQ for detailed information.

Yes - all data are fully available without restriction

| A Data Availability Statement describing<br>where the data can be found is required at<br>submission. Your answers to this question<br>constitute the Data Availability Statement<br>and <b>will be published in the article</b> , if<br>accepted.<br>Important: Stating 'data available on request<br>from the author' is not sufficient. If your data<br>are only available upon request, select 'No' for<br>the first question and explain your exceptional<br>situation in the text box.<br>Do the authors confirm that all data<br>underlying the findings described in their<br>manuscript are fully available without<br>restriction?                                                                                                                                                                                                                                |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| <ul> <li>Describe where the data may be found in full sentences. If you are copying our sample text, replace any instances of XXX with the appropriate details.</li> <li>If the data are held or will be held in a public repository, include URLs, accession numbers or DOIs. If this information will only be available after acceptance, indicate this by ticking the box below. For example: <i>All XXX files are available from the XXX database (accession number(s) XXX, XXX.)</i>.</li> <li>If the data are all contained within the manuscript and/or Supporting Information files, enter the following: <i>All relevant data are within the manuscript and its Supporting Information files.</i></li> <li>If neither of these applies but you are able to provide details of access elsewhere, with or without limitations, please do so. For example:</li> </ul> |  |
| researchers who meet the criteria for<br>access to confidential data.<br>The data underlying the results<br>presented in the study are available<br>from (include the name of the third party                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |

| <ul> <li>and contact information or URL).</li> <li>This text is appropriate if the data are<br/>owned by a third party and authors do<br/>not have permission to share the data.</li> <li>* typeset</li> </ul> |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Additional data availability information:                                                                                                                                                                      |  |

Jakarta, 14<sup>th</sup> July 2022

Editor PLOS ONE,

Please find enclosed the revised manuscript entitled "The Characteristics of Bacteremia Among Patients with Acute Febrile Illness Requiring Hospitalization in Indonesia" for publication in PLOS ONE.

We sincerely thank the Reviewers for reviewing our manuscript and for the suggestions that we received. We have made a concerted effort to adequately respond to each suggestion received from the Reviewers. We firmly believe that the Reviewers' comments and suggestions have significantly improved this manuscript.

Thank you very much.

Best regards, Herman Kosasih

±

| 1        | The Characteristics of Bacteremia among Patients with Acute Febrile Illness Requiring                                                                         |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2        | Hospitalization in Indonesia                                                                                                                                  |
| 3        |                                                                                                                                                               |
| 4        | Pratiwi Soedarmono <sup>1</sup> , Aly Diana <sup>2,3</sup> , Patricia Tauran <sup>4</sup> , Dewi Lokida <sup>5</sup> , Abu Tholib Aman <sup>6</sup> , Bachti  |
| 5        | Alisjahbana <sup>7</sup> , Dona Arlinda <sup>8</sup> , Emiliana Tjitra <sup>8</sup> , Herman Kosasih <sup>2*</sup> , Ketut Tuti Parwati Merati <sup>9</sup> , |
| 6        | Mansyur Arif <sup>4</sup> , Muhammad Hussein Gasem <sup>10</sup> , Nugroho Harry Susanto <sup>2</sup> , Nurhayati Lukman <sup>2</sup> ,                       |
| 7        | Retna Indah Sugiyono <sup>2</sup> , Usman Hadi <sup>11</sup> , Vivi Lisdawati <sup>12</sup> , Karine G Fouth Tchos <sup>13</sup> , Aaron                      |
| 8        | Neal <sup>13</sup> , Muhammad Karyana <sup>2,8</sup>                                                                                                          |
| 9        |                                                                                                                                                               |
| 10       | <sup>1</sup> Faculty of Medicine, Universitas Indonesia/ Dr. Cipto Mangunkusumo Hospital, Jakarta,                                                            |
| 11       | Indonesia                                                                                                                                                     |
| 12       | <sup>2</sup> Indonesia Research Partnership on Infectious Disease (INA-RESPOND), Jakarta, Indonesia                                                           |
| 13       | <sup>3</sup> Department of Public Health, Faculty of Medicine, Universitas Padjadjaran, Sumedang,                                                             |
| 14       | Indonesia                                                                                                                                                     |
| 15       | <sup>4</sup> Faculty of Medicine, Universitas Hasanuddin/ Dr. Wahidin Sudirohusodo Hospital,                                                                  |
| 16       | Makassar, Indonesia                                                                                                                                           |
| 17       | <sup>5</sup> Tangerang District Hospital, Tangerang, Banten, Indonesia                                                                                        |
| 18       | <sup>6</sup> Faculty of Medicine, Public Heath, and Nursing, Universitas Gadjah Mada/ Dr. Sardjito                                                            |
| 19       | Hospital, Yogyakarta, Indonesia                                                                                                                               |
| 20<br>21 | <sup>7</sup> Department of Internal Medicine, Faculty of Medicine, Universitas Padjadjaran/ Dr Hasan<br>Sadikin Hospital, Bandung, Indonesia                  |
|          | · -                                                                                                                                                           |

- <sup>8</sup> National Institute of Health Research and Development (NIHRD), Ministry of Health
- 23 Republic of Indonesia, Jakarta, Indonesia.
- <sup>9</sup> Faculty of Medicine, Udayana University, Sanglah General Hospital, Denpasar, Bali,
- 25 Indonesia
- <sup>26</sup> <sup>10</sup> Faculty of Medicine, Diponegoro University/ Dr. Kariadi Hospital, Semarang, Indonesia
- 27 <sup>11</sup> Faculty of Medicine, Universitas Airlangga/ Dr. Soetomo Hospital, Surabaya, Indonesia
- 28 <sup>12</sup> Sulianti Saroso Infectious Disease Hospital, Jakarta, Indonesia
- <sup>13</sup> National Institute of Allergy and Infectious Disease (NIAID), National Institutes of Health,
- 30 Bethesda, Maryland, United States of America
- 31
- 32 \* Corresponding author
- 33 E-mail: <u>hkosasih@ina-respond.net</u> (HK)

- 35
- 36
- 37
- 38
- 39
- 40
- 41

# 42 Abstract

| 43 | Blood culturing remains the "gold standard" for bloodstream infection (BSI)                                                                  |
|----|----------------------------------------------------------------------------------------------------------------------------------------------|
| 44 | diagnosis, but the method is inaccessible to many developing countries due to high costs                                                     |
| 45 | and insufficient resources. To better understand the utility of blood cultures among patients                                                |
| 46 | in Indonesia, a country where blood cultures are not routinely performed, we evaluated                                                       |
| 47 | data from a previous cohort study that included blood cultures for all participants. An acute                                                |
| 48 | febrile illness study was conducted from July 2013 to June 2016 at eight major hospitals in                                                  |
| 49 | seven provincial capitals in Indonesia. All participants presented with a fever, and two-sided                                               |
| 50 | aerobic blood cultures were performed within 48 hours of hospital admission. Positive                                                        |
| 51 | cultures were further assessed for antimicrobial resistance (AMR) patterns. Specimens from                                                   |
| 52 | participants with negative culture results were screened by advanced molecular and                                                           |
| 53 | serological methods for evidence of causal pathogens. Blood cultures were performed for                                                      |
| 54 | 1,459 of 1,464 participants, and the 70.6% (1,030) participants that were negative by                                                        |
| 55 | dengue NS1 antigen test were included in further analysis. Bacteremia was observed in 8.9%                                                   |
| 56 | (92) participants, with the most frequent pathogens being Salmonella spp. (51), Escherichia                                                  |
| 57 | which serovar was it coli (14), and Staphylococcus aureus (10). Two Salmonella spp. cases had ev S.Typhi? mention                            |
| 58 | and several <i>E. coli</i> cases were multidrug resistant (42.9%, 6/14) or monoresistant (14.3%,                                             |
| 59 | 2/14). Culture contamination was observed in 3.6% (37) cases. Advanced laboratory assays                                                     |
| 60 | identified <del>culturable pathogens</del> in participants having negative cultures, with 23.1% to 90%<br>etiological agent mention names of |
| 61 | of cases being missed by blood cultures. Blood cultures are a valuable diagnostic tool for                                                   |
| 62 | hospitalized patients presenting with fever. In Indonesia, pre-screening patients for the                                                    |
| 63 | most common viral infections, such as dengue, influenza, and chikungunya viruses, would                                                      |

maximize the benefit to the patient while also conserving resources. Blood cultures should
also be supplemented with advanced laboratory tests when available.

66

# 67 Introduction

68 Bloodstream infections (BSI) [1] are a significant cause of morbidity and mortality in 69 both developing and developed countries [2–4]. The "gold standard" method for BSI 70 diagnosis remains blood culturing [5–7], a straightforward laboratory technique that is 71 inaccessible to many developing countries due to high costs and insufficient resources. 72 Blood cultures provide both definitive microbiological evidence of infection and serve as a 73 crucial tool to monitor the serious global health threat of antimicrobial resistance (AMR) [8]. 74 The threat of AMR further exacerbates the burden felt in countries without routine access 75 to this diagnostic method, including in Indonesia, and allows AMR to continue threatening 76 populations worldwide. The early and accurate identification of causative microorganisms 77 and their susceptibility to antibiotics is essential to improve patient survival and prevent 78 emerging AMR pathogens.

Even with access to routine blood cultures, the interpretation of results can be challenging and should align with clinical observations. Bacterial growth is a consequence of the initial quantity of bacteria in the specimen, the quality of the specimen, the timing of specimen collection with clinical treatment, and the biological nature of the bacteria. Negative blood cultures alone are not definitive for diagnosis, as advanced laboratory methods often detect missed culturable organisms from the same specimen types [9,10]. Routine analysis of specimens can be impacted by contamination from the environment of

the patient [11,12]. In most settings, only 5 to 13% of blood cultures will become positive,

and of those, 20–56% result from contamination [7,13–16].

88 In Indonesia, acute febrile illness resulting from BSIs remains a common cause of 89 hospitalization, morbidity, and mortality. Although infectious diseases are the primary cause 90 of hospitalization in the country, clinicians do not routinely perform blood cultures as part 91 of standard clinical care [17]. When clinicians perform blood cultures, generally in severely 92 ill patients referred to tertiary care, they do not consistently use best laboratory practices 93 [18]. Data on blood culture use, performance, and contamination rates in Indonesia remain 94 very limited [17,19,20]. Consequently, data on the emergence and spread of AMR 95 pathogens in the country is unreliable and incomplete, complicating antibiotic stewardship 96 efforts in the region.

97 The epidemiology of pathogens associated with fever in Indonesia is not well 98 understood, as public health surveillance data is limited and only a few local studies have 99 been conducted [19,21–26]. Among published studies, dengue virus, chikungunya virus, 100 influenza virus, Salmonella Typhi, Rickettsia spp., and Leptospira spp. are consistently the 101 most common causes of acute febrile illness hospitalizations. A study in Papua from 102 November 1997 to February 2000 enrolled 226 hospitalized patients that were negative for 103 malaria, the majority of whom were determined to have typhoid fever (18%), leptospirosis 104 (12%), rickettsioses (8%), and dengue fever (7%) [23]. An observational fever study in 105 Bandung identified dengue virus in 12.4% of fever episodes, followed by S. Typhi (7.4%), and 106 chikungunya virus (7.1%) [24,26,27]. A 2005-2006 study in Semarang found rickettsioses and 107 leptospirosis in 7% and 10%, respectively, of 137 acute undifferentiated fever cases [21]. 108 The parent study of the research presented here found the most prevalent pathogens 109 among participants at eight hospitals in 7 major cities in Indonesia to be dengue virus (27-

110 52%), Rickettsia spp. (2-12%), S. Typhi (0.9-13%), influenza virus (2-6%), Leptospira spp. (0-

111 5%), and chikungunya virus (0-4%) [19].

To better understand the utility of blood cultures among patients with acute febrile illness in Indonesia, we evaluated data from a previously published multicenter observational prospective cohort study conducted across the country [19]. Gaining insight into pathogens commonly identified by blood culture, contamination rates, AMR patterns, and disease outcomes will provide actionable evidence to support decision making for Indonesia's national blood culture testing policy.

118

# 119 Methods

## 120 Study design and sample collection

121 A prospective observational study enrolling febrile patients who required 122 hospitalization was conducted by the Indonesia Research Partnership on Infectious Disease 123 (INA-RESPOND) from July 2013 to June 2016 at eight major hospitals in seven provincial 124 capitals in Indonesia: Dr. Cipto Mangunkusumo Hospital in Jakarta, Sulianti Saroso Infectious 125 Disease Hospital in Jakarta, Dr. Wahidin Sudirohusodo Hospital in Makassar, Dr. Sardjito 126 Hospital in Yogyakarta, Dr. Hasan Sadikin Hospital in Bandung, Sanglah General Hospital in 127 Denpasar, Dr. Soetomo Hospital in Surabaya, and Dr. Kariadi Hospital, in Semarang. The full 128 details of this study, known as AFIRE, were published previously [19]. Briefly, inclusion 129 criteria consisted of axillary body temperature  $\geq$  38°C,  $\geq$ 1 year of age, and hospitalization 130 within the past 24 hours. Patients were excluded from the study if they had subjective fever 131 for ≥14 days or were hospitalized in the last 3 months. Demographic, clinical, and laboratory 132 data, including hematology results, were collected at baseline, once during days 14–28, and

three months after enrollment. Blood and other biological specimens were collected at eachstudy visit.

135 During the baseline visit, blood was collected for cultures, clinically relevant rapid 136 diagnostic tests when available, and dengue virus rapid diagnostic tests. Dengue virus 137 infection remains a significant burden across Indonesia [28,29], with disease incidence 138 increasing in recent years [30]. Though other viral agents are present in Indonesia, none are 139 as prevalent as dengue virus [24,31], and most are challenging to diagnose due to 140 limitations with available rapid diagnostic tests [32,33]. Given the widespread prevalence of 141 dengue virus infection, and the very high specificity (almost 100%) and good sensitivity (70-142 87%) of NS1 antigen rapid diagnostic tests [34], we employed universal dengue virus 143 screening to rapidly resolve the unknown etiologies of study participants. Participants with 144 negative NS1 antigen tests were further considered for BSIs through blood culture tests and 145 other etiologies, as determined through advanced testing at the INA-RESPOND reference 146 laboratory.

147

## 148 **Laboratory tests**

Aerobic blood cultures were performed within 48 hours of a participant being admitted to the emergency department of a study site. Blood volumes of approximately 5-8 mL for adults and 1-3 mL for pediatrics were collected from each arm, whenever possible, directly into separate aerobic blood culture bottles. If blood could not be collected from each arm due to clinical reasons, blood was collected from a single arm for a single aerobic blood culture bottle. Study physicians were advised to delay the administration of IV antibiotics until blood specimens were collected, provided that there were no immediate

risks to the participant. Each hospital performed a complete blood count (CBC) as part ofstandard-of-care procedures during enrollment.

158 Inoculated aerobic blood culture bottles were incubated using a continuous-159 monitoring blood culture system, either BACTEC (Becton-Dickinson, Sparks, Maryland) or 160 BacT/Alert (bioMérieux, Inc., Durham, North Carolina) [35]. Manufacturer guidelines were 161 followed for all bacterial cultures, and automated growth identification systems, either BD 162 Phoenix (Becton Dickinson) or VITEK 2 (bioMérieux, Inc., Durham, North Carolina), were 163 used for bacterial identification and antibiotic susceptibility testing. Blood cultures were 164 performed and analyzed at the hospitals' nationally accredited clinical laboratories by 165 trained, certified staff. All instruments and standards were calibrated appropriately 166 according to manufacturer guidelines, and all tests were run alongside appropriate positive 167 and negative control to ensure the integrity and accuracy of the results. Organism 168 identification was considered acceptable when the confidence level in the automated 169 growth identification system was ≥95% probability [36]. Quality control tests were 170 performed weekly at all site laboratories, and each new lot of ID cards was tested using 171 validated stocks of culture organisms.

172 Growth observed in blood cultures was classified as either "true positive" or "false 173 positive." True positives included pathogenic bacterial species, particularly those identified 174 as priority pathogens by the World Health Organization Global Antimicrobial Resistance and 175 Use Surveillance System (WHO GLASS) [37], observed in at least one blood culture. 176 Additionally, non-WHO GLASS pathogens found in either one or both cultures and being 177 consistent with clinical manifestations were also considered to be true positives. False 178 positives included growth of bacteria and fungi which were not clinically relevant and 179 growth of known culture contaminants. Bacterial culture contamination was defined as any

180 culture growing viridans group streptococci, Corynebacterium spp., Bacillus spp.,

181 Diphtheroid spp., Micrococcus spp., Propionibacterium spp., and coagulase-negative
182 staphylococci [12].

At the INA-RESPOND reference laboratory, specimens from all participants were screened for dengue using NS1 antigen ELISA, dengue RT-PCR, and dengue IgM and IgG. Molecular tests in acute specimens and serological tests in acute and convalescent specimens were performed to detect bacterial infections such as *S*. Typhi, *S*. Paratyphi, *Leptospira spp.*, and *Rickettsia typhi*, and viruses such as influenza, chikungunya, and measles. Details of diagnostic assays for this study were previously described [19].

## 190 Statistical analysis

191Data were collected in OpenClinica (OpenClinica LLC, MA, USA) and analyzed using192STATA v.15.1 (StataCorp LLC, TX, USA). Proportions were compared between categorical193variables using Pearson's chi-squared test. The student's t-test was used to assess194continuous variables. All p-values were two-sided with a significance level set to p<0.05.</td>195

## 196 **Ethical clearance**

197 Ethical approvals for the AFIRE study were granted by the Institutional Review

198 Boards of the National Institute of Health Research and Development (NIHRD), Indonesia

199 Ministry of Health (KE.01.05/EC/407/2012, dated 23 May 2012), the Faculty of Medicine at

200 the University of Indonesia and RSUPN Dr. Cipto Mangunkusumo Hospital

201 (451/PT02.FK/ETIK/2012, dated 23 July 2012), and RSUD Dr. Soetomo Hospital

(192/Panke.KKE/VIII/2012, dated 13 August 2012). All eligible patients who agreed to
 participate in the study provided written informed consent before enrollment.

204

205 **Results** 

206 A total of 1,464 participants were enrolled in the AFIRE study, and aerobic blood 207 cultures were performed for 1,459 participants (Fig 1). The remaining 5 participants had 208 insufficient blood specimens for following reasons: 1 adult was in a severe condition 209 (decreased of consciousness), 2 participants (1 child and 1 adult) self-discharged against 210 medical advice, and the guardians of 2 children refused to allow more blood to be drawn. 211 Bacterial growth was observed for 10.3% (150) participants, including 56.0% (84) with WHO 212 GLASS pathogens, 5.3% (8) with other non-WHO GLASS pathogens, and 38.7% (58) with 213 false positives. No growth was observed for 89.7% (1,309) participants. All participants were 214 screened for dengue virus by NS1 antigen and dengue IgM/IgG antibody tests, resulting in 215 29.4% (429) positive results, 415 from "No Growth" and 14 from the "False Positive" group. 216 The remaining 70.6% (1,030) dengue-negative participants were included in this analysis. 217

Fig 1. General blood culture results observed among study participants. Participants provided blood from either one or both arms for aerobic blood cultures, and bacterial growth was observed from either one or both sides. All participants providing blood underwent screening for dengue virus infection by NS1 antigen test.

222

223 Results of blood cultures: community-acquired infection (CAI)

| 224 | Bacteremia was observed in 8.9% (92) of the 1,030 dengue-negative participants,             |
|-----|---------------------------------------------------------------------------------------------|
| 225 | with the most frequent pathogens being Salmonella spp. in 51 participants, Escherichia coli |
| 226 | in 14 participants, and Staphylococcus aureus in 10 participants (Table 1). Dengue-negative |
| 227 | false positive results were observed in 4.3% (44) participants, with the most frequent      |
| 228 | microorganism being contaminating coagulase-negative Staphylococcus spp. in 32              |
| 229 | participants. From the 136 dengue-negative participants with any microbial growth, 97.8%    |
| 230 | (133) had blood collected from two sides of the body (Fig 1). Growth from both sides was    |
| 231 | observed in 58.7% of participants with true positive results and 25.0% of participants with |
| 232 | false positive results.                                                                     |

# 234 Table 1. Specific blood culture results among dengue-negative study participants.

|                                          | Pathogen                               | Positive<br>Results | Percent of Positive<br>Results Within Group |
|------------------------------------------|----------------------------------------|---------------------|---------------------------------------------|
| ns (N                                    | Salmonella spp.                        | 51                  | 60.7                                        |
| thoge                                    | Escherichia coli                       | 14                  | 16.7                                        |
| riority Pa<br>= 84)                      | Staphylococcus aureus                  | 10                  | 11.9                                        |
| WHO GLASS Priority Pathogens (N<br>= 84) | Klebsiella pneumoniae                  | 5                   | 6.0                                         |
| GLAS                                     | Acinetobacter spp.                     | 2                   | 2.4                                         |
| онм                                      | Streptococcus pneumoniae               | 2                   | 2.4                                         |
| gens                                     | Pseudomonas aeruginosa                 | 2                   | 25.0                                        |
| Non-WHO GLASS Pathogens<br>(N = 8)       | Staphylococcus hominis ssp.<br>hominis | 1                   | 12.5                                        |
|                                          | Enterobacter aerogenes                 | 1                   | 12.5                                        |
|                                          | Enterococcus faecalis                  | 1                   | 12.5                                        |
| Non                                      | Pseudomonas cepacea                    | 1                   | 12.5                                        |

|                                         | Pseudomonas spp.                     | 1  | 12.5 |
|-----------------------------------------|--------------------------------------|----|------|
|                                         | Streptococcus pyogenes               | 1  | 12.5 |
| owth                                    | Pantoea spp.                         | 2  | 28.6 |
| Clinically Irrelevant Growth<br>(N = 7) | Sphingomonas paucimobilis            | 2  | 28.6 |
| rreleva<br>(N = 7)                      | Alcaligenes faecalis                 | 1  | 14.3 |
| cally Ir                                | Candida pelliculosa                  | 1  | 14.3 |
| Clinic                                  | Rhizobium radiobacter                | 1  | 14.3 |
|                                         | Coagulase-Negative<br>Staphylococcus | 32 | 86.5 |
| าants<br>7)                             | Bacillus spp.                        | 2  | 5.4  |
| Contaminants<br>(N = 37)                | Micrococcus luteus                   | 1  | 2.7  |
| Cor                                     | Kocuria spp.                         | 1  | 2.7  |
|                                         | Streptococcus viridans               | 1  | 2.7  |
| No Growth<br>(N = 894)                  | None                                 | 0  | 0.0  |

235

236 Since Salmonella spp. were found in over half (55.4%) of true positives (Table 1), 237 participants with true positive results were analyzed in either Salmonella spp. or non-238 Salmonella spp. groups (Table 2). Participant demographics revealed nearly equal numbers 239 of male and female participants in the study, with equal numbers of true positive cases in 240 the two groups. Participants in the Salmonella spp. group were significantly younger, with a 241 median age of 14 years old, compared to non-Salmonella spp. and false positive groups, 242 with median ages of 44 years old and 24.6 years old, respectively. Over 62.7% of Salmonella 243 *spp.* cases were in participants ≤18 years old, while only 26.8% of non-*Salmonella spp.* cases

- 244 were in this same age range. There were no significant differences between all groups in the
- 245 days of onset before hospitalization or the length of hospitalization.
- 246

## 247 Table 2. Participant characteristics, hematology results, and mortality.

|                                                                                                                         | True Positive (92)         |                                     | False Positive and              | <b>T</b> I                 |  |
|-------------------------------------------------------------------------------------------------------------------------|----------------------------|-------------------------------------|---------------------------------|----------------------------|--|
|                                                                                                                         | Salmonella spp.<br>(51)    | Non- <i>Salmonella spp.</i><br>(41) | No Growth<br>(938)              | Total<br>(1,030)           |  |
| Male, N (%)                                                                                                             | 29 (56.9)                  | 17 (41.5)                           | 502 (53.9)                      | 553 (53.7)                 |  |
| Median age, years<br>(range, IQR)                                                                                       | 14 (2.5-54, 14.7)          | 44 (1-84, 40.0)                     | 24.6 (1-92, 36.5)               | 24 (1-92, 36.2)            |  |
| Mean age, years (SD)                                                                                                    | 16.2 (11.1) <sup>D,E</sup> | 39.6 (24.0) <sup>D,F</sup>          | 28.6 (21.4) <sup>E,F</sup>      | 28.5 (21.4)                |  |
| Distribution of cases by age group, N (%)                                                                               |                            |                                     |                                 |                            |  |
| 1-5 years                                                                                                               | 4 (7.8)                    | 5 (12.2)                            | 154 (16.4)                      | 163 (15.8)                 |  |
| >5-18 years                                                                                                             | 28 (54.9) <sup>D,E</sup>   | 6 (14.6) <sup>D</sup>               | 184 (19.6) <sup>E</sup>         | 218 (21.2)                 |  |
| >18-45 years                                                                                                            | 18 (35.3)                  | 11 (26.8)                           | 365 (38.9)                      | 394 (38.3)                 |  |
| >45-65 years                                                                                                            | 1 (2.0) <sup>D,E</sup>     | 13 (31.7) <sup>C,D</sup>            | 179 (19.1) <sup>C,E</sup>       | 193 (18.7)                 |  |
| >65 years                                                                                                               | 0 (0.0) <sup>B,D</sup>     | 6 (14.6) <sup>C,D</sup>             | 56 (6.0) <sup>B,C</sup>         | 62 (6.0)                   |  |
| Days of onset before<br>hospitalization, median<br>(range, IQR)<br>Length of<br>hospitalization,<br>median (range, IQR) | 7 (1-13, 4)<br>7 (2-38, 4) | 4 (1-15, 4)<br>8 (2-40, 7)          | 4 (1-15, 4)<br>6 (1-55, 3.3)    | 4 (1-15, 4)<br>6 (1-55, 4) |  |
| Received intravenous<br>antibiotics<br>prior to blood collection,<br>N (%)                                              | 9 (17.6) <sup>A,E</sup>    | 16 (39.0) <sup>A</sup>              | 389 (41.5) <sup>E</sup>         | 414 (40.2)                 |  |
| Received any antibiotics<br>following<br>blood collection, N (%)                                                        | 31/31 (100) <sup>E</sup>   | 18/18 (100) <sup>A,C</sup>          | 199/269 (74.0) <sup>A,C,E</sup> | 248/318<br>(77.9)          |  |
| Hematology at<br>enrollment, N (%)                                                                                      |                            |                                     |                                 |                            |  |
| Leukopenia                                                                                                              | 13/51 (25.5) <sup>E</sup>  | 5/41 (12.2)                         | 120/937 (12.8) <sup>E</sup>     | 138/1029<br>(13.4)         |  |

| Normal Leukocyte  | 35/51 (68.6) <sup>A,E</sup> | 19/41 (46.3) <sup>A</sup>  | 462/937 (49.3) <sup>E</sup> | 516/1029<br>(50.1) |
|-------------------|-----------------------------|----------------------------|-----------------------------|--------------------|
| Leukocytosis      | 3/51 (5.9) <sup>D,E</sup>   | 17/41 (41.5) <sup>D</sup>  | 355/937 (37.9) <sup>E</sup> | 375/1029<br>(36.4) |
| Lymphopenia       | 16/44 (36.4) <sup>B,D</sup> | 26/38 (68.4) <sup>D</sup>  | 442/810 (54.6) <sup>B</sup> | 484/892<br>(54.3)  |
| Normal Lymphocyte | 17/44 (38.6) <sup>A</sup>   | 7/38 (18.4) <sup>A,C</sup> | 285/810 (35.2) <sup>c</sup> | 309/892<br>(34.6)  |
| Lymphocytosis     | 11/44 (25.0) <sup>E</sup>   | 5/38 (13.2)                | 83/810 (10.2) <sup>E</sup>  | 99/892 (11.1)      |

Outcome, N (%)

| Died                                                                                                | 3 (5.9) <sup>D</sup> | 11 (26.8) <sup>D,F</sup> | 69 (7.4) <sup>⊧</sup> | 83 (8.1) |  |  |  |
|-----------------------------------------------------------------------------------------------------|----------------------|--------------------------|-----------------------|----------|--|--|--|
| Study participants with true positive culture results were sub-categorized into Salmonella spp. and |                      |                          |                       |          |  |  |  |

non-Salmonella spp. groups to better resolve analyses. Comparisons for significance occur across column groups only. A,B,C indicates p-value <0.05

D,E,F indicates p-value <0.01

| 249 | Intravenous antibiotics were administered prior to blood collection significantly less            |
|-----|---------------------------------------------------------------------------------------------------|
| 250 | frequently in the <i>Salmonella spp</i> . group (17.6%, 9/51) compared to other groups (Table 2). |
| 251 | All participants with true positive results were administered antibiotics following blood         |
| 252 | collection, and 74% of participants with false positive results received antibiotics.             |
| 253 | Hematology profiles at enrollment differed significantly between the Salmonella spp. and          |
| 254 | non-Salmonella spp. groups. Leukopenia and normal leukocyte counts were observed in               |
| 255 | 94.1% (48) of Salmonella spp. cases compared to 58.5% (24) of non-Salmonella spp. cases           |
| 256 | and 62.0% (582) of false positive and no growth cases. Similarly, leukocytosis was                |
| 257 | significantly lower in the Salmonella spp. group compared to the other groups.                    |
| 258 | Lymphopenia was observed in 36.4% (16) of the Salmonella spp. cases, which is significantly       |
| 259 | lower than the 68.4% (26) non-Salmonella spp. cases and the 54.6% (442) false positive and        |
| 260 | no growth cases. Mortality was significantly higher in the non-Salmonella spp. group              |
| 261 | compared to the other groups.                                                                     |

| 262 | Cases of true positives were distributed across age groups and study sites (Table 3).        |
|-----|----------------------------------------------------------------------------------------------|
| 263 | While Salmonella spp. were most frequently found in pediatrics (62.7% of cases), E. coli, S. |
| 264 | aureus, and K. pneumoniae were most frequently found in adults (85.7%, 80.0%, and 80.0%      |
| 265 | of cases, respectively). Most Salmonella spp. cases were seen in Bandung (BDG, 41.2%),       |
| 266 | Semarang (SMG, 23.5%), and Surabaya (SUB, 21.6%). This differed significantly from cases     |
| 267 | seen in Makassar (MKS, 9.8%), Yogyakarta (YOG, 2.0%), Denpasar (DPS, 2.0%), and Jakarta      |
| 268 | (JKT, 0.0%). Other than Salmonella spp., there were no significant differences in the        |
| 269 | distribution of pathogens across study sites, likely due to the low numbers of cases.        |

| 271 1 | Table 3. Positive blood cul | ure pathogens by pa | rticipant age group and | d study location. |
|-------|-----------------------------|---------------------|-------------------------|-------------------|
|-------|-----------------------------|---------------------|-------------------------|-------------------|

| Pathogen                  | Age group (years old) |                         |                         | Location            |     |     |     |     | Total |     |     |     |    |
|---------------------------|-----------------------|-------------------------|-------------------------|---------------------|-----|-----|-----|-----|-------|-----|-----|-----|----|
| Identified                | ≥1-<br>5              | >5-<br>18               | >18-<br>45              | >45-<br>65          | >65 | Bdg | Sby | Smr | Dps   | Mks | Yog | Jkt |    |
| Salmonella<br>spp.        | 4                     | 28<br>(1 <sup>†</sup> ) | 18<br>(1 <sup>†</sup> ) | 1 (1*)              | 0   | 21  | 11  | 12  | 1     | 5   | 1   | 0   | 51 |
| Escherichia coli          | 1                     | 1                       | 3 (1 <sup>+</sup> )     | 5 (1 <sup>+</sup> ) | 4   | 3   | 3   | 0   | 4     | 0   | 3   | 1   | 14 |
| Staphylococcus<br>aureus  | 0                     | 2                       | 4 (1 <sup>+</sup> )     | 4 (1 <sup>+</sup> ) | 0   | 1   | 1   | 3   | 2     | 1   | 0   | 2   | 10 |
| Klebsiella<br>pneumoniae  | 0                     | 1                       | 0                       | 3 (2 <sup>+</sup> ) | 1   | 0   | 1   | 0   | 2     | 2   | 0   | 0   | 5  |
| Acinetobacter<br>spp.     | 0                     | 1                       | 1                       | 0                   | 0   | 0   | 0   | 0   | 1     | 0   | 0   | 1   | 2  |
| Enterobacter<br>aerogenes | 0                     | 0                       | 1 (1 <sup>+</sup> )     | 0                   | 0   | 0   | 0   | 0   | 1     | 0   | 0   | 0   | 1  |
| Enterococcus<br>faecalis  | 1                     | 0                       | 0                       | 0                   | 0   | 0   | 0   | 0   | 0     | 0   | 0   | 1   | 1  |
| Pseudomonas<br>aeruginosa | 1                     | 0                       | 1 (1†)                  | 0                   | 0   | 0   | 0   | 0   | 0     | 0   | 2   | 0   | 2  |
| Pseudomonas<br>cepacea    | 0                     | 0                       | 0                       | 0                   | 1   | 1   | 0   | 0   | 0     | 0   | 0   | 0   | 1  |
| Pseudomonas<br>species    | 0                     | 0                       | 1                       | 0                   | 0   | 0   | 1   | 0   | 0     | 0   | 0   | 0   | 1  |

| Streptococcus<br>pneumoniae              | 1<br>(1 <sup>+</sup> ) | 1<br>(1 <sup>+</sup> )  | 0                       | 0                       | 0 | 1  | 0  | 0  | 0  | 1 | 0 | 0 | 2  |
|------------------------------------------|------------------------|-------------------------|-------------------------|-------------------------|---|----|----|----|----|---|---|---|----|
| Streptococcus<br>pyogenes                | 0                      | 0                       | 0                       | 1                       | 0 | 0  | 0  | 0  | 1  | 0 | 0 | 0 | 1  |
| Staphylococcus<br>hominis ssp<br>hominis | 1<br>(1 <sup>+</sup> ) | 0                       | 0                       | 0                       | 0 | 0  | 0  | 0  | 0  | 0 | 1 | 0 | 1  |
| Total                                    | 9<br>(2 <sup>†</sup> ) | 34<br>(2 <sup>†</sup> ) | 29<br>(5 <sup>†</sup> ) | 14<br>(5 <sup>†</sup> ) | 6 | 27 | 17 | 15 | 12 | 9 | 7 | 5 | 92 |

<sup>+</sup> Indicates study participants who died

272 Bdg: Bandung; Sby: Surabaya; Smr: Semarang; Dps: Denpasar; Mks: Makassar; Yog:

- 273 Yogyakarta; Jkt: Jakarta
- 274

275 The 938 participants in the false positive and no growth groups had specimens screened by other laboratory methods to determine potential etiologies (Table 4). PCR on 276 277 blood specimens identified etiologies in 168 participants, serology identified etiologies in 278 220 participants, and other methods identified etiologies in 94 participants. Among the 279 culturable bacterial pathogens identified in these groups were the WHO GLASS pathogens S. 280 Typhi (51), S. pneumoniae (18), K. pneumoniae (8), A. baumanii (7), E. coli (7), and S. aureus 281 (3). When combined with the culture results from the WHO GLASS priority pathogens group 282 in Table 1, 50% of S. Typhi cases, 33.3% of E. coli cases, 23.1% of S. aureus cases, 61.5% of K. 283 pneumoniae cases, 77.8% of Acinetobacter spp. cases, and 90% of S. pneumoniae cases in 284 the AFIRE study [19] were not identified by blood cultures.

285

## Table 4. Pathogens detected by molecular, serological, or other laboratory methods from

## 287 participants with false positive and no growth blood cultures.

| False Positive and No Growth<br>(N=938) | Confirmatory Methods |           |          |               |  |
|-----------------------------------------|----------------------|-----------|----------|---------------|--|
| Pathogen                                | N                    | Blood PCR | Serology | Other Methods |  |

| Rickettsia typhi                                     | 101 | 65 | 36 |                                              |
|------------------------------------------------------|-----|----|----|----------------------------------------------|
| Influenza                                            | 66  | 0  | 59 | 7: Sputum PCR                                |
| Salmonella Typhi                                     | 51  | 3  | 48 |                                              |
| Leptospira spp.                                      | 44  | 31 | 13 |                                              |
| Chikungunya                                          | 38  | 30 | 8  |                                              |
| Dengue                                               | 35  | 0  | 35 |                                              |
| Mycobacterium tuberculosis                           | 20  | 0  | 0  | 20: Sputum<br>Microscopy                     |
| Streptococcus pneumoniae                             | 18  | 10 | 0  | 8: Sputum PCR                                |
| Measles                                              | 14  | 9  | 5  |                                              |
| Amoeba                                               | 11  | 0  | 0  | 11: Feces<br>Microscopy                      |
| RSV                                                  | 11  | 0  | 9  | 2: Swab PCR                                  |
| HHV-6                                                | 9   | 9  | 0  |                                              |
| Klebsiella pneumoniae                                | 8   | 1  | 0  | 5: Sputum Culture<br>2: Swab Culture         |
| Acinetobacter baumanii                               | 7   | 1  | 0  | 4: Sputum PCR<br>1: Swab PCR<br>1: Urine PCR |
| Escherichia coli                                     | 7   | 1  | 0  | 4: Urine Culture<br>2: Pus Culture           |
| Hepatitis A                                          | 6   | 0  | 6  |                                              |
| Pseudomonas aeruginosa                               | 6   | 0  | 0  | 4: Sputum Culture<br>2: Urine Culture        |
| Enterococcus faecalis                                | 3   | 0  | 0  | 2: Pus Culture<br>1: Urine Culture           |
| Staphylococcus aureus                                | 3   | 0  | 0  | 3: Pus Culture                               |
| Mycobacterium leprae                                 | 2   | 0  | 0  | 2: Skin Microscopy                           |
| Plasmodium spp.                                      | 2   | 0  | 0  | 2: Rapid Antigen<br>Test                     |
| Seoul virus                                          | 2   | 2  | 0  |                                              |
| Adenovirus                                           | 1   | 1  | 0  |                                              |
| Ascaris lumbricoides                                 | 1   | 0  | 0  | 1: Feces<br>Microscopy                       |
| Ascaris lumbricoides and<br>Trichuris Trichiura      | 1   | 0  | 0  | 1: Feces<br>Microscopy                       |
| Bordetella pertussis and<br>Streptococcus pneumoniae | 1   | 0  | 0  | 1: Sputum PCR                                |
| HCoV-OC43                                            | 1   | 1  | 0  |                                              |
| Enterobacter aerogenes                               | 1   | 0  | 0  | 1: Sputum Culture                            |

| Enterobacter cloacae                            | 1   | 0   | 0   | 1: Sputum Culture<br>and PCR |
|-------------------------------------------------|-----|-----|-----|------------------------------|
| Enterococcus avium                              | 1   | 0   | 0   | 1: Pus Culture               |
| Enterovirus                                     | 1   | 1   | 0   |                              |
| EPEC                                            | 1   | 0   | 0   | 1: Feces Culture             |
| HIV                                             | 1   | 1   | 0   |                              |
| Metapneumovirus                                 | 1   | 0   | 0   | 1: Swab PCR                  |
| <i>Moraxella catarrhalis</i> and<br>Influenza B | 1   | 0   | 0   | 1: Sputum Culture<br>and PCR |
| Mycoplasma pneumoniae                           | 1   | 0   | 0   | 1: Sputum PCR                |
| Norovirus II                                    | 1   | 1   | 0   |                              |
| Rickettsia felis                                | 1   | 1   | 0   |                              |
| Rubella                                         | 1   | 0   | 1   |                              |
| Streptococcus faecalis                          | 1   | 0   | 0   | 1: Urine Culture             |
| Unknown                                         | 456 | 0   | 0   |                              |
| Total                                           | 938 | 168 | 220 | 94                           |

Plasma, serum, and clinically relevant specimens were collected from all study participants 289 and tested in a central lab for culturable and non-culturable pathogens based on a standard 290 study algorithm and clinical suspicion.

291

#### Antimicrobial resistance patterns 292

293 Antimicrobial resistance patterns were observed in several participants with blood

294 cultures positive for WHO GLASS priority pathogens (Fig 2). Among the 51 Salmonella spp.

295 cases, evidence of multidrug resistance was observed in one participant and

296 monoresistance in one participant. In contrast, E. coli cases were mostly multidrug resistant

297 (42.9%, 6/14) or monoresistant (14.3%, 2/14), with observed resistances to ampicillin

298 (87.5%, 7/8), co-trimoxazole (60.0%, 3/5), ceftriaxone (45.4%, 5/11), ceftazidime (41.6%,

- 299 5/12), cefotaxime (37.5%, 3/8), cefepime (33.3%, 2/6), ciprofloxacin (30.0%, 3/10), and
- 300 levofloxacin (25.0%, 2/8). Two participants (JOG-A and DPS-A) receiving ceftriaxone died
- 301 before their antimicrobial resistance test results, and one participant (JOG-B) survived when
- 302 switched from ceftazidime to ciprofloxacin based on their test results.

| 304                                                                                                   | Figure 2. Antimicrobial resistance patterns observed in WHO GLASS priority pathogens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 305                                                                                                   | from true positive blood cultures. Participants with resistant (R) infections are identified by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 306                                                                                                   | study location, and participants with sensitive (S) infections or infections with no testing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 307                                                                                                   | data (ND) are grouped into Other or No Data categories.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 308                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 309                                                                                                   | Methicillin-resistant S. aureus (MRSA) was observed in one participant based on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 310                                                                                                   | oxacillin susceptibility testing, and two participants with oxacillin-sensitive S. aureus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 311                                                                                                   | infections died. Both participants with S. pneumoniae bacteremia died, though antimicrobial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 312                                                                                                   | resistance was only observed in one of the participants. All cases of Acinetobacter spp. and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 313                                                                                                   | K. pneumoniae that underwent drug sensitivity testing were sensitive to antibiotics.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 314                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 315                                                                                                   | Disease outcomes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 315<br>316                                                                                            | <b>Disease outcomes</b><br>Characteristics and laboratory findings of participants who died during                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 316                                                                                                   | Characteristics and laboratory findings of participants who died during                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 316<br>317                                                                                            | Characteristics and laboratory findings of participants who died during hospitalization are shown in Table 5. A total of 83 participants in this analysis died during                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 316<br>317<br>318                                                                                     | Characteristics and laboratory findings of participants who died during<br>hospitalization are shown in Table 5. A total of 83 participants in this analysis died during<br>hospitalization. Among these, 16.9% (14) had true positive blood cultures (Table 5A),                                                                                                                                                                                                                                                                                                                                                                                                          |
| <ul><li>316</li><li>317</li><li>318</li><li>319</li></ul>                                             | Characteristics and laboratory findings of participants who died during<br>hospitalization are shown in Table 5. A total of 83 participants in this analysis died during<br>hospitalization. Among these, 16.9% (14) had true positive blood cultures (Table 5A),<br>resulting in 15.2% mortality in the true positive group. This mortality rate is twofold higher<br>than the 7.4% mortality observed in the false positive and no growth groups. Overall<br>mortality in the <i>Salmonella spp.</i> group (5.9%) was significantly lower than the non-                                                                                                                  |
| <ul> <li>316</li> <li>317</li> <li>318</li> <li>319</li> <li>320</li> </ul>                           | Characteristics and laboratory findings of participants who died during<br>hospitalization are shown in Table 5. A total of 83 participants in this analysis died during<br>hospitalization. Among these, 16.9% (14) had true positive blood cultures (Table 5A),<br>resulting in 15.2% mortality in the true positive group. This mortality rate is twofold higher<br>than the 7.4% mortality observed in the false positive and no growth groups. Overall                                                                                                                                                                                                                |
| <ul> <li>316</li> <li>317</li> <li>318</li> <li>319</li> <li>320</li> <li>321</li> </ul>              | Characteristics and laboratory findings of participants who died during<br>hospitalization are shown in Table 5. A total of 83 participants in this analysis died during<br>hospitalization. Among these, 16.9% (14) had true positive blood cultures (Table 5A),<br>resulting in 15.2% mortality in the true positive group. This mortality rate is twofold higher<br>than the 7.4% mortality observed in the false positive and no growth groups. Overall<br>mortality in the Salmonella spp. group (5.9%) was significantly lower than the non-<br>wchich serovar                                                                                                       |
| <ul> <li>316</li> <li>317</li> <li>318</li> <li>319</li> <li>320</li> <li>321</li> <li>322</li> </ul> | Characteristics and laboratory findings of participants who died during<br>hospitalization are shown in Table 5. A total of 83 participants in this analysis died during<br>hospitalization. Among these, 16.9% (14) had true positive blood cultures (Table 5A),<br>resulting in 15.2% mortality in the true positive group. This mortality rate is twofold higher<br>than the 7.4% mortality observed in the false positive and no growth groups. Overall<br>mortality in the <i>Salmonella</i> <b>spp.</b> group (5.9%) was significantly lower than the non-<br>Muchich servar<br>Salmonella spp. group (26.8%). Among between participants, there were no significant |

- 326 others (6) (Table 5B). Antimicrobial-resistant pathogens were identified in 3 of the 14
- 327 deceased participants with true positives (Table 5). In the false positive and no growth
- 328 groups, other laboratory methods such as PCR and/or serology were used to identify
- 329 culturable bacterial pathogens including S. Typhi (2), A. baumanii (1), E. avium (1), E. coli (1),
- 330 *M. catarrhalis* (1), and *S. pneumoniae* (1) (Table 5B).
- 331
- 332 Table 5. Participant characteristics, clinical diagnoses, and identified pathogens from fatal
- 333 cases in the study.
- 334 (A) Characteristics of deceased participants categorized by blood culture growth result.

|                                                                            | True                                | Positive (14)                       | False Positive        | Total     |  |
|----------------------------------------------------------------------------|-------------------------------------|-------------------------------------|-----------------------|-----------|--|
|                                                                            | Salmonella <mark>spp.</mark><br>(3) | Non- <i>Salmonella spp.</i><br>(11) | and No Growth<br>(69) | (83)      |  |
| Male, N (%)                                                                | 3 (100)                             | 7 (63.6)                            | 36 (52.2)             | 46 (55.4) |  |
| Distribution of cases<br>by age group, N (%)                               |                                     | mention serovar<br>name             |                       |           |  |
| 1-5 years                                                                  | 0 (0.0)                             | 2 (18.2)                            | 4 (5.8)               | 6 (7.2)   |  |
| >5-18 years                                                                | 1 (33.3)                            | 1 (9.1)                             | 7 (10.1)              | 9 (10.8)  |  |
| >18-45 years                                                               | 1 (33.3)                            | 4 (36.4)                            | 24 (34.8)             | 29 (34.9) |  |
| >45-65 years                                                               | 1 (33.3)                            | 4 (36.4)                            | 25 (36.2)             | 30 (36.1) |  |
| >65 years                                                                  | 0 (0.0)                             | 0 (0.0)                             | 9 (13)                | 9 (10.8)  |  |
| Received intravenous<br>antibiotics prior to<br>blood collection, N<br>(%) | 1 (33.3)                            | 1 (9.1)                             | 34 (49.3)             | 36 (43.4) |  |
| Length of<br>hospitalization,<br>median (range, IQR)                       | 4 (2-38)                            | 12 (2-17)                           | 8 (2-54)              | 8 (2-54)  |  |
| Comorbidities, N (%)                                                       | 2 (66.6)                            | 10 (90.9)                           | 60 (86.9)             | 72 (86.7) |  |

- (B) Pathogens from fatal cases confirmed by blood culture or other lab methods and the
- 337 accompanying clinical diagnoses, participant comorbidities, and AMR observations.

| True Positive (14)                                          | Clinical Diagnosis at<br>Death         | Comorbidities                                       | Antimicrobial<br>Resistance |
|-------------------------------------------------------------|----------------------------------------|-----------------------------------------------------|-----------------------------|
| Salmonella <mark>spp</mark> .∢3)<br>mention serovar<br>name | Typhoid fever                          | Hepatitis B, HIV, TB                                | None                        |
|                                                             | Acute limb ischemia                    | Acute Limb Ischemia                                 | None                        |
|                                                             | Songis, typhoid fever                  | Transfusion-Related<br>Acute Lung Injury<br>(TRALI) | None                        |
| Escherichia coli (2)                                        | Cholangitis                            | Diabetes, Hepatitis B                               | Yes                         |
|                                                             | Sepsis                                 | Anemia                                              | Yes                         |
| Klebsiella pneumoniae (2)                                   | UTI, diabetic<br>ketoacidosis          | Diabetes                                            | None                        |
|                                                             | UTI                                    | Stroke                                              | None                        |
| Staphylococcus aureus (2)                                   | UTI                                    | Diabetes                                            | None                        |
|                                                             | Sepsis                                 | Diabetes, Chronic<br>Kidney Disease                 | None                        |
| Streptococcus pneumoniae (2)                                | Aseptic meningitis, acute otitis media | Epilepsy                                            | Yes                         |
|                                                             |                                        | Myelodysplasia,<br>Hepatitis B<br>(Cirrhosis)       | None                        |
| Pseudomonas aeruginosa (1)                                  | Stevens-Johnson<br>syndrome            | HIV, TB,<br>Toxoplasmosis                           | No data                     |
| Enterobacter aerogenes (1)                                  | Cholangitis, Sepsis                    | None                                                | No data                     |
| Staphylococcus hominis ssp<br>hominis (1)                   |                                        | Craniopharyngioma                                   | None                        |

| False Positive and No Growth<br>(69) [Confirmatory Methods]             | Clinical Diagnosis at Death                                                                              |
|-------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| Mycobacterium tuberculosis<br>(8)<br>[GeneXpert (2), Microscopy<br>(6)] | Pulmonary TB (3), Colitis TB and Spondylitis TB, Millar TB, HIV,<br>Community-acquired Pneumonia, Sepsis |
| <i>Rickettsia typhi</i> (6)<br>[PCR (6)]                                | Sepsis (3), Community-acquired Pneumonia,<br>Meningoencephalitis, Diabetic Neuropathy                    |
| Influenza (3)<br>[PCR (2), Serology (1)]                                | Bronchiectasis, Community-acquired Pneumonia, Sepsis                                                     |

| <i>Salmonella</i> Typhi (2)<br>[Serology (2)]                                             | Hirschsprung's disease, HIV                                                                                                                                                                                                                                                                                                                                              |  |
|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| <i>Acinetobacter baumanii</i> (1)<br>[Sputum PCR]                                         | Community-acquired Pneumonia                                                                                                                                                                                                                                                                                                                                             |  |
| Ascaris lumbricoides (1)<br>[Microscopy]                                                  | Typhoid Fever                                                                                                                                                                                                                                                                                                                                                            |  |
| <i>Enterococcus avium</i> (1)<br>[Pus culture]                                            | Diabetic Ulcer                                                                                                                                                                                                                                                                                                                                                           |  |
| <i>Escherichia coli</i> (1)<br>[Urine culture]                                            | UTI                                                                                                                                                                                                                                                                                                                                                                      |  |
| HIV (1)<br>[PCR]                                                                          | Sepsis                                                                                                                                                                                                                                                                                                                                                                   |  |
| <i>Leptospira spp.</i> (1)<br>[PCR]                                                       | Dengue Hemorrhagic Fever I                                                                                                                                                                                                                                                                                                                                               |  |
| <i>Moraxella catarrhalis</i> and<br>Influenza B (1)<br>[Sputum culture and sputum<br>PCR] | Community-acquired Pneumonia                                                                                                                                                                                                                                                                                                                                             |  |
| RSV (1)<br>[Serology]                                                                     | TB Pleuritis                                                                                                                                                                                                                                                                                                                                                             |  |
| <i>Streptococcus pneumoniae</i> (1)<br>[Sputum PCR]                                       | Community-acquired Pneumonia                                                                                                                                                                                                                                                                                                                                             |  |
| Unknown (41)<br>[None]                                                                    | <ul> <li>HIV (6), Sepsis (6), Community-acquired Pneumonia (9),</li> <li>Cellulitis (2), Cholangitis (2), Lung Abscess, Acute Leukemia,</li> <li>Bacterial Meningitis, Bronchitis, Cholecystitis, Chronic</li> <li>Myelocytic Leukemia, COPD, Diarrhea, Extrapulmonary TB,</li> <li>GEA, Hepatitis B, Pancytopenia, SLE, Typhoid Fever, UTI,</li> <li>Unknown</li> </ul> |  |

339

# 340 **Discussion**

341 BSI causes a high burden of morbidity and mortality worldwide, particularly in low-

342 and middle-income countries (LMICs). Exact figures for BSI incidence and associated

343 mortality in LMICs are challenging to find due to the lack of bacteriological laboratories and

344 routine surveillance systems [38,39]. In Indonesia, very few acute febrile patients undergo

345 aerobic blood culture testing since it is not standard practice in the healthcare system,

largely due to resource and capacity restrictions [17]. The AFIRE study presents a unique
opportunity to improve our understanding of BSIs in the country since aerobic blood
cultures were performed on nearly all participants, regardless of clinical suspicion of
bacteremia.

350 Microbial growth was observed in 10.3% of all participants, with bacteremia being 351 ultimately confirmed in 6.3% of all participants (Fig 1). These proportions are similar to 352 previous reports, where positivity rates ranged from 10.0 - 11.4% [17]. The high prevalence 353 of dengue fever in Indonesia often complicates the clinical assessment of acute febrile 354 illness [25], so specimens from all participants in the AFIRE study were retrospectively 355 tested for dengue NS1 antigen to exclude dengue as a cause of illness [19]. Data on co-356 infections with dengue virus and bacteremia is limited. A literature review of published case 357 reports and studies from January 1943 to March 2016 found 3 studies in Singapore and 358 Taiwan reporting concurrent bacteremia in 0.18-7% of dengue fever cases [40–42]. A 359 concurrent dengue virus and S. Typhi case was also reported from Bandung, Indonesia [43]. 360 In all of these studies, blood was collected for bacterial culture because patients did not 361 improve clinically a few days to a week after dengue fever was diagnosed. Furthermore, in 362 the majority of cases, dengue virus infection was confirmed by serology only (IgM detected 363 or four-fold IgG increase). These reports support our finding that simultaneous infection 364 with bacteria and dengue virus is rare. In our study, bacterial growth observed in 14 365 participants with positive dengue NS1 antigen tests were considered false positive blood 366 cultures (5 Staphylococcus hominis, 4 Staphylococcus epidermidis, 1 Kocuria rosea, 1 367 Micrococcus aureus, 1 Staphylococcus arlettae, 1 coagulase-negative Staphylococcus spp., 368 and 1 Staphylococcus waneri).

369 Among dengue-negative participants with any microbial growth, 97.8% had blood 370 cultures performed from two sides of collection. One-sided blood culture lacks sufficient 371 sensitivity for BSI detection [44], and two-sided cultures make it easier to distinguish true 372 bacteremia and contamination [44,45]. It has been demonstrated that collecting two or 373 more blood culture sets, each comprising two bottles, over twenty-four hours will detect 374 over 94% of bacteremia episodes, compared to a detection rate of only 73% with the first 375 blood culture [44]. In many developing countries, collecting multiple blood culture sets is 376 generally not feasible, but the minimum practice of a single, one-sided blood culture still has 377 value if clinical care teams understand its limitations. Our data suggest that, in situations 378 where a single, one-sided blood culture is performed, the likelihood of missing a case of 379 bacteremia is 39% (35/89) (8.9% (89/1000) vs 5.4% (54/1000) (Fig 1). Indonesian clinicians 380 should consider this reduced sensitivity when acting on culture results.

381 The reliability and interpretation of blood culture results is significantly affected by 382 both contamination rates and the use of antibiotics prior to blood collection. General target 383 rates for culture contamination have been set at 3% [45], and in our study we observed an 384 overall contamination rate of 3.6%. These findings are consistent with previous reports, 385 including a 2010-2013 study at Sardjito Hospital in Yogyakarta that found a contamination 386 rate of 4.1% in children at the pediatric ICU and in pediatric wards [46]. Additional reports 387 from rural Thailand and Taiwan found contamination rates ranging from 4.1-6.1% and 2.6%, 388 respectively [47,48]. The proportion of participants who were given intravenous antibiotics 389 prior to blood collection in our study was high (40.2%), and this may alter the blood culture 390 results considerably [49,50]. In Indonesia, antibiotic therapy is often initiated preemptively 391 and without confirmatory testing in an attempt to maximize positive clinical outcomes [51]. 392 This broad use of antibiotics likely masks the true prevalence of bacteremia and may have

negative consequences for patients who subsequently appear to have no infection. Among participants with false positives or no growth, 111 had culturable microbes confirmed by other methods (Table 4), 7 of which died (Table 5). 56.8% of these overall participants received antibiotics prior to blood collection. The expansion of molecular methods would significantly help to tackle this problem, as nucleic acid probe and amplification tests have been shown to significantly improve the speed and accuracy of results in blood stream infections even after antibiotic use [52,53].

400 White blood cell counts, particularly leukopenia and leukocytosis, have been used to 401 predict blood culture results. However, the accuracy of systemic inflammatory response 402 syndrome (SIRS) criteria [54], Shapiro criteria [55], and the quick Sequential Organ Failure 403 Assessment (qSOFA) score [56] could not be confirmed in our study. This is primarily due to 404 the significant difference in leukocyte profiles between participants with Salmonella spp. 405 versus non-Salmonella spp. infections. Our study suggests, as proposed by Ombelet [57] and 406 Seigel [58] that leukocytosis should not be used as a predictor for positive blood cultures in 407 S. enterica-endemic areas.

408 We found that Salmonella **spp.** infection was the most common community-acquired mention serovar BSI (Table 1) at 55.4% of cases, which alname 409 udies conducted in limited-410 resource environments [46,47]. The majority of Salmonella bacteremia was in pediatrics, 411 which is consistent with a previous report from a blood culture study in Jakarta where the 412 incidence rate of typhoid fever was higher in the 2-15 year age group, with a mean age of 413 onset of 10.2 years [59]. This commonly observed age association may be due to poor 414 hygiene practices or the consumption of foods, particularly street food, outside of the home 415 [60]. Though over half of bacteremia cases were due to Salmonella spp. infection, only 416 21.4% of bacteremia deaths were due to the pathogen. Among these fatal cases, all had

417 significant comorbidities, suggesting that patients with multiple comorbidities would benefit418 from prioritization of blood culture diagnostics.

419 Despite the high prevalence of Salmonella spp. among participants with bacteremia, 420 previous reports have found the overall sensitivity of blood cultures to be only 66% (95% CI 421 56–75%) when compared to more sensitive tests such as bone marrow cultures [61]. 422 Though bone marrow cultures were not performed as part of our study, further molecular 423 and serological testing as part of the AFIRE study identified an additional 51 cases in the 424 false positive and no growth groups (Table 4), 2 of which were fatal. Most participants with 425 negative blood cultures and false positive results (41.5%) had already received IV antibiotics 426 prior to blood collection, which may have substantially diminished the yield of blood 427 cultures [49,50]. While blood collection prior to antibiotic administration is ideal, an 428 environment like Indonesia, where preemptive antibiotic use is common, would significantly 429 benefit from supplementing blood culture testing with molecular and serological tests. 430 These tests do have drawbacks, as molecular diagnostics can have poor sensitivity due to 431 the low organism burden in bodily fluids [62], and serological diagnostics require increasing 432 titers in convalescent specimens compared to acute specimens given high background 433 antibody levels in endemic regions [63]. Further research on combining a clinical prediction 434 algorithm with disease-specific blood cultures for patients with febrile illnesses in typhoid-435 endemic areas could be a potential route to improve patient outcomes in a community-436 based setting while waiting for the wider adoption of molecular and serological testing. 437 Among cases of Salmonella spp. bacteremia, the prevalence of antimicrobial resistance to 438 the antibiotic of choice was only 3.9% (Fig 2), which is similar to previous studies in 439 Indonesia [64–66]. In the 2011–2015 period, rates of resistance against most antimicrobials 440 for S. Typhi and S. Paratyphi were low, indicating that there is a distinct epidemiological

dynamic of enteric fever in Indonesia compared to the rest of the world [64,67]. This could
be due to different strains of *S*. Typhi and *S*. Paratyphi which may possess different genes
that contribute to resistance [64,65], though we did not perform genotyping or sequencing
as part of our study.

445 In addition to Salmonella spp. bacteremia, we identified cases of bacteremia caused 446 by other WHO GLASS and non-GLASS pathogens. E. coli was the second most common cause 447 of BSI, with over half of isolates possessing some form of antimicrobial resistance. Both fatal 448 cases were found to possess third-generation cephalosporin (3GC) and fluoroquinolone 449 resistance. The global incidence of community-acquired BSI due to E. coli is relatively high, 450 with an estimated 50-60 cases per 100,000 population [68–70], and the proportion of 3GC 451 resistance has reached levels >60% in some parts of the world [71,72]. We found 3GC-452 resistance rates of 35.7% in our study, which is consistent with the WHO GLASS report of 453 36.6% (interquartile range [IQR] 17.5-58.3) [37]. The fluoroquinolone-resistance rates of 454 22% that we observed were high but consistent with previous reports from Indonesia 455 [73,74].

456 Bacteremia from S. aureus infection was found in 10.9% cases in our study, and the 457 observed mortality rate of 20% was consistent with a previous report [75]. Both participants 458 who died were diabetic and contracted oxacillin-sensitive infections, suggesting that the 459 cause of death may have been due more to the timing of diagnosis and treatment. It is well-460 known that diabetics are at high risk for infections with S. aureus [76], so comorbidities 461 should be strongly considered when prioritizing blood culture testing. Two participants with 462 systemic lupus erythematosus (SLE) developed S. aureus BSIs, which has been associated 463 with classic hyper-IgE syndrome [77]. The colonization of S. aureus in the body often 464 increases in patients with SLE and may predispose them to BSI, worsening the SLE itself and

465 leading to a feedback loop with the potential to reinforce autoimmune symptoms [78,79]. 466 The proportion of MRSA in our study (10%) was lower than the WHO GLASS report (24.9% 467 (IQR 11.4-42.7)) [37], though this is understandable given that our study was not a 468 systematic surveillance of S. aureus infections across the country. Geographic variation of 469 CAI with MRSA has been observed in the Asia-Pacific region, including Taiwan, the 470 Philippines, Vietnam, and Sri Lanka (30-39%); Korea and Japan (15-20%); and Thailand, 471 India, and Hong Kong (3-9%) [80,81]. Data from Indonesia remains limited, but a recent 472 study has shown that the carriage rate of MRSA in the nose and throat of patients admitted 473 to surgery and internal medical wards at Dr. Soetomo Hospital in Surabaya was 8.1% among 474 643 patients [82]. Additionally, a report on 259 S. aureus isolates collected from clinical 475 cultures of patients at four tertiary care hospitals in Denpasar, Malang, Padang, and 476 Semarang found that 6.6% and 18.5% were MRSA and PVL-positive methicillin-susceptible S. 477 aureus, respectively [83].

478 Besides E. coli and S. aureus, we observed the other WHO GLASS pathogens K. 479 pneumonia, S. pneumonia, and Acinetobacter spp. in our study. K. pneumonia was mostly 480 found in patients with UTI and respiratory illnesses. The two fatal cases were most likely 481 associated with the participants' chronic illnesses (stroke and kidney failure), as none of the 482 isolates were 3GC, fluroquinolone, or co-trimoxazole resistant. Both cases of S. pneumonia 483 bacteremia were found in pediatric participants, and both were fatal. The participant with a 484 penicillin-sensitive infection had myelodysplasia syndrome, and the participant with a 485 ceftriaxone-resistant infection had clinical meningitis. S. pneumonia was also found by 486 molecular methods in 8 participants whose blood cultures were negative, supporting a 487 previous report that successful diagnostic approaches using blood cultures alone 488 are difficult because of reduced sensitivity [84]. Acinetobacter lwoffii was identified in two

489 participants, both having gastro-intestinal symptoms and receiving an initial diagnosis of 490 typhoid fever. Treatment with cefixime resolved the infections. A similar case with fever, 491 abdominal pain, and diarrhea has been reported in a 64 year-old man in Texas, USA [85]. 492 Our study found the most frequent BSI pathogens to be S. Typhi and E. coli, though 493 multidrug-resistant E. coli was the most problematic. The challenges of AMR in Indonesia 494 are similar to those of many other low and middle-income countries in the region and 495 globally [20]. Misuse and overuse of antibiotics in humans, livestock, and aquaculture may 496 be the key drivers of resistance in the country [86]. Despite current policies related to 497 antimicrobial use in Indonesia, frequent and unnecessary prescription of antibiotics by 498 physicians, high rates of self-medication, and over-the-counter access to antibiotics remain 499 common [87]. Since 2016, the Indonesia Ministry of Health has boosted their AMR 500 stewardship program to tackle this growing challenge, directing substantial funding to the 501 national AMR control committee [20]. Further support for AMR prevention and the 502 alignment of national policies with global policies and standards will substantially improve 503 the growing challenge of AMR infections in Indonesia.

504 Our study has several limitations. First, the blood specimens analyzed as part of this 505 study were collected only from a limited number of extremely ill patients admitted to 506 tertiary hospitals. Blood culture positivity rates, AMR patterns, and clinical outcomes may 507 not be generalizable to the Indonesian population at-large, though better understanding 508 this critically ill population will hopefully lead to a reduction in mortality from BSIs. Second, 509 only aerobic blood cultures were performed, which may have resulted in missed BSIs caused 510 by anaerobic bacterial. The generally low yield of anaerobic bacteria combined with 511 increasing costs and volumes of blood drawn [13,88,89] make anaerobic cultures impractical 512 for many hospitals in Indonesia. In the future, rationally targeting the use of anaerobic

culture bottles based on careful clinical assessment may result in substantial savings and
facilitate the broader adoption of the diagnostic in the country [90]. Lastly, AMR
susceptibility testing in this study was performed and reported according to general practice
in Indonesia, as our study was not initially designed as an AMR study. Consequently, our
data has substantial gaps and missing information. A standardized approach and electronic
results reporting system in Indonesia would significantly improve the accuracy and utility of
AMR susceptibility testing.

520

### 521 Conclusion

522 We presented aerobic blood culture findings from a multi-centre study of patients 523 with acute febrile illness admitted to eight major hospitals across Indonesia. Our universal 524 use of aerobic blood cultures is unique in Indonesia, the results of which help clarify the 525 epidemiology and burden of BSI, rates of contamination among CAI, and common AMR 526 patterns in Indonesia. Bacteremia was observed in 8.9% participants, with the most 527 frequent pathogens being Salmonella spp., E. coli, and S. aureus. Two Salmonella spp. cases mention serovar had evidence of AMR, and several *E. coli* caname whether Typhi esistant (42.9%) or 528 or Paratyphi A 529 monoresistant (14.3%). Culture contamination was observed in 3.6% cases. Our data 530 suggest that blood cultures should be included as a routine diagnostic test, and pre-531 screening patients for the most common viral infections, such as dengue, influenza and 532 chikungunya viruses, would conserve scarce resources without negatively impacting patient 533 benefit. The routine practice of AMR susceptibility testing on positive blood cultures in 534 Indonesia is encouraging and should be continued to inform clinical decisions on patient 535 treatment in real-time. The country could benefit from clear guidance at the national level,

536 particularly regarding the timing of blood collection prior to antibiotic administration, the

537 prioritization of patients with comorbidities, blood collection practices to reduce

538 environmental contamination, and the supplementation of blood cultures with molecular

assays to combat false-negative results. Additionally, Indonesia could greatly benefit from a

- 540 nationwide program for the systematic collection and dissemination of blood culture and
- 541 AMR results.

542

# 543 Acknowledgements

- 544 We would like to thank all of the patients who participated in this study, the site study
- 545 teams and investigators, US-NIAID and Indonesia NIHRD, the Indonesian Ministry of Health,
- 546 the INA-RESPOND Network Steering Committee, and the sample repository team.

547

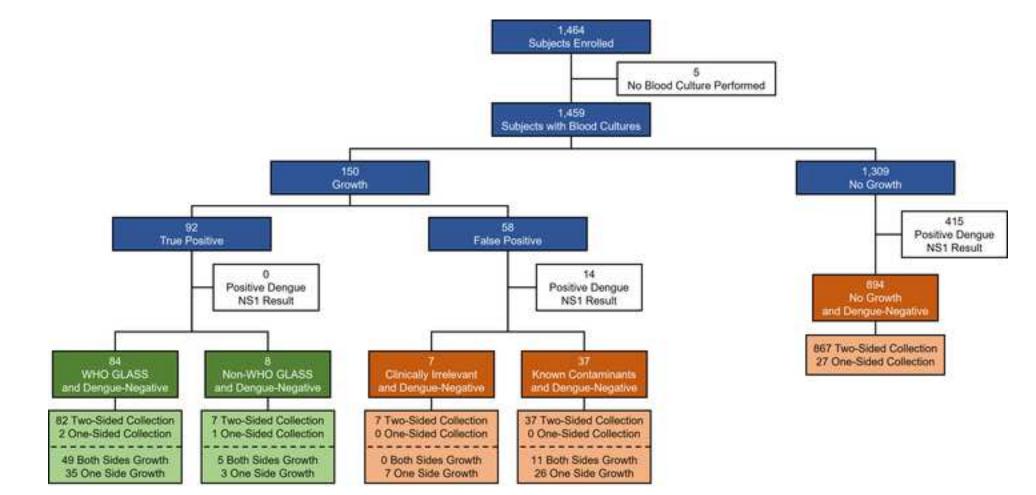
# 548 **References**

- 5491.David A. Smith, Sara M. Nehring. Bacteremia. Treasure Island (FL): StatPearls550Publishing; 2022. Available: https://www.ncbi.nlm.nih.gov/books/NBK441979/
- Goto M, Al-Hasan MN. Overall burden of bloodstream infection and nosocomial
   bloodstream infection in North America and Europe. Clin Microbiol Infect. 2013;19:
   501–509. doi:10.1111/1469-0691.12195
- 5543.McNamara JF, Righi E, Wright H, Hartel GF, Harris PNA, Paterson DL. Long-term555morbidity and mortality following bloodstream infection: A systematic literature556review. J Infect. 2018;77: 1–8. doi:10.1016/j.jinf.2018.03.005
- Peters RPH, Zijlstra EE, Schijffelen MJ, Walsh AL, Joaki G, Kumwenda JJ, et al. A
   prospective study of bloodstream infections as cause of fever in Malawi: clinical
   predictors and implications for management. Trop Med Int Health. 2004;9: 928–934.
   doi:10.1111/j.1365-3156.2004.01288.x
- 5. Gaibani P, Rossini G, Ambretti S, Gelsomino F, Pierro AM, Varani S, et al. Blood culture
   systems: rapid detection how and why? Int J Antimicrob Agents. 2009;34: S13–S15.
   doi:10.1016/S0924-8579(09)70559-X

- 5646.William A. Blood Culture Systems: From Patient to Result. In: Azevedo L, editor. Sepsis -565An Ongoing and Significant Challenge. InTech; 2012. doi:10.5772/50139
- Lamy B, Dargère S, Arendrup MC, Parienti J-J, Tattevin P. How to Optimize the Use of
   Blood Cultures for the Diagnosis of Bloodstream Infections? A State-of-the Art. Front
   Microbiol. 2016;7. doi:10.3389/fmicb.2016.00697
- Prestinaci F, Pezzotti P, Pantosti A. Antimicrobial resistance: a global multifaceted
   phenomenon. Pathog Glob Health. 2015;109: 309–318.
   doi:10.1179/2047773215Y.000000030
- Hu B, Tao Y, Shao Z, Zheng Y, Zhang R, Yang X, et al. A Comparison of Blood Pathogen
   Detection Among Droplet Digital PCR, Metagenomic Next-Generation Sequencing, and
   Blood Culture in Critically III Patients With Suspected Bloodstream Infections. Front
   Microbiol. 2021;12: 641202. doi:10.3389/fmicb.2021.641202
- Trung NT, Thau NS, Bang MH, Song LH. PCR-based Sepsis@Quick test is superior in
   comparison with blood culture for identification of sepsis-causative pathogens. Sci Rep.
   2019;9: 13663. doi:10.1038/s41598-019-50150-y
- 579 11. Weinstein MP. Blood Culture Contamination: Persisting Problems and Partial Progress.
  580 J Clin Microbiol. 2003;41: 2275–2278. doi:10.1128/JCM.41.6.2275-2278.2003
- 581 12. Hall KK, Lyman JA. Updated Review of Blood Culture Contamination. Clin Microbiol Rev.
  582 2006;19: 788–802. doi:10.1128/CMR.00062-05
- 583 13. Dargère S, Parienti J-J, Roupie E, Gancel P-E, Wiel E, Smaiti N, et al. Unique blood
  584 culture for diagnosis of bloodstream infections in emergency departments: a
  585 prospective multicentre study. Clin Microbiol Infect. 2014;20: O920–O927.
  586 doi:10.1111/1469-0691.12656
- 58714.Bates DW. Predicting Bacteremia in Hospitalized Patients: A Prospectively Validated588Model. Ann Intern Med. 1990;113: 495. doi:10.7326/0003-4819-113-7-495
- 589 15. Salluzzo R, Reilly K. The Rational Ordering of Blood Cultures in the Emergency
   590 Department. Qual Assur Util Rev. 1991;6: 28–31. doi:10.1177/0885713x9100600106
- 59116. Little JR, Trovillion E, Fraser V. High Frequency of Pseudobacteremia at a University592Hospital. Infect Control Hosp Epidemiol. 1997;18: 200–202. doi:10.1086/647588
- Teerawattanasook N, Tauran PM, Teparrukkul P, Wuthiekanun V, Dance DAB, Arif M,
  et al. Capacity and Utilization of Blood Culture in Two Referral Hospitals in Indonesia
  and Thailand. Am J Trop Med Hyg. 2017;97: 1257–1261. doi:10.4269/ajtmh.17-0193
- 596 18. Doern GV, Carroll KC, Diekema DJ, Garey KW, Rupp ME, Weinstein MP, et al. Practical
  597 Guidance for Clinical Microbiology Laboratories: A Comprehensive Update on the
  598 Problem of Blood Culture Contamination and a Discussion of Methods for Addressing
  599 the Problem. Clin Microbiol Rev. 2019;33. doi:10.1128/CMR.00009-19

- Gasem MH, Kosasih H, Tjitra E, Alisjahbana B, Karyana M, Lokida D, et al. An
  observational prospective cohort study of the epidemiology of hospitalized patients
  with acute febrile illness in Indonesia. PLoS Negl Trop Dis. 2020;14: e0007927.
  doi:10.1371/journal.pntd.0007927
- Parathon H, Kuntaman K, Widiastoety TH, Muliawan BT, Karuniawati A, Qibtiyah M, et
  al. Progress towards antimicrobial resistance containment and control in Indonesia.
  BMJ. 2017; j3808. doi:10.1136/bmj.j3808
- 607 21. Gasem MH, Wagenaar JFP, Goris MGA, Adi MS, Isbandrio BB, Hartskeerl RA, et al.
  608 Murine typhus and leptospirosis as causes of acute undifferentiated fever, Indonesia.
  609 Emerg Infect Dis. 2009;15: 975–977. doi:10.3201/eid1506.081405
- Capeding MR, Chua MN, Hadinegoro SR, Hussain IIHM, Nallusamy R, Pitisuttithum P, et
  al. Dengue and other common causes of acute febrile illness in Asia: an active
  surveillance study in children. PLoS Negl Trop Dis. 2013;7: e2331.
  doi:10.1371/journal.pntd.0002331
- 613 doi:10.1371/journal.pntd.0002331
- Punjabi NH, Taylor WRJ, Murphy GS, Purwaningsih S, Picarima H, Sisson J, et al.
  Etiology of acute, non-malaria, febrile illnesses in Jayapura, northeastern Papua,
  Indonesia. Am J Trop Med Hyg. 2012;86: 46–51. doi:10.4269/ajtmh.2012.10-0497
- Kosasih H, de Mast Q, Widjaja S, Sudjana P, Antonjaya U, Ma'roef C, et al. Evidence for
  endemic chikungunya virus infections in Bandung, Indonesia. PLoS Negl Trop Dis.
  2013;7: e2483. doi:10.1371/journal.pntd.0002483
- Utama IMS, Lukman N, Sukmawati DD, Alisjahbana B, Alam A, Murniati D, et al. Dengue
  viral infection in Indonesia: Epidemiology, diagnostic challenges, and mutations from
  an observational cohort study. Messer WB, editor. PLoS Negl Trop Dis. 2019;13:
  e0007785. doi:10.1371/journal.pntd.0007785
- Kosasih H, Alisjahbana B, Nurhayati null, de Mast Q, Rudiman IF, Widjaja S, et al. The
  Epidemiology, Virology and Clinical Findings of Dengue Virus Infections in a Cohort of
  Indonesian Adults in Western Java. PLoS Negl Trop Dis. 2016;10: e0004390.
  doi:10.1371/journal.pntd.0004390
- Pranata IWA, Diana A, Heryanto MR, Lukman N, Kosasih H, Djauhari H, et al.
  Persistence of anti-Salmonella O9 IgM as measured by Tubex<sup>®</sup> TF may contribute to
  the over-diagnosis of typhoid fever in endemic areas. Bali Med J. 2022;11: 11.
  doi:10.15562/bmj.v11i1.3035
- 28. Zeng Z, Zhan J, Chen L, Chen H, Cheng S. Global, regional, and national dengue burden
  from 1990 to 2017: A systematic analysis based on the global burden of disease study
  2017. EClinicalMedicine. 2021;32: 100712. doi:10.1016/j.eclinm.2020.100712
- 635 29. Harapan H, Michie A, Yohan B, Shu P-Y, Mudatsir M, Sasmono RT, et al. Dengue viruses
  636 circulating in Indonesia: A systematic review and phylogenetic analysis of data from
  637 five decades. Rev Med Virol. 2019;29: e2037. doi:10.1002/rmv.2037

- 30. Harapan H, Michie A, Mudatsir M, Sasmono RT, Imrie A. Epidemiology of dengue
  hemorrhagic fever in Indonesia: analysis of five decades data from the National Disease
  Surveillance. BMC Res Notes. 2019;12: 350. doi:10.1186/s13104-019-4379-9
- Kosasih H, Roselinda null, Nurhayati null, Klimov A, Xiyan X, Lindstrom S, et al.
  Surveillance of influenza in Indonesia, 2003–2007. Influenza Other Respir Viruses.
  2013;7: 312–320. doi:10.1111/j.1750-2659.2012.00403.x
- Kosasih H, Widjaja S, Surya E, Hadiwijaya SH, Butarbutar DPR, Jaya UA, et al. Evaluation
  of two IgM rapid immunochromatographic tests during circulation of Asian lineage
  Chikungunya virus. Southeast Asian J Trop Med Public Health. 2012;43: 55–61.
- 647 33. Centers for Disease Control and Prevention. Influenza (Flu). Guidance: Use of Rapid
  648 Diagnostic Test. 2016. Available:
- https://www.cdc.gov/flu/professionals/diagnosis/clinician\_guidance\_ridt.htm#:~:text=
   Sensitivities%20of%20RIDTs%20are%20generally,commonly%20than%20false%20posit
   ive%20results.
- 652 34. Chaterji S, Allen JC, Chow A, Leo Y-S, Ooi E-E. Evaluation of the NS1 rapid test and the
  653 WHO dengue classification schemes for use as bedside diagnosis of acute dengue fever
  654 in adults. Am J Trop Med Hyg. 2011;84: 224–228. doi:10.4269/ajtmh.2011.10-0316
- 65535.Gonzalez MD, Chao T, Pettengill MA. Modern Blood Culture: Management Decisions656and Method Options. Clin Lab Med. 2020;40: 379–392. doi:10.1016/j.cll.2020.07.001
- Brisse S, Stefani S, Verhoef J, Van Belkum A, Vandamme P, Goessens W. Comparative
  evaluation of the BD Phoenix and VITEK 2 automated instruments for identification of
  isolates of the Burkholderia cepacia complex. J Clin Microbiol. 2002;40: 1743–1748.
  doi:10.1128/JCM.40.5.1743-1748.2002
- 37. World Health Organization. Global antimicrobial resistance surveillance system:
   manual for early implementation. 2015. Available: http://www.who.int/antimicrobial resistance/publications/surveillance-system-manual/en/
- 38. Vincent J-L, Marshall JC, Namendys-Silva SA, François B, Martin-Loeches I, Lipman J, et
  al. Assessment of the worldwide burden of critical illness: the intensive care over
  nations (ICON) audit. Lancet Respir Med. 2014;2: 380–386. doi:10.1016/S22132600(14)70061-X
- Fleischmann C, Scherag A, Adhikari NKJ, Hartog CS, Tsaganos T, Schlattmann P, et al.
  Assessment of Global Incidence and Mortality of Hospital-treated Sepsis. Current
  Estimates and Limitations. Am J Respir Crit Care Med. 2016;193: 259–272.
  doi:10.1164/rccm.201504-0781OC
- 40. Trunfio M, Savoldi A, Viganò O, d'Arminio Monforte A. Bacterial coinfections in dengue
  virus disease: what we know and what is still obscure about an emerging concern.
  Infection. 2017;45: 1–10. doi:10.1007/s15010-016-0927-6


- 41. Thein T-L, Ng E-L, Yeang MS, Leo Y-S, Lye DC. Risk factors for concurrent bacteremia in
  adult patients with dengue. J Microbiol Immunol Infect. 2017;50: 314–320.
  doi:10.1016/j.jmii.2015.06.008
- 42. See KC, Phua J, Yip HS, Yeo LL, Lim TK. Identification of concurrent bacterial infection in
  adult patients with dengue. Am J Trop Med Hyg. 2013;89: 804–810.
  doi:10.4269/ajtmh.13-0197
- 43. Sudjana P, Jusuf H. Concurrent dengue hemorrhagic fever and typhoid fever infection
  in adult: case report. Southeast Asian J Trop Med Public Health. 1998;29: 370–372.
- 44. Lee A, Mirrett S, Reller LB, Weinstein MP. Detection of Bloodstream Infections in
  Adults: How Many Blood Cultures Are Needed? J Clin Microbiol. 2007;45: 3546–3548.
  doi:10.1128/JCM.01555-07
- 45. Wilson ML, Clinical and Laboratory Standards Institute. Principles and procedures for
  blood cultures: approved guideline. Wayne, Pa.: Clinical and Laboratory Standards
  Institute; 2007.
- 689 46. Murni IK, Duke T, Daley AJ, Kinney S, Soenarto Y. True Pathogen or Contamination:
  690 Validation of Blood Cultures for the Diagnosis of Nosocomial Infections in a Developing
  691 Country. J Trop Pediatr. 2018;64: 389–394. doi:10.1093/tropej/fmx081
- 692 47. Rhodes J, Jorakate P, Makprasert S, Sangwichian O, Kaewpan A, Akarachotpong T, et al.
  693 Population-based bloodstream infection surveillance in rural Thailand, 2007–2014.
  694 BMC Public Health. 2019;19: 521. doi:10.1186/s12889-019-6775-4
- 695 48. Chang C-J, Wu C-J, Hsu H-C, Wu C-H, Shih F-Y, Wang S-W, et al. Factors Associated with
  696 Blood Culture Contamination in the Emergency Department: Critical Illness, End-Stage
  697 Renal Disease, and Old Age. Lazzeri C, editor. PLOS ONE. 2015;10: e0137653.
  698 doi:10.1371/journal.pone.0137653
- 49. Scheer CS, Fuchs C, Gründling M, Vollmer M, Bast J, Bohnert JA, et al. Impact of
  antibiotic administration on blood culture positivity at the beginning of sepsis: a
  prospective clinical cohort study. Clin Microbiol Infect. 2019;25: 326–331.
  doi:10.1016/j.cmi.2018.05.016
- 703 50. Rand KH, Beal SG, Rivera K, Allen B, Payton T, Lipori GP. Hourly Effect of Pretreatment
  704 With IV Antibiotics on Blood Culture Positivity Rate in Emergency Department Patients.
  705 Open Forum Infect Dis. 2019;6: ofz179. doi:10.1093/ofid/ofz179
- 51. Limato R, Nelwan EJ, Mudia M, de Brabander J, Guterres H, Enty E, et al. A multicentre
  point prevalence survey of patterns and quality of antibiotic prescribing in Indonesian
  hospitals. JAC-Antimicrob Resist. 2021;3: dlab047. doi:10.1093/jacamr/dlab047
- 52. She RC, Bender JM. Advances in Rapid Molecular Blood Culture Diagnostics: Healthcare
  Impact, Laboratory Implications, and Multiplex Technologies. J Appl Lab Med. 2019;3:
  617–630. doi:10.1373/jalm.2018.027409

- 53. Harris AM, Bramley AM, Jain S, Arnold SR, Ampofo K, Self WH, et al. Influence of
  Antibiotics on the Detection of Bacteria by Culture-Based and Culture-Independent
  Diagnostic Tests in Patients Hospitalized With Community-Acquired Pneumonia. Open
  Forum Infect Dis. 2017;4: ofx014. doi:10.1093/ofid/ofx014
- 54. Jones GR, Lowes JA. The systemic inflammatory response syndrome as a predictor of
  bacteraemia and outcome from sepsis. QJM. 1996;89: 515–522.
  doi:10.1093/qjmed/89.7.515
- 55. Shapiro NI, Wolfe RE, Wright SB, Moore R, Bates DW. Who needs a blood culture? A
  prospectively derived and validated prediction rule. J Emerg Med. 2008;35: 255–264.
  doi:10.1016/j.jemermed.2008.04.001
- 56. Seymour CW, Liu VX, Iwashyna TJ, Brunkhorst FM, Rea TD, Scherag A, et al. Assessment
  of Clinical Criteria for Sepsis: For the Third International Consensus Definitions for
  Sepsis and Septic Shock (Sepsis-3). JAMA. 2016;315: 762. doi:10.1001/jama.2016.0288
- 57. Ombelet S, Barbé B, Affolabi D, Ronat J-B, Lompo P, Lunguya O, et al. Best Practices of
  Blood Cultures in Low- and Middle-Income Countries. Front Med. 2019;6: 131.
  doi:10.3389/fmed.2019.00131
- 58. Seigel TA, Cocchi MN, Salciccioli J, Shapiro NI, Howell M, Tang A, et al. Inadequacy of
  Temperature and White Blood Cell Count in Predicting Bacteremia in Patients with
  Suspected Infection. J Emerg Med. 2012;42: 254–259.
  doi:10.1016/j.jemermed.2010.05.038
- 59. Ochiai RL. a study of typhoid fever in five Asian countries: disease burden and
  implications for controls. Bull World Health Organ. 2008;86: 260–268.
  doi:10.2471/BLT.06.039818
- Nuruzzaman H, Syahrul F. Risk Analysis of Typhoid Fever Based on Personal Hygiene
  and Street Food Consumption Habit at Home. J Berk Epidemiol. 2016;4: 74–86.
- Mogasale V, Ramani E, Mogasale VV, Park J. What proportion of Salmonella Typhi cases
  are detected by blood culture? A systematic literature review. Ann Clin Microbiol
  Antimicrob. 2016;15: 32. doi:10.1186/s12941-016-0147-z
- Andrews JR, Ryan ET. Diagnostics for invasive Salmonella infections: Current challenges
   and future directions. Vaccine. 2015;33: C8–C15. doi:10.1016/j.vaccine.2015.02.030
- Keddy K, Sooka A, Letsoalo M, Hoyland G, Chaignat CL, Morrissey A, et al. Sensitivity
  and specificity of typhoid fever rapid antibody tests for laboratory diagnosis at two
  sub-Saharan African sites. Bull World Health Organ. 2011;89: 640–647.
  doi:10.2471/BLT.11.087627
- Hardjo Lugito NP, Cucunawangsih. Antimicrobial Resistance of *Salmonella enterica*Serovars Typhi and Paratyphi Isolates from a General Hospital in Karawaci, Tangerang,
  Indonesia: A Five-Year Review. Int J Microbiol. 2017;2017: 1–7.
  doi:10.1155/2017/6215136

- 750 65. Chiou C-S, Lauderdale T-L, Phung DC, Watanabe H, Kuo J-C, Wang P-J, et al. 751 Antimicrobial Resistance in Salmonella enterica Serovar Typhi Isolates from 752 Bangladesh, Indonesia, Taiwan, and Vietnam. Antimicrob Agents Chemother. 2014;58: 753 6501-6507. doi:10.1128/AAC.03608-14 754 66. Punjabi NH, Agtini MD, Ochiai RL, Simanjuntak CH, Lesmana M, Subekti D, et al. Enteric 755 fever burden in North Jakarta, Indonesia: a prospective, community-based study. J 756 Infect Dev Ctries. 2013;7: 781–787. doi:10.3855/jidc.2629 757 67. Crump JA, Sjölund-Karlsson M, Gordon MA, Parry CM. Epidemiology, Clinical 758 Presentation, Laboratory Diagnosis, Antimicrobial Resistance, and Antimicrobial 759 Management of Invasive Salmonella Infections. Clin Microbiol Rev. 2015;28: 901–937. 760 doi:10.1128/CMR.00002-15 761 68. Abernethy J, Guy R, Sheridan EA, Hopkins S, Kiernan M, Wilcox MH, et al. Epidemiology 762 of Escherichia coli bacteraemia in England: results of an enhanced sentinel surveillance 763 programme. J Hosp Infect. 2017;95: 365–375. doi:10.1016/j.jhin.2016.12.008 764 69. Bou-Antoun S, Davies J, Guy R, Johnson AP, Sheridan EA, Hope RJ. Descriptive 765 epidemiology of Escherichia coli bacteraemia in England, April 2012 to March 2014. 766 Eurosurveillance. 2016;21. doi:10.2807/1560-7917.ES.2016.21.35.30329 767 70. Williamson DA, Lim A, Wiles S, Roberts SA, Freeman JT. Population-based incidence 768 and comparative demographics of community-associated and healthcare-associated Escherichia coli bloodstream infection in Auckland, New Zealand, 2005 – 2011. BMC 769 770 Infect Dis. 2013;13: 385. doi:10.1186/1471-2334-13-385 771 71. Diekema DJ, Hsueh P-R, Mendes RE, Pfaller MA, Rolston KV, Sader HS, et al. The 772 Microbiology of Bloodstream Infection: 20-Year Trends from the SENTRY Antimicrobial 773 Surveillance Program. Antimicrob Agents Chemother. 2019;63. 774 doi:10.1128/AAC.00355-19 775 72. Peirano G, Pitout JDD. Extended-Spectrum β-Lactamase-Producing Enterobacteriaceae: 776 Update on Molecular Epidemiology and Treatment Options. Drugs. 2019;79: 1529-777 1541. doi:10.1007/s40265-019-01180-3 778 73. Dahesihdewi A, Sugianli AK, Parwati I. The surveillance of antibiotics resistance in 779 Indonesia: a current reports. Bali Med J. 2019;8: 565. doi:10.15562/bmj.v8i2.1386 780 74. Lestari ES, Severin JA, Filius PMG, Kuntaman K, Duerink DO, Hadi U, et al. Antimicrobial 781 resistance among commensal isolates of Escherichia coli and Staphylococcus aureus in 782 the Indonesian population inside and outside hospitals. Eur J Clin Microbiol Infect Dis. 783 2007;27: 45-51. doi:10.1007/s10096-007-0396-z 784 75. van Hal SJ, Jensen SO, Vaska VL, Espedido BA, Paterson DL, Gosbell IB. Predictors of 785 Mortality in Staphylococcus aureus Bacteremia. Clin Microbiol Rev. 2012;25: 362–386.
- 786 doi:10.1128/CMR.05022-11

- 787 76. Hansen M-LU, Gotland N, Mejer N, Petersen A, Larsen AR, Benfield T, et al. Diabetes
  788 increases the risk of disease and death due to *Staphylococcus aureus* bacteremia. A
  789 matched case-control and cohort study. Infect Dis. 2017;49: 689–697.
  790 doi:10.1080/23744235.2017.1331463
- 77. Schopfer K, Feldges A, Baerlocher K, Parisot RF, Wilhelm JA, Matter L. Systemic lupus
  erythematosus in Staphylococcus aureus hyperimmunoglobulinaemia E syndrome.
  BMJ. 1983;287: 524–526. doi:10.1136/bmj.287.6391.524
- 78. Battaglia M, Garrett-Sinha LA. Bacterial infections in lupus: Roles in promoting immune
  activation and in pathogenesis of the disease. J Transl Autoimmun. 2021;4: 100078.
  doi:10.1016/j.jtauto.2020.100078
- 797 79. Sirobhushanam S, Parsa N, Reed TJ, Berthier CC, Sarkar MK, Hile GA, et al.
  798 Staphylococcus aureus Colonization Is Increased on Lupus Skin Lesions and Is Promoted
  799 by IFN-Mediated Barrier Disruption. J Invest Dermatol. 2020;140: 1066-1074.e4.
  800 doi:10.1016/j.jid.2019.11.016
- 80. Song J-H, Hsueh P-R, Chung DR, Ko KS, Kang C-I, Peck KR, et al. Spread of methicillin802 resistant Staphylococcus aureus between the community and the hospitals in Asian
  803 countries: an ANSORP study. J Antimicrob Chemother. 2011;66: 1061–1069.
  804 doi:10.1093/jac/dkr024
- 805 81. Chuang Y-Y, Huang Y-C. Molecular epidemiology of community-associated meticillin806 resistant Staphylococcus aureus in Asia. Lancet Infect Dis. 2013;13: 698–708.
  807 doi:10.1016/S1473-3099(13)70136-1
- 808 82. Kuntaman K, Hadi U, Setiawan F, Koendori EB, Rusli M, Santosaningsih D, et al.
  809 Prevalence of methicillin resistant *Staphylococcus aureus* from nose and throat of
  810 patients on admission to medical wards of Dr Soetomo Hospital, Surabaya, Indonesia.
  811 Southeast Asian J Trop Med Public Health. 2016;47: 66–70.
- 83. Santosaningsih D, Santoso S, Budayanti NS, Suata K, Lestari ES, Wahjono H, et al.
  Characterisation of clinical *Staphylococcus aureus* isolates harbouring *mecA* or PantonValentine leukocidin genes from four tertiary care hospitals in Indonesia. Trop Med Int
  Health. 2016;21: 610–618. doi:10.1111/tmi.12692
- 816 84. Korsgaard J, Møller JK, Kilian M. Antibiotic treatment and the diagnosis of
  817 Streptococcus pneumoniae in lower respiratory tract infections in adults. Int J Infect
  818 Dis. 2005;9: 274–279. doi:10.1016/j.ijid.2004.07.013
- 85. Regalado NG, Martin G, Antony SJ. Acinetobacter lwoffii: Bacteremia associated with
  acute gastroenteritis. Travel Med Infect Dis. 2009;7: 316–317.
  doi:10.1016/j.tmaid.2009.06.001
- 86. Van Boeckel TP, Brower C, Gilbert M, Grenfell BT, Levin SA, Robinson TP, et al. Global
  trends in antimicrobial use in food animals. Proc Natl Acad Sci. 2015;112: 5649–5654.
  doi:10.1073/pnas.1503141112

- 87. Hadi U, Duerink DO, Lestari ES, Nagelkerke NJ, Werter S, Keuter M, et al. Survey of
  antibiotic use of individuals visiting public healthcare facilities in Indonesia. Int J Infect
  B27 Dis. 2008;12: 622–629. doi:10.1016/j.ijid.2008.01.002
- 828 88. Kirn TJ, Weinstein MP. Update on blood cultures: how to obtain, process, report, and 829 interpret. Clin Microbiol Infect. 2013;19: 513–520. doi:10.1111/1469-0691.12180
- 830 89. Bartlett JG, Dick J. The controversy regarding routine anaerobic blood cultures. Am J
  831 Med. 2000;108: 505–506. doi:10.1016/S0002-9343(00)00321-1
- 832 90. Lafaurie M, d'Anglejan E, Donay JL, Glotz D, Sarfati E, Mimoun M, et al. Utility of
  833 anaerobic bottles for the diagnosis of bloodstream infections. BMC Infect Dis. 2020;20:
  834 142. doi:10.1186/s12879-020-4854-x



| WHO GLASS Pathogens<br>(Cases) Participant WHO Recommanded Antimicrobial Busceptibility Test |             |                 |                  |                 |                                       | Outcome         |                |                 |                  |                |                |               |               |             |
|----------------------------------------------------------------------------------------------|-------------|-----------------|------------------|-----------------|---------------------------------------|-----------------|----------------|-----------------|------------------|----------------|----------------|---------------|---------------|-------------|
|                                                                                              | Game 10     | Ciprofloxacin   | Levofloxacm      | Ceffriaxone     | Cefotaxime                            | Ceftazidime     | Imperiors      | Meropenem       | Ertaponem        | Doripenent     |                |               |               |             |
| Saltonela spr.                                                                               | SUB-A       | R               | #                | R               | R                                     | 8               | 5              | 5               | 5                |                |                |               |               | Alive       |
| (51)                                                                                         | SUB-B       | - 28            | 4                | 8               | 8                                     | 8               | 8              | 8               | 8                | - E.           |                |               |               | Alve        |
|                                                                                              | Others (49) | 8 (N7), ND (12) | \$-(35); ND (14) | \$ (42), ND (7) | 5 (25), ND (24)                       | \$ (48), ND (1) | 3 (9), ND (40) | 15 (46), NO (3) | \$ (72), NO-(27) | 5-(1), ND (48) |                |               |               | Ahn (4640   |
|                                                                                              |             | Ciprofloxacin   | Levofloxacin     | Cettriaxone     | Cefotaxime                            | Ceftazidime     | Impenen        | Maropenam       | Ertapenem        | Doripenem      | Cotrimoxazole  | Celepime      | Ampicillin    | 100         |
|                                                                                              | SUB-C       | R               | R                | 8               | 8                                     | s               | 8              | 8               | 8                | +              | R.             |               | R             | Alve        |
|                                                                                              | BDG-A       | R               | ( <del>4</del> ) | Ř               |                                       | R               | 2.4            | \$              |                  | - 20           |                | R             | 5÷            | Alive       |
|                                                                                              | JOG-A       | R               | 8                | 8               | R.                                    | R.              |                | 5               | 8                |                | ÷5             | 8             | R             | Dead        |
| 725-5500-525                                                                                 | DPS-A       | 14              | 1                | 8               | R                                     |                 | 8              | 8               |                  | 8              | +              |               | R             | Deed        |
| Eacherichia.coll<br>(14)                                                                     | JOG-8       | \$              | (4)<br>(4)       | 8               | ÷                                     | <b>R</b>        | 1.1            |                 | 5                | - 19           |                | (a)           | п             | Alive       |
| 10.40                                                                                        | \$U8-D      | 14              | 121              | R               | R                                     | R               | \$             | 8               | 5                | 14 C           | 5              |               | R             | Alter       |
|                                                                                              | DPS-8       | - 8             | 34.              |                 | 8                                     | 8               | 8              | \$              | 8                |                | +              | 5             | R             | Alve        |
|                                                                                              | SUB-E       | 5               | 5                | \$              | 8                                     | \$              | \$             | 5               | 5                | (e)            | 5              |               | #             | Alive       |
|                                                                                              | Others (4)  | S (4)           | S (4)            | S (4)           | 8 (2), ND (2)                         | S (4)           | S-(1), ND (3)  | S (4)           | S (1): ND (3)    | ND (4)         | S (2), ND (2)  | S (3), ND (1) | S (1), ND (3) | Alive (4/4) |
|                                                                                              | No Data (2) | 1               |                  | +               | 77                                    | - *2            |                |                 | 100              |                | *7.            |               | +             | Alive (2/7) |
|                                                                                              |             | Oxacillin       |                  |                 |                                       |                 |                |                 |                  |                |                | 100 A 40      |               |             |
| Stephylococcus aureus                                                                        | SUB-F       | R               |                  |                 |                                       |                 |                |                 |                  |                |                |               |               | Alve        |
| [10]                                                                                         | Others (0)  | 5-(0)           |                  |                 |                                       |                 |                |                 |                  |                |                |               |               | Alvo (4/6)  |
|                                                                                              | No Data (3) | 1.1             |                  |                 |                                       |                 |                |                 |                  |                |                |               |               | Alve (3/3)  |
|                                                                                              |             | Oxacillin       | Penicilin G      | Ceffriexone     | Cefotaxime                            | Cotrimoxazole   |                |                 |                  |                |                |               |               |             |
| Streptococcus prievenoniae<br>(2)                                                            | 80G-8       | 2.4             | .4               | R               | 5                                     |                 |                |                 |                  |                |                |               |               | Dead        |
| 90                                                                                           | Other (1)   |                 |                  | 5               | 5                                     |                 |                |                 |                  |                |                |               |               | Deed        |
|                                                                                              | Sec. and    | Tigecyclin      | Gentamycin       | Amikacin        | Imperam                               | Meropenem       | Doriponem      |                 |                  |                |                |               |               |             |
| Acrietobecter spp<br>(2)                                                                     | Other (1)   | 5               | 5                | 5               | \$                                    | 3               | 5              |                 |                  |                |                |               |               | Alive       |
| 0.555                                                                                        | No Data (1) |                 | +                |                 | · · · · · · · · · · · · · · · · · · · |                 |                |                 | 2000             | 100            |                |               | -             | Alve        |
| Kebaala preumoniae                                                                           | 1000 C      | Ciproflaxecin   | Levofloxacin     | Ceffmaxone      | Cefotaxime                            | Ceftazidime     | knipenem       | Meropetern      | Ertaponem        | Dorspenem      | Cotrimoxazole  | Cetapime      |               |             |
| (5)                                                                                          | Others (5)  | 5 (4). ND (1)   | \$ (4), ND (1)   | 5 (3), ND (2)   | 5 (3), ND (2)                         | \$ (5)          | 2.4            | \$ (3), ND (2)  | \$ (2), ND (3)   |                | \$ (2), NO (3) | S (4), ND (1) |               | Alve (3/5)  |

Supporting Information - Dataset

Click here to access/download Supporting Information BLOOD CULTURE DATASET\_13MAR2022.xlsx

| 1  | The Characteristics of Bacteremia among Patients with Acute Febrile Illness Requiring                                                                         |  |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 2  | Hospitalization in Indonesia                                                                                                                                  |  |
| 3  |                                                                                                                                                               |  |
| 4  | Pratiwi Soedarmono <sup>1</sup> , Aly Diana <sup>2,3</sup> , Patricia Tauran <sup>4</sup> , Dewi Lokida <sup>5</sup> , Abu Tholib Aman <sup>6</sup> , Bachti  |  |
| 5  | Alisjahbana <sup>7</sup> , Dona Arlinda <sup>8</sup> , Emiliana Tjitra <sup>8</sup> , Herman Kosasih <sup>2*</sup> , Ketut Tuti Parwati Merati <sup>9</sup> , |  |
| 6  | Mansyur Arif <sup>4</sup> , Muhammad Hussein Gasem <sup>10</sup> , Nugroho Harry Susanto <sup>2</sup> , Nurhayati Lukman <sup>2</sup> ,                       |  |
| 7  | Retna-Mustika Indah <u>Sugiyono</u> <sup>2</sup> , Usman Hadi <sup>11</sup> , Vivi Lisdawati <sup>12</sup> , Karine G Fouth Tchos <sup>13</sup> ,             |  |
| 8  | Aaron Neal <sup>13</sup> , Muhammad Karyana <sup>2,8</sup>                                                                                                    |  |
| 9  |                                                                                                                                                               |  |
| 10 | <sup>1</sup> Faculty of Medicine, Universitas Indonesia/ Dr. Cipto Mangunkusumo Hospital, Jakarta,                                                            |  |
| 11 | Indonesia                                                                                                                                                     |  |
|    |                                                                                                                                                               |  |
| 12 | <sup>2</sup> Indonesia Research Partnership on Infectious Disease (INA-RESPOND), Jakarta, Indonesia                                                           |  |
| 13 | <sup>3</sup> Department of Public Health, Faculty of Medicine, Universitas Padjadjaran, Sumedang,                                                             |  |
| 14 | Indonesia                                                                                                                                                     |  |
| 15 |                                                                                                                                                               |  |
| 15 | <sup>4</sup> Faculty of Medicine, Universitas Hasanuddin/ Dr. Wahidin Sudirohusodo Hospital,                                                                  |  |
| 16 | Makassar, Indonesia                                                                                                                                           |  |
| 17 | <sup>5</sup> Tangerang District Hospital, Tangerang, Banten, Indonesia                                                                                        |  |
| 18 | <sup>6</sup> Faculty of Medicine, Public Heath, and Nursing, Universitas Gadjah Mada/ Dr. Sardjito                                                            |  |
|    |                                                                                                                                                               |  |
| 19 | Hospital, Yogyakarta, Indonesia                                                                                                                               |  |
| 20 | <sup>7</sup> Department of Internal Medicine, Faculty of Medicine, Universitas Padjadjaran/ Dr Hasan                                                          |  |
| 21 | Sadikin Hospital, Bandung, Indonesia                                                                                                                          |  |

- 22 <sup>8</sup>National Institute of Health Research and Development (NIHRD), Ministry of Health
- 23 Republic of Indonesia, Jakarta, Indonesia.
- <sup>9</sup> Faculty of Medicine, Udayana University, Sanglah General Hospital, Denpasar, Bali,
- 25 Indonesia
- 26 <sup>10</sup> Faculty of Medicine, Diponegoro University/ Dr. Kariadi Hospital, Semarang, Indonesia
- 27 <sup>11</sup> Faculty of Medicine, Universitas Airlangga/ Dr. Soetomo Hospital, Surabaya, Indonesia
- 28 <sup>12</sup> Sulianti Saroso Infectious Disease Hospital, Jakarta, Indonesia
- 29 <sup>13</sup> National Institute of Allergy and Infectious Disease (NIAID), National Institutes of Health,
- 30 Bethesda, Maryland, United States of America
- 31
- 32 \* Corresponding author
- 33 E-mail: <u>hkosasih@ina-respond.net</u> (HK)

- 35
- 33
- 36
- 37
- 38
- 39
- 40
- 41

### 42 Abstract

| 43                                     | Blood culturing remains the "gold standard" for bloodstream infection (BSI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 44                                     | diagnosis, but the method is inaccessible to many developing countries due to high costs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 45                                     | and insufficient resources. To better understand the utility of blood cultures among patients                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 46                                     | in Indonesia, a country where blood cultures are not routinely performed, we evaluated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 47                                     | data from a previous cohort study that included blood cultures for all participants. An acute                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 48                                     | febrile illness study was conducted from July 2013 to June 2016 at eight major hospitals in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 49                                     | seven provincial capitals in Indonesia. All participants presented with a fever, and two-sided                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 50                                     | aerobic blood cultures were performed within 48 hours of hospital admission. Positive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 51                                     | cultures were further assessed for antimicrobial resistance (AMR) patterns. Specimens from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 52                                     | participants with negative culture results were screened by advanced molecular and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 53                                     | serological methods for evidence of causal pathogens. Blood cultures were performed for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 54                                     | 1,459 of 1,464 participants, and the 70.6% (1,030 (70.6%)) participants that were negative                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 54<br>55                               | 1,459 of 1,464 participants, and the 70.6% (1,030 (70.6%)) participants that were negative by dengue NS1 antigen test were included in further analysis. Bacteremia was observed in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 55                                     | by dengue NS1 antigen test were included in further analysis. Bacteremia was observed in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 55<br>56                               | by dengue NS1 antigen test were included in further analysis. Bacteremia was observed in $92 (8.9\%)\% (92)$ participants, with the most frequent pathogens being <i>Salmonella spp</i> . (51),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 55<br>56<br>57                         | by dengue NS1 antigen test were included in further analysis. Bacteremia was observed in 92-(8.9%)% (92) participants, with the most frequent pathogens being <i>Salmonella spp.</i> (51), <i>Escherichia coli</i> (14), and <i>Staphylococcus aureus</i> (10). Two <i>Salmonella spp.</i> cases had                                                                                                                                                                                                                                                                                                                                                                                                  |
| 55<br>56<br>57<br>58                   | by dengue NS1 antigen test were included in further analysis. Bacteremia was observed in 92 (8.9%)% (92) participants, with the most frequent pathogens being <i>Salmonella spp.</i> (51), <i>Escherichia coli</i> (14), and <i>Staphylococcus aureus</i> (10). Two <i>Salmonella spp.</i> cases had evidence of AMR, and several <i>E. coli</i> cases were multidrug resistant (42.9%, 6/14, 42.9%) or                                                                                                                                                                                                                                                                                               |
| 55<br>56<br>57<br>58<br>59             | by dengue NS1 antigen test were included in further analysis. Bacteremia was observed in<br>92 (8.9%)% (92) participants, with the most frequent pathogens being <i>Salmonella spp.</i> (51),<br><i>Escherichia coli</i> (14), and <i>Staphylococcus aureus</i> (10). Two <i>Salmonella spp.</i> cases had<br>evidence of AMR, and several <i>E. coli</i> cases were multidrug resistant (42.9%, 6/14, 42.9%)) or<br>monoresistant (14.3%, 2/14, 14.3%).), Culture contamination was observed in 37 (3.6%)%                                                                                                                                                                                           |
| 55<br>56<br>57<br>58<br>59<br>60       | by dengue NS1 antigen test were included in further analysis. Bacteremia was observed in<br>92 (8.9%)% (92) participants, with the most frequent pathogens being <i>Salmonella spp.</i> (51),<br><i>Escherichia coli</i> (14), and <i>Staphylococcus aureus</i> (10). Two <i>Salmonella spp.</i> cases had<br>evidence of AMR, and several <i>E. coli</i> cases were multidrug resistant (42.9%, 6/14, 42.9%)) or<br>monoresistant (14.3%, 2/14, 14.3%).). Culture contamination was observed in 37 (3.6%)%<br>(37) cases. Advanced laboratory assays identified culturable pathogens in participants                                                                                                 |
| 55<br>56<br>57<br>58<br>59<br>60<br>61 | by dengue NS1 antigen test were included in further analysis. Bacteremia was observed in<br>92 (8.9%)% (92) participants, with the most frequent pathogens being <i>Salmonella spp</i> . (51),<br><i>Escherichia coli</i> (14), and <i>Staphylococcus aureus</i> (10). Two <i>Salmonella spp</i> . cases had<br>evidence of AMR, and several <i>E. coli</i> cases were multidrug resistant (42.9%, 6/14, 42.9%)) or<br>monoresistant (14.3%, 2/14, 14.3%).). Culture contamination was observed in 37 (3.6%)%<br>(37) cases. Advanced laboratory assays identified culturable pathogens in participants<br>having negative cultures, with 23.1% to 90% of cases being missed by blood cultures. Blood |

Formatted: Pattern: Clear

65 conserving resources. Blood cultures should also be supplemented with advanced

66 laboratory tests when available.

67

#### 68 Introduction

69 Bloodstream infections (BSI) [1] are a significant cause of morbidity and mortality in both developing and developed countries [2-4]. The "gold standard" method for BSI 70 71 diagnosis remains blood culturing [5–7], a straightforward laboratory technique that is 72 inaccessible to many developing countries due to high costs and insufficient resources. 73 Blood cultures provide both definitive microbiological evidence of infection and serve as a 74 crucial tool to monitor the serious global health threat of antimicrobial resistance (AMR) [8]. 75 The threat of AMR further exacerbates the burden felt in countries without routine access 76 to this diagnostic method, including in Indonesia, and allows AMR to continue threatening 77 populations worldwide. The early and accurate identification of causative microorganisms 78 and their susceptibility to antibiotics is essential to improve patient survival and prevent 79 emerging AMR pathogens. 80 Even with access to routine blood cultures, the interpretation of results can be 81 challenging and should align with clinical observations. Bacterial growth is a consequence of 82 the initial quantity of bacteria in the specimen, the quality of the specimen, the timing of 83 specimen collection with clinical treatment, and the biological nature of the bacteria. 84 Negative blood cultures alone are not definitive for diagnosis, as advanced laboratory 85 methods often detect missed culturable organisms from the same specimen types [9,10]. 86 Routine analysis of specimens can be impacted by contamination from the environment of

| 87  | the patient [11,12]. In most settings, only 5 to 13% of blood cultures will become positive,   |
|-----|------------------------------------------------------------------------------------------------|
| 88  | and of those, 20–56% result from contamination [7,13–16].                                      |
| 89  | In Indonesia, acute febrile illness resulting from BSIs remains a common cause of              |
| 90  | hospitalization, morbidity, and mortality. Although infectious diseases are the primary cause  |
| 91  | of hospitalization in the country, clinicians do not routinely perform blood cultures as part  |
| 92  | of standard clinical care [17]. When clinicians perform blood cultures, generally in severely  |
| 93  | ill patients referred to tertiary care, they do not consistently use best laboratory practices |
| 94  | [18]. Data on blood culture use, performance, and contamination rates in Indonesia remain      |
| 95  | very limited [17,19,20]. Consequently, data on the emergence and spread of AMR                 |
| 96  | pathogens in the country is unreliable and incomplete, complicating antibiotic stewardship     |
| 97  | efforts in the region.                                                                         |
| 98  | The epidemiology of pathogens associated with fever in Indonesia is not well                   |
| 99  | understood, as public health surveillance data is limited and only a few local studies have    |
| 100 | been conducted [19,21–26]. Among published studies, dengue virus, chikungunya virus,           |
| 101 | influenza virus, Salmonella Typhi, Rickettsia spp., and Leptospira spp. are consistently the   |
| 102 | most common causes of acute febrile illness hospitalizations. A study in Papua from            |
| 103 | November 1997 to February 2000 enrolled 226 hospitalized patients that were negative for       |
| 104 | malaria, the majority of whom were determined to have typhoid fever (18%), leptospirosis       |
| 105 | (12%), rickettsioses (8%), and dengue fever (7%) [23]. An observational fever study in         |
| 106 | Bandung identified dengue virus in 12.4% of fever episodes, followed by S. Typhi (7.4%), and   |
| 107 | chikungunya virus (7.1%) [24,26,27]. A 2005-2006 study in Semarang found rickettsioses and     |
| 108 | leptospirosis in 7% and 10%, respectively, of 137 acute undifferentiated fever cases [21].     |
| 109 | The parent study of the research presented here found the most prevalent pathogens             |
| 110 | among participants at eight hospitals in 7 major cities in Indonesia to be dengue virus (27-   |

110 among participants at eight hospitals in 7 major cities in Indonesia to be dengue virus (27-

| 111 | 52%), Rickettsia spp. (2-12%), S. Typhi (0.9-13%), influenza virus (2-6%), Leptospira spp. (0-       |
|-----|------------------------------------------------------------------------------------------------------|
| 112 | 5%), and chikungunya virus (0-4%) [19].                                                              |
| 113 | To better understand the utility of blood cultures among patients with acute febrile                 |
| 114 | illness in Indonesia, we evaluated data from a previously published multicenter                      |
| 115 | observational prospective cohort study conducted across the country [19]. Gaining insight            |
| 116 | into pathogens commonly identified by blood culture, contamination rates, AMR patterns,              |
| 117 | and disease outcomes will provide actionable evidence to support decision making for                 |
| 118 | Indonesia's national blood culture testing policy.                                                   |
| 119 |                                                                                                      |
| 120 | <u>Methods</u>                                                                                       |
| 121 | Study design and sample collection                                                                   |
| 122 | A prospective observational study enrolling febrile patients (temperature ≥38°C),                    |
| 123 | aged ≥1 year who required hospitalization was conducted by the Indonesia Research                    |
| 124 | Partnership on Infectious Disease (INA-RESPOND) from July 2013 to June 2016 at eight                 |
| 125 | major hospitals in seven provincial capitals in Indonesia-: Dr. Cipto Mangunkusumo Hospital          |
| 126 | in Jakarta, Sulianti Saroso Infectious Disease Hospital in Jakarta, Dr. Wahidin Sudirohusodo         |
| 127 | Hospital in Makassar, Dr. Sardjito Hospital in Yogyakarta, Dr. Hasan Sadikin Hospital in             |
| 128 | Bandung, Sanglah General Hospital in Denpasar, Dr. Soetomo Hospital in Surabaya, and Dr.             |
| 129 | Kariadi Hospital, in Semarang. The full details of this study, known as AFIRE, were published        |
| 130 | previously [19][19]. Briefly, <del>patients with an unexplained fever for &lt;14 days who were</del> |
| 131 | hospitalized inclusion criteria consisted of axillary body temperature ≥38°C, ≥1 year of age,        |
| 132 | and hospitalization within the past 24 hours and. Patients were excluded from the study if           |
| 133 | they had no history of hospitalization subjective fever for $\geq 14$ days or were hospitalized in   |

ormatted: English (United Kingdom)
ormatted: English (United Kingdom)

Formatted: English (United Kingdom)

| 134 | the preceding three <u>last 3</u> months were enrolled. Demographic, clinical, and laboratory data, | Formatted: English (United Kingdom) |
|-----|-----------------------------------------------------------------------------------------------------|-------------------------------------|
| 135 | including hematology results, were collected at baseline, once during days 14–28, and three         | Formatted: English (United Kingdom) |
| 136 | months after enrollment. Blood and other biological specimens were collected at each study          |                                     |
| 137 | visit.                                                                                              |                                     |
| 138 | During the baseline visit, blood was collected for cultures and for, clinically relevant            |                                     |
| 139 | rapid diagnostic test to detect dengue virus and Salmonella Typhi infection based on clinical       |                                     |
| 140 | judgement. All other specimens were stored and tested retrospectively fortests when                 |                                     |
| 141 | available, and dengue virus rapid diagnostic tests. Dengue virus infection remains a                |                                     |
| 142 | significant burden across Indonesia [28,29], with disease incidence increasing in recent years      |                                     |
| 143 | [30]. Though other viral agents are present in Indonesia, none are as prevalent as dengue           |                                     |
| 144 | virus [24,31], and most are challenging to diagnose due to limitations with available rapid         |                                     |
| 145 | diagnostic tests [32,33]. Given the widespread prevalence of dengue virus infection, and the        |                                     |
| 146 | very high specificity (almost 100%) and good sensitivity (70-87%) of NS1 antigen rapid              |                                     |
| 147 | diagnostic tests [34], we employed universal dengue virus screening to rapidly resolve the          |                                     |
| 148 | unknown etiologies of study participants. Participants with negative NS1 antigen tests were         | Formatted: English (Indonesia)      |
| 149 | further pathogen identification considered for BSIs through blood culture tests and other           |                                     |
| 150 | etiologies, as determined through advanced testing at the INA-RESPOND reference                     | Formatted: English (Indonesia)      |
| 151 | laboratory.                                                                                         |                                     |
| 152 |                                                                                                     |                                     |
| 153 | Laboratory tests                                                                                    |                                     |
| 154 | Blood culture tests for aerob bacterialAerobic blood cultures were performed within                 |                                     |
| 155 | 48 hours of a participant being admitted to the emergency department of a study site.               |                                     |

 $\,$  Blood volumes of approximately 5-8 mL for adults and 1-3 mL for pediatrics were collected  $\,$ 

| 157 | from each arm, whenever possible, directly into separate aerobic blood culture bottles. If       |
|-----|--------------------------------------------------------------------------------------------------|
| 158 | blood could not be collected from each arm due to clinical reasons, blood was collected          |
| 159 | from a single arm for a single aerobic blood culture bottles bottle. Study physicians were       |
| 160 | advised to delay the administration of IV antibiotics until blood specimens were collected,      |
| 161 | provided that there were no immediate risks to the participant. Each hospital performed a        |
| 162 | complete blood count (CBC) as part of standard-of-care procedures during enrollment.             |
| 163 | Inoculated aerobic blood culture bottles were incubated using a continuous-                      |
| 164 | monitoring blood culture system, either BACTEC (Becton Dickinson, Sparks, Maryland) or           |
| 165 | BacT/Alert (bioMérieux, Inc., Durham, North Carolina) [21]. Manufacturer guidelines were         |
| 166 | followed for all bacterial cultures, and automated growth identification systems, either BD      |
| 167 | Phoenix (Becton Dickinson) or VITEK 2 (bioMérieux, Inc., Durham, North Carolina), were           |
| 168 | used for bacterial identification and antibiotic susceptibility testing. Organism identification |
| 169 | is acceptable when the confidence level in automated growth identification system is ≥95%        |
| 170 | <del>probability [22].</del>                                                                     |
| 171 | Inoculated aerobic blood culture bottles were incubated using a continuous-                      |
| 172 | monitoring blood culture system, either BACTEC (Becton-Dickinson, Sparks, Maryland) or           |
| 173 | BacT/Alert (bioMérieux, Inc., Durham, North Carolina) [35]. Manufacturer guidelines were         |
| 174 | followed for all bacterial cultures, and automated growth identification systems, either BD      |
| 175 | Phoenix (Becton Dickinson) or VITEK 2 (bioMérieux, Inc., Durham, North Carolina), were           |
| 176 | used for bacterial identification and antibiotic susceptibility testing. Blood cultures were     |
| 177 | performed and analyzed at the hospitals' nationally accredited clinical laboratories by          |
| 178 | trained, certified staff. All instruments and standards were calibrated appropriately            |
| 179 | according to manufacturer guidelines, and all tests were run alongside appropriate positive      |
| 180 | and negative control to ensure the integrity and accuracy of the results. Organism               |

| 181 | identification was considered acceptable when the confidence level in the automated            |    |
|-----|------------------------------------------------------------------------------------------------|----|
| 182 | growth identification system was ≥95% probability [36]. Quality control tests were             |    |
| 183 | performed weekly at all site laboratories, and each new lot of ID cards was tested using       |    |
| 184 | validated stocks of culture organisms.                                                         |    |
| 185 | Growth observed in blood cultures was classified as either "true positive" or "false           |    |
| 186 | positive." True positives included pathogenic bacterial species, particularly those identified |    |
| 187 | as priority pathogens by the World Health Organization Global Antimicrobial Resistance and     |    |
| 188 | Use Surveillance System (WHO GLASS) [23], observed in at least one blood culture.[37],         |    |
| 189 | observed in at least one blood culture. Additionally, non-WHO GLASS pathogens found in         |    |
| 190 | either one or both cultures and being consistent with clinical manifestations were also        |    |
| 191 | considered to be true positives. False positives included growth of bacteria and fungi which   |    |
| 192 | were not clinically relevant and growth of known culture contaminants. Bacterial culture       |    |
| 193 | contamination was defined as any culture growing viridans group streptococci,                  |    |
| 194 | Corynebacterium spp., Bacillus spp., Diphtheroid spp., Micrococcus spp., Propionibacterium     |    |
| 195 | <i>spp.</i> , and coagulase-negative staphylococci [12][12].                                   |    |
| 196 | At the INA-RESPOND reference laboratory, specimens from all participants were                  |    |
| 197 | screened for dengue using NS1 antigen ELISA, dengue RT-PCR, and dengue IgM and IgG.            |    |
| 198 | Molecular tests in acute specimens and serological tests in acute and convalescent             |    |
| 199 | specimens were performed to detect bacterial infections such as S. Typhi, S. Paratyphi,        |    |
| 200 | Leptospira spp., and Rickettsia typhi, and viruses such as influenza, chikungunya, and         |    |
| 201 | measles. Details of diagnostic assays for this study were previously described [19].           | Fi |
| 202 |                                                                                                |    |

203 Statistical analysis

Field Code Changed

| 204 | Data were collected in <u>OpenClincaOpenClinica</u> (OpenClinica LLC, MA, USA) and        |
|-----|-------------------------------------------------------------------------------------------|
| 205 | analyzed using STATA v.15.1 (StataCorp LLC, TX, USA). Proportions were compared between   |
| 206 | categorical variables using Pearson's chi-squared test. The student's t-test was used to  |
| 207 | assess continuous variables. All p-values were two-sided with a significance level set to |
| 208 | p<0.05.                                                                                   |
| 209 |                                                                                           |
| 210 | Ethical clearance                                                                         |
| 211 | Ethical approvals for the AFIRE study were granted by the Institutional Review            |
| 212 | Boards of the National Institute of Health Research and Development (NIHRD), Indonesia    |
| 213 | Ministry of Health (KE.01.05/EC/407/2012, dated 23 May 2012), the Faculty of Medicine at  |
| 214 | the University of Indonesia and RSUPN Dr. Cipto Mangunkusumo Hospital                     |
| 215 | (451/PT02.FK/ETIK/2012, dated 23 July 2012), and RSUD Dr. Soetomo Hospital                |
| 216 | (192/Panke.KKE/VIII/2012, dated 13 August 2012). All eligible patients who agreed to      |
| 217 | participate in the study provided written informed consent before enrollment.             |
| 218 |                                                                                           |
| 219 | Results                                                                                   |
| 220 | A total of 1,464 participants were enrolled in the AFIRE study, and <u>aerobic</u> blood  |

| 220 | A total of 1,464 participants were enrolled in the AFIRE study, and <u>aerobic</u> blood                                                   |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------|
| 221 | cultures for aerob bacterial were performed for 1,459 participants (Fig 1). The remaining 5                                                |
| 222 | participants had insufficient blood specimens for following reasons: 1 adult was in a severe                                               |
| 223 | condition (decreased of consciousness), 2 participants (1 child and 1 adult) self-discharged                                               |
| 224 | against medical advice, and the guardians of 2 children refused to allow more blood to be                                                  |
| 225 | drawn. Bacterial growth was observed for 150 (10.3%)% (150) participants, including 84                                                     |
| 226 | <del>{</del> 56.0 <del>%)<u>% (84)</u> with WHO GLASS pathogens, <del>8 {</del>5.3<del>%)<u>% (8)</u> with other non-WHO GLASS</del></del> |
|     |                                                                                                                                            |

| 227 | pathogens, and $\frac{58}{38.7\%}$ (58) with false positives. No growth was observed for $\frac{89.7\%}{58}$ |                                                    |
|-----|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| 228 | (1,309-(89.7%)) participants. All participants were screened for dengue virus by NS1 antigen                 |                                                    |
| 229 | and dengue IgM/IgG antibody tests, resulting in 429 (29.4%)% (429) positive results, 415                     |                                                    |
| 230 | from "No Growth" and 14 from the "False Positive" group. The remaining 70.6% (1,030                          | <br>Formatted: Pattern: Clear                      |
| 231 | (70.6%)) dengue-negative participants were included in this analysis.                                        | <br>Formatted: English (Indonesia), Pattern: Clear |
| 232 |                                                                                                              |                                                    |
| 233 | Fig 1. General blood culture results observed among study participants. Participants                         |                                                    |
| 234 | provided blood from either one or both arms for aerobic blood cultures, and bacterial                        |                                                    |
| 235 | growth was observed from either one or both sides. All participants providing blood                          |                                                    |

- 236 underwent screening for dengue virus infection by NS1 antigen test.
- 237

#### 238 **Results of blood cultures: community-acquired infection (CAI)**

239 Bacteremia was observed in 92 (8.9%)% (92) of the 1,030 dengue-negative 240 participants, with the most frequent pathogens being Salmonella spp. in 51 participants, 241 Escherichia coli in 14 participants, and Staphylococcus aureus in 10 participants (Table 1). 242 Dengue-negative false positive results were observed in 44 (4.3%)% (44) participants, with 243 the most frequent microorganism being contaminating coagulase-negative Staphylococcus 244 spp. in 32 participants. From the 136 dengue-negative participants with any microbial 245 growth, 133 (97.8%)% (133) had blood collected from two sides of the body (Fig 1). Growth 246 from both sides was observed in 58.7% of participants with true positive results and 25.0% 247 of participants with false positive results.

248

249 Table 1. Specific blood culture results among dengue-negative study participants.

|                                          | Pathogen                               | Positive<br>Results | Percent of Positive<br>Results Within Group |
|------------------------------------------|----------------------------------------|---------------------|---------------------------------------------|
| ns (N                                    | Salmonella spp.                        | 51                  | 60.7                                        |
| WHO GLASS Priority Pathogens (N<br>= 84) | Escherichia coli                       | 14                  | 16.7                                        |
| riority Pa<br>= 84)                      | Staphylococcus aureus                  | 10                  | 11.9                                        |
| S Prio<br>= 8                            | Klebsiella pneumoniae                  | 5                   | 6.0                                         |
| ) GLAS                                   | Acinetobacter spp.                     | 2                   | 2.4                                         |
| WHC                                      | Streptococcus pneumoniae               | 2                   | 2.4                                         |
| 8)                                       | Pseudomonas aeruginosa                 | 2                   | 25.0                                        |
| Non-WHO GLASS Pathogens (N = 8)          | Staphylococcus hominis ssp.<br>hominis | 1                   | 12.5                                        |
| ithoge                                   | Enterobacter aerogenes                 | 1                   | 12.5                                        |
| ASS Pa                                   | Enterococcus faecalis                  | 1                   | 12.5                                        |
| 10 GL                                    | Pseudomonas cepacea                    | 1                   | 12.5                                        |
| -nc                                      | Pseudomonas spp.                       | 1                   | 12.5                                        |
| ž                                        | Streptococcus pyogenes                 | 1                   | 12.5                                        |
| wth                                      | Pantoea spp.                           | 2                   | 28.6                                        |
| Clinically Irrelevant Growth<br>(N = 7)  | Sphingomonas paucimobilis              | 2                   | 28.6                                        |
| rreleva<br>(N = 7)                       | Alcaligenes faecalis                   | 1                   | 14.3                                        |
| cally Ir                                 | Candida pelliculosa                    | 1                   | 14.3                                        |
| Clinic                                   | Rhizobium radiobacter                  | 1                   | 14.3                                        |
| nants<br>7)                              | Coagulase-Negative<br>Staphylococcus   | 32                  | 86.5                                        |
| Contaminants<br>(N = 37)                 | Bacillus spp.                          | 2                   | 5.4                                         |
| Cor                                      | Micrococcus luteus                     | 1                   | 2.7                                         |

|                        | Kocuria spp.           | 1 | 2.7 |
|------------------------|------------------------|---|-----|
|                        | Streptococcus viridans | 1 | 2.7 |
| No Growth<br>(N = 894) | None                   | 0 | 0.0 |

251 Since Salmonella spp. were found in over half (55.4%) of true positives (Table 1), 252 participants with true positive results were analyzed in either Salmonella spp. or non-Salmonella spp. groups (Table 2). Participant demographics revealed nearly equal numbers 253 254 of male and female participants in the study, with equal numbers of true positive cases in 255 the two groups. Participants in the Salmonella spp. group were significantly younger, with a 256 median age of 14 years old, compared to non-Salmonella spp. and false positive groups, 257 with median ages of 44 years old and 24.6 years old, respectively. Over 62.7% of Salmonella 258 *spp.* cases were in participants ≤18 years old, while only 26.8% of non-*Salmonella spp.* cases 259 were in this same age range. There were no significant differences between all groups in the 260days of onset before hospitalization or the length of hospitalization.

261

#### 262 Table 2. Participant characteristics, hematology results, and mortality.

|                                           | True Positive (92                             | 2)                         | False Positive and         | Total           |  |
|-------------------------------------------|-----------------------------------------------|----------------------------|----------------------------|-----------------|--|
|                                           | Salmonella spp. Non-Salmonella s<br>(51) (41) |                            | No Growth<br>(938)         | (1,030)         |  |
| Male, N (%)                               | 29 (56.9)                                     | 17 (41.5)                  | 502 (53.9)                 | 553 (53.7)      |  |
| Median age, years<br>(range, IQR)         | 14 (2.5-54, 14.7)                             | 44 (1-84, 40.0)            | 24.6 (1-92, 36.5)          | 24 (1-92, 36.2) |  |
| Mean age, years (SD)                      | 16.2 (11.1) <sup>D,E</sup>                    | 39.6 (24.0) <sup>D,F</sup> | 28.6 (21.4) <sup>E,F</sup> | 28.5 (21.4)     |  |
| Distribution of cases by age group, N (%) |                                               |                            |                            |                 |  |
| 1-5 years                                 | 4 (7.8)                                       | 5 (12.2)                   | 154 (16.4)                 | 163 (15.8)      |  |

| >5-18 years                                                                | 28 (54.9) <sup>D,E</sup>    | 6 (14.6) <sup>D</sup>      | 184 (19.6) <sup>E</sup>         | 218 (21.2)         | _                                  |
|----------------------------------------------------------------------------|-----------------------------|----------------------------|---------------------------------|--------------------|------------------------------------|
| >18-45 years                                                               | 18 (35.3)                   | 11 (26.8)                  | 365 (38.9)                      | 394 (38.3)         |                                    |
| >45-65 years                                                               | 1 (2.0) <sup>D,E</sup>      | 13 (31.7) <sup>C,D</sup>   | 179 (19.1) <sup>C,E</sup>       | 193 (18.7)         |                                    |
| >65 years                                                                  | 0 (0.0) <sup>B,D</sup>      | 6 (14.6) <sup>C,D</sup>    | 56 (6.0) <sup>B,C</sup>         | 62 (6.0)           | _                                  |
| Days of onset before<br>hospitalization, median<br>(range, IQR)            | 7 (1-13, 4)                 | 4 (1-15, 4)                | 4 (1-15, 4)                     | 4 (1-15, 4)        | _                                  |
| Length of<br>hospitalization,<br>median (range, IQR)                       | 7 (2-38, 4)                 | 8 (2-40, 7)                | 6 (1-55, 3.3)                   | 6 (1-55, 4)        |                                    |
| Received intravenous<br>antibiotics<br>prior to blood collection,<br>N (%) | 9 (17.6) <sup>A,E</sup>     | 16 (39.0) <sup>A</sup>     | 389 (41.5) <sup>E</sup>         | 414 (40.2)         | _                                  |
| Received any antibiotics<br>following<br>blood collection, N (%)           | 31/31 (100) <sup>E</sup>    | 18/18 (100) <sup>A,C</sup> | 199/269 (74.0) <sup>A,C,E</sup> | 248/318<br>(77.9)  |                                    |
| Hematology at<br>enrollment, N (%)                                         |                             |                            |                                 | (                  | Formatted: English (United States) |
| Leukopenia                                                                 | 13/51 (25.5) <sup>E</sup>   | 5/41 (12.2)                | 120/937 (12.8) <sup>E</sup>     | 138/1029<br>(13.4) |                                    |
| Normal Leukocyte                                                           | 35/51 (68.6) <sup>A,E</sup> | 19/41 (46.3) <sup>A</sup>  | 462/937 (49.3) <sup>E</sup>     | 516/1029<br>(50.1) | _                                  |
| Leukocytosis                                                               | 3/51 (5.9) <sup>D,E</sup>   | 17/41 (41.5) <sup>D</sup>  | 355/937 (37.9) <sup>E</sup>     | 375/1029<br>(36.4) | Formatted: English (United States) |
| Lymphopenia                                                                | 16/44 (36.4) <sup>B,D</sup> | 26/38 (68.4) <sup>D</sup>  | 442/810 (54.6) <sup>B</sup>     | 484/892<br>(54.3)  | _                                  |
| Normal Lymphocyte                                                          | 17/44 (38.6) <sup>A</sup>   | 7/38 (18.4) <sup>A,C</sup> | 285/810 (35.2) <sup>c</sup>     | 309/892<br>(34.6)  | _                                  |
| Lymphocytosis                                                              | 11/44 (25.0) <sup>E</sup>   | 5/38 (13.2)                | 83/810 (10.2) <sup>E</sup>      | 99/892 (11.1)      | -                                  |
| Outcome, N (%)                                                             |                             |                            |                                 |                    | _                                  |
| Died                                                                       | 3 (5.9) <sup>D</sup>        | 11 (26.8) <sup>D,F</sup>   | 69 (7.4) <sup>F</sup>           | 83 (8.1)           | _                                  |

Died3 (5.9)<sup>D</sup>11 (26.8)<sup>D,F</sup>69 (7.4)<sup>F</sup>83 (8.1)Study participants with true positive culture results were sub-categorized into Salmonella spp. and<br/>non-Salmonella spp. groups to better resolve analyses. Comparisons for significance occur across<br/>column groups only.

A,B,C indicates p-value <0.05 D,E,F indicates p-value <0.01

l

| 264 | Intravenous antibiotics were administered prior to blood collection significantly less                   |
|-----|----------------------------------------------------------------------------------------------------------|
| 265 | frequently in the Salmonella spp. group $(17.6\%, 9/51, 17.6\%)$ compared to other groups                |
| 266 | (Table 2). All participants with true positive results were administered antibiotics following           |
| 267 | blood collection, and 74% of participants with false positive results received antibiotics.              |
| 268 | Hematology profiles at enrollment differed significantly between the Salmonella spp. and                 |
| 269 | non-Salmonella spp. groups. Leukopenia and normal leukocyte counts were observed in 48                   |
| 270 | (94.1%)% (48) of Salmonella spp. cases compared to 24 (58.5%)% (24) of non-Salmonella                    |
| 271 | spp. cases and 582 (62.0%)% (582) of false positive and no growth cases. Similarly,                      |
| 272 | leukocytosis was significantly lower in the Salmonella spp. group compared to the other                  |
| 273 | groups. Lymphopenia was observed in 16 (36.4%)% (16) of the Salmonella spp. cases, which                 |
| 274 | is significantly lower than the <del>26 (68.4%)<u>% (26)</u> non-Salmonella spp. cases and the 442</del> |
| 275 | (54.6%)% (442) false positive and no growth cases. Mortality was significantly higher in the             |
| 276 | non-Salmonella spp. group compared to the other groups.                                                  |
| 277 | Cases of true positives were distributed across age groups and study sites (Table 3).                    |
| 278 | While Salmonella spp. were most frequently found in pediatrics (62.7% of cases), E. coli, S.             |
| 279 | aureus, and K. pneumoniae were most frequently found in adults (85.7%, 80.0%, and 80.0%                  |
| 280 | of cases, respectively). Most Salmonella spp. cases were seen in Bandung (BDG, 41.2%),                   |
| 281 | Semarang (SMG, 23.5%), and Surabaya (SUB, 21.6%). This differed significantly from cases                 |
| 282 | seen in Makassar (MKS, 9.8%), Yogyakarta (YOG, 2.0%), Denpasar (DPS, 2.0%), and Jakarta                  |
| 283 | (JKT, 0.0%). Other than Salmonella spp., there were no significant differences in the                    |
| 284 | distribution of pathogens across study sites, likely due to the low numbers of cases.                    |
| 285 |                                                                                                          |

 $286 \qquad {\rm Table \ 3. \ Positive \ blood \ culture \ pathogens \ by \ participant \ age \ group \ and \ study \ location.}$ 

| Pathogen                                 | Age group (years old)  |                         |                         |                         | Location |     |     |     |     |     |     | Total |    |
|------------------------------------------|------------------------|-------------------------|-------------------------|-------------------------|----------|-----|-----|-----|-----|-----|-----|-------|----|
| Identified                               | ≥1-<br>5               | >5-<br>18               | >18-<br>45              | >45-<br>65              | >65      | Bdg | Sby | Smr | Dps | Mks | Yog | Jkt   |    |
| Salmonella<br>spp.                       | 4                      | 28<br>(1 <sup>†</sup> ) | 18<br>(1 <sup>+</sup> ) | 1 (1†)                  | 0        | 21  | 11  | 12  | 1   | 5   | 1   | 0     | 51 |
| Escherichia coli                         | 1                      | 1                       | 3 (1 <sup>+</sup> )     | 5 (1 <sup>+</sup> )     | 4        | 3   | 3   | 0   | 4   | 0   | 3   | 1     | 14 |
| Staphylococcus<br>aureus                 | 0                      | 2                       | 4 (1 <sup>+</sup> )     | 4 (1 <sup>+</sup> )     | 0        | 1   | 1   | 3   | 2   | 1   | 0   | 2     | 10 |
| Klebsiella<br>pneumoniae                 | 0                      | 1                       | 0                       | 3 (2 <sup>+</sup> )     | 1        | 0   | 1   | 0   | 2   | 2   | 0   | 0     | 5  |
| Acinetobacter<br>spp.                    | 0                      | 1                       | 1                       | 0                       | 0        | 0   | 0   | 0   | 1   | 0   | 0   | 1     | 2  |
| Enterobacter<br>aerogenes                | 0                      | 0                       | 1 (1 <sup>+</sup> )     | 0                       | 0        | 0   | 0   | 0   | 1   | 0   | 0   | 0     | 1  |
| Enterococcus<br>faecalis                 | 1                      | 0                       | 0                       | 0                       | 0        | 0   | 0   | 0   | 0   | 0   | 0   | 1     | 1  |
| Pseudomonas<br>aeruginosa                | 1                      | 0                       | 1 (1 <sup>+</sup> )     | 0                       | 0        | 0   | 0   | 0   | 0   | 0   | 2   | 0     | 2  |
| Pseudomonas<br>cepacea                   | 0                      | 0                       | 0                       | 0                       | 1        | 1   | 0   | 0   | 0   | 0   | 0   | 0     | 1  |
| Pseudomonas<br>species                   | 0                      | 0                       | 1                       | 0                       | 0        | 0   | 1   | 0   | 0   | 0   | 0   | 0     | 1  |
| Streptococcus<br>pneumoniae              | 1<br>(1 <sup>+</sup> ) | 1<br>(1 <sup>†</sup> )  | 0                       | 0                       | 0        | 1   | 0   | 0   | 0   | 1   | 0   | 0     | 2  |
| Streptococcus<br>pyogenes                | 0                      | 0                       | 0                       | 1                       | 0        | 0   | 0   | 0   | 1   | 0   | 0   | 0     | 1  |
| Staphylococcus<br>hominis ssp<br>hominis | 1<br>(1 <sup>†</sup> ) | 0                       | 0                       | 0                       | 0        | 0   | 0   | 0   | 0   | 0   | 1   | 0     | 1  |
| Total                                    | 9<br>(2 <sup>†</sup> ) | 34<br>(2 <sup>+</sup> ) | 29<br>(5 <sup>†</sup> ) | 14<br>(5 <sup>†</sup> ) | 6        | 27  | 17  | 15  | 12  | 9   | 7   | 5     | 92 |

<sup>+</sup> Indicates study participants who died

287 Bdg: Bandung; Sby: Surabaya; Smr: Semarang; Dps: Denpasar; Mks: Makassar; Yog:

288 Yogyakarta; Jkt: Jakarta

289

290

The 938 participants in the false positive and no growth groups had specimens

291 screened by other laboratory methods to determine potential etiologies (Table 4). PCR on

292 blood specimens identified etiologies in 168 participants, serology identified etiologies in

| 293 | 220 participants, and other methods identified etiologies in 94 participants. Among the          |
|-----|--------------------------------------------------------------------------------------------------|
| 294 | culturable bacterial pathogens identified in these groups were the WHO GLASS pathogens S.        |
| 295 | Typhi (51), S. pneumoniae (18), K. pneumoniae (8), A. baumanii (7), E. coli (7), and S. aureus   |
| 296 | (3). When combined with the culture results from the WHO GLASS priority pathogens group          |
| 297 | in Table 1, 50% of S. Typhi cases, 33.3% of E. coli cases, 23.1% of S. aureus cases, 61.5% of K. |
| 298 | pneumoniae cases, 77.8% of Acinetobacter spp. cases, and 90% of S. pneumoniae cases in           |
| 299 | the AFIRE study [19] pneumoniae cases in the AFIRE study [19] were not identified by blood       |
| 300 | cultures.                                                                                        |

#### $\hfill Table 4. Pathogens detected by molecular, serological, or other laboratory methods from$

 $\,$   $\,$  participants with false positive and no growth blood cultures.

| False Positive and No Growt<br>(N=938) | h   | Confirmatory Methods |          |                          |  |  |
|----------------------------------------|-----|----------------------|----------|--------------------------|--|--|
| Pathogen                               | N   | Blood PCR            | Serology | Other Methods            |  |  |
| Rickettsia typhi                       | 101 | 65                   | 36       |                          |  |  |
| Influenza                              | 66  | 0                    | 59       | 7: Sputum PCR            |  |  |
| Salmonella Typhi                       | 51  | 3                    | 48       |                          |  |  |
| Leptospira spp.                        | 44  | 31                   | 13       |                          |  |  |
| Chikungunya                            | 38  | 30                   | 8        |                          |  |  |
| Dengue                                 | 35  | 0                    | 35       |                          |  |  |
| Mycobacterium tuberculosis             | 20  | 0                    | 0        | 20: Sputum<br>Microscopy |  |  |
| Streptococcus pneumoniae               | 18  | 10                   | 0        | 8: Sputum PCR            |  |  |
| Measles                                | 14  | 9                    | 5        |                          |  |  |
| Amoeba                                 | 11  | 0                    | 0        | 11: Feces<br>Microscopy  |  |  |
| RSV                                    | 11  | 0                    | 9        | 2: Swab PCR              |  |  |
| HHV-6                                  | 9   | 9                    | 0        |                          |  |  |
| Klebsiella pneumoniae                  | 8   | 1                    | 0        | 5: Sputum Culture        |  |  |

|                                                 |   |   |   | 2: Swab Culture                       |
|-------------------------------------------------|---|---|---|---------------------------------------|
|                                                 |   |   |   | 4: Sputum PCR                         |
| Acinetobacter baumanii                          | 7 | 1 | 0 | 1: Swab PCR                           |
|                                                 |   |   |   | 1: Urine PCR                          |
| Escherichia coli                                | 7 | 1 | 0 | 4: Urine Culture                      |
|                                                 |   | - |   | 2: Pus Culture                        |
| Hepatitis A                                     | 6 | 0 | 6 |                                       |
| Pseudomonas aeruginosa                          | 6 | 0 | 0 | 4: Sputum Culture<br>2: Urine Culture |
| Enterococcus faecalis                           | 3 | 0 | 0 | 2: Pus Culture                        |
|                                                 | 2 | 0 | 0 | 1: Urine Culture                      |
| Staphylococcus aureus                           | 3 | 0 | 0 | 3: Pus Culture                        |
| Mycobacterium leprae                            | 2 | 0 | 0 | 2: Skin Microscopy                    |
| Plasmodium spp.                                 | 2 | 0 | 0 | 2: Rapid Antigen<br>Test              |
| Seoul virus                                     | 2 | 2 | 0 |                                       |
| Adenovirus                                      | 1 | 1 | 0 |                                       |
| Ascaris lumbricoides                            | 1 | 0 | 0 | 1: Feces<br>Microscopy                |
| Ascaris lumbricoides and                        | 1 | 0 | 0 | 1: Feces                              |
| Trichuris Trichiura                             | T | 0 | 0 | Microscopy                            |
| Bordetella pertussis and                        | 1 | 0 | 0 | 1: Sputum PCR                         |
| Streptococcus pneumoniae                        |   |   |   |                                       |
| HCoV-OC43                                       | 1 | 1 | 0 |                                       |
| Enterobacter aerogenes                          | 1 | 0 | 0 | 1: Sputum Culture                     |
| Enterobacter cloacae                            | 1 | 0 | 0 | 1: Sputum Culture<br>and PCR          |
| Enterococcus avium                              | 1 | 0 | 0 | 1: Pus Culture                        |
| Enterovirus                                     | 1 | 1 | 0 |                                       |
| EPEC                                            | 1 | 0 | 0 | 1: Feces Culture                      |
| HIV                                             | 1 | 1 | 0 |                                       |
| Metapneumovirus                                 | 1 | 0 | 0 | 1: Swab PCR                           |
| <i>Moraxella catarrhalis</i> and<br>Influenza B | 1 | 0 | 0 | 1: Sputum Culture<br>and PCR          |
| Mycoplasma pneumoniae                           | 1 | 0 | 0 | 1: Sputum PCR                         |
| Norovirus II                                    | 1 | 1 | 0 |                                       |
| Rickettsia felis                                | 1 | 1 | 0 |                                       |
| Rubella                                         | 1 | 0 | 1 |                                       |
| Streptococcus faecalis                          | 1 | 0 | 0 | 1: Urine Culture                      |

| Unknown | 456 | 0   | 0   |    |  |
|---------|-----|-----|-----|----|--|
| Total   | 938 | 168 | 220 | 94 |  |

Plasma, serum, and clinically relevant specimens were collected from all study participants
 and tested in a central lab for culturable and non-culturable pathogens based on a standard
 study algorithm and clinical suspicion.

307

#### 308 Antimicrobial resistance patterns

309 Antimicrobial resistance patterns were observed in several participants with blood 310 cultures positive for WHO GLASS priority pathogens (Fig 2). Among the 51 Salmonella spp. 311 cases, evidence of multidrug resistance was observed in one participant and 312 monoresistance in one participant. In contrast, E. coli cases were mostly multidrug resistant 313 (42.9%, 6/14, 42.9%) or monoresistant (14.3%, 2/14, 14.3%), with observed resistances to 314 ampicillin (<del>7/8,</del> 87.5%), <u>%, 7/8)</u>, co-trimoxazole (<del>3/5,</del> 60.0%), <u>%, 3/5)</u>, ceftriaxone (45.4%, 315 5/11<del>, 45.4%),)</del>, ceftazidime (<u>41.6%, 5</u>/12<del>, 41.6%),)</del>, cefotaxime (<del>3/8, </del>37.5<del>%),<u>%</u>, 3/8)</del>, 316 cefepime (<del>2/6, 33.3%), %, 2/6),</del> ciprofloxacin (<u>30.0%, 3/10, 30.0%), )</u>, and levofloxacin (<del>2/8,</del> 317 25.0%). 7/8). Two participants (JOG-A and DPS-A) receiving ceftriaxone died before their 318 antimicrobial resistance test results, and one participant (JOG-B) survived when switched

319 from ceftazidime to ciprofloxacin based on their test results.

320

321 Figure 2. Antimicrobial resistance patterns observed in WHO GLASS priority pathogens

322 from true positive blood cultures. Participants with resistant (R) infections are identified by

323 study location, and participants with sensitive (S) infections or infections with no testing

- 324 data (ND) are grouped into Other or No Data categories.
- 325
- 326 Methicillin-resistant S. aureus (MRSA) was observed in one participant based on
- 327 oxacillin susceptibility testing, and two participants with oxacillin-sensitive S. aureus

infections died. Both participants with *S. pneumoniae* bacteremia died, though antimicrobial
resistance was only observed in one of the participants. All cases of *Acinetobacter spp.* and *K. pneumoniae* that underwent drug sensitivity testing were sensitive to antibiotics.

#### 332 Disease outcomes

333 Characteristics and laboratory findings of participants who died during 334 hospitalization are shown in Table 5. A total of 83 participants in this analysis died during 335 hospitalization. Among these, 14 (16.9%)% (14) had true positive blood cultures (Table 5A), 336 resulting in 15.2% mortality in the true positive group. This mortality rate is twofold higher 337 than the 7.4% mortality observed in the false positive and no growth groups. Overall 338 mortality in the Salmonella spp. group (5.9%) was significantly lower than the non-339 Salmonella spp. group (26.8%). Among deceased participants, there were no significant 340 differences in demographics between the true positive group and false positive and no 341 growth groups. Most deceased participants had comorbidities including diabetes mellitus 342 (4), hepatitis B (3), HIV (2), tuberculosis (2), brain tumor (1), TRALI (1), neoplasia (1), and 343 others (6) (Table 5B). Antimicrobial-resistant pathogens were identified in 3 of the 14 344 deceased participants with true positives (Table 5). In the false positive and no growth 345 groups, other laboratory methods such as PCR and/or serology were used to identify 346 culturable bacterial pathogens including S. Typhi (2), A. baumanii (1), E. avium (1), E. coli (1), 347 M. catarrhalis (1), and S. pneumoniae (1) (Table 5B). 348

Table 5. Participant characteristics, clinical diagnoses, and identified pathogens from fatal
 cases in the study.

|                                                                            | True Positive (14)     |                                     | False Positive        |               |
|----------------------------------------------------------------------------|------------------------|-------------------------------------|-----------------------|---------------|
|                                                                            | Salmonella spp.<br>(3) | Non- <i>Salmonella spp.</i><br>(11) | and No Growth<br>(69) | Total<br>(83) |
| Male, N (%)                                                                | 3 (100)                | 7 (63.6)                            | 36 (52.2)             | 46 (55.4)     |
| Distribution of cases<br>by age group, N (%)                               |                        |                                     |                       |               |
| 1-5 years                                                                  | 0 (0.0)                | 2 (18.2)                            | 4 (5.8)               | 6 (7.2)       |
| >5-18 years                                                                | 1 (33.3)               | 1 (9.1)                             | 7 (10.1)              | 9 (10.8)      |
| >18-45 years                                                               | 1 (33.3)               | 4 (36.4)                            | 24 (34.8)             | 29 (34.9)     |
| >45-65 years                                                               | 1 (33.3)               | 4 (36.4)                            | 25 (36.2)             | 30 (36.1)     |
| >65 years                                                                  | 0 (0.0)                | 0 (0.0)                             | 9 (13)                | 9 (10.8)      |
| Received intravenous<br>antibiotics prior to<br>blood collection, N<br>(%) | 1 (33.3)               | 1 (9.1)                             | 34 (49.3)             | 36 (43.4)     |
| Length of<br>hospitalization,<br>median (range, IQR)                       | 4 (2-38)               | 12 (2-17)                           | 8 (2-54)              | 8 (2-54)      |
| Comorbidities, N (%)                                                       | 2 (66.6)               | 10 (90.9)                           | 60 (86.9)             | 72 (86.7)     |

351 (A) Characteristics of deceased participants categorized by blood culture growth result.

352

353 (B) Pathogens from fatal cases confirmed by blood culture or other lab methods and the

354 accompanying clinical diagnoses, participant comorbidities, and AMR observations.

| True Positive (14)   | Clinical Diagnosis at<br>Death | Comorbidities                                       | Antimicrobial<br>Resistance |
|----------------------|--------------------------------|-----------------------------------------------------|-----------------------------|
|                      | Typhoid fever                  | Hepatitis B, HIV, TB                                | None                        |
|                      | Acute limb ischemia            | Acute Limb Ischemia                                 | None                        |
| Salmonella spp. (3)  | Sepsis, typhoid fever          | Transfusion-Related<br>Acute Lung Injury<br>(TRALI) | None                        |
| Ecoborishia coli (2) | Cholangitis                    | Diabetes, Hepatitis B                               | Yes                         |
| Escherichia coli (2) | Sepsis                         | Anemia                                              | Yes                         |

| Klebsiella pneumoniae (2)                 | UTI, diabetic<br>ketoacidosis             | Diabetes                                      | None    |
|-------------------------------------------|-------------------------------------------|-----------------------------------------------|---------|
| , , , , , , , , , , , , , , , , , , , ,   | UTI                                       | Stroke                                        | None    |
|                                           | UTI                                       | Diabetes                                      | None    |
| Staphylococcus aureus (2)                 | Sepsis                                    | Diabetes, Chronic<br>Kidney Disease           | None    |
|                                           | Aseptic meningitis,<br>acute otitis media | Epilepsy                                      | Yes     |
| Streptococcus pneumoniae (2)              |                                           | Myelodysplasia,<br>Hepatitis B<br>(Cirrhosis) | None    |
| Pseudomonas aeruginosa (1)                | Stevens-Johnson<br>syndrome               | HIV, TB,<br>Toxoplasmosis                     | No data |
| Enterobacter aerogenes (1)                | Cholangitis, Sepsis                       | None                                          | No data |
| Staphylococcus hominis ssp<br>hominis (1) |                                           | Craniopharyngioma                             | None    |

| False Positive and No Growth<br>(69) [Confirmatory Methods]             | Clinical Diagnosis at Death                                                                              |
|-------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| Mycobacterium tuberculosis<br>(8)<br>[GeneXpert (2), Microscopy<br>(6)] | Pulmonary TB (3), Colitis TB and Spondylitis TB, Millar TB, HIV,<br>Community-acquired Pneumonia, Sepsis |
| Rickettsia typhi (6)<br>[PCR (6)]                                       | Sepsis (3), Community-acquired Pneumonia,<br>Meningoencephalitis, Diabetic Neuropathy                    |
| Influenza (3)<br>[PCR (2), Serology (1)]                                | Bronchiectasis, Community-acquired Pneumonia, Sepsis                                                     |
| Salmonella Typhi (2)<br>[Serology (2)]                                  | Hirschsprung's disease, HIV                                                                              |
| Acinetobacter baumanii (1)<br>[Sputum PCR]                              | Community-acquired Pneumonia                                                                             |
| Ascaris lumbricoides (1)<br>[Microscopy]                                | Typhoid Fever                                                                                            |
| Enterococcus avium (1)<br>[Pus culture]                                 | Diabetic Ulcer                                                                                           |
| <i>Escherichia coli</i> (1)<br>[Urine culture]                          | UTI                                                                                                      |
| HIV (1)<br>[PCR]                                                        | Sepsis                                                                                                   |
| Leptospira spp. (1)<br>[PCR]                                            | Dengue Hemorrhagic Fever I                                                                               |

| Moraxella catarrhalis and<br>Influenza B (1)<br>[Sputum culture and sputum<br>PCR] | Community-acquired Pneumonia                                                                                                                                                                                                                                                                                           |
|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RSV (1)<br>[Serology]                                                              | TB Pleuritis                                                                                                                                                                                                                                                                                                           |
| Streptococcus pneumoniae (1)<br>[Sputum PCR]                                       | Community-acquired Pneumonia                                                                                                                                                                                                                                                                                           |
| Unknown (41)<br>[None]                                                             | HIV (6), Sepsis (6), Community-acquired Pneumonia (9),<br>Cellulitis (2), Cholangitis (2), Lung Abscess, Acute Leukemia,<br>Bacterial Meningitis, Bronchitis, Cholecystitis, Chronic<br>Myelocytic Leukemia, COPD, Diarrhea, Extrapulmonary TB,<br>GEA, Hepatitis B, Pancytopenia, SLE, Typhoid Fever, UTI,<br>Unknown |

# 357 Discussion

| 358 | BSI causes a high burden of morbidity and mortality worldwide, particularly in low-            |
|-----|------------------------------------------------------------------------------------------------|
| 359 | and middle-income countries (LMICs). Exact figures for BSI incidence and associated            |
| 360 | mortality in LMICs are challenging to find due to the lack of bacteriological laboratories and |
| 361 | routine surveillance systems [38,39]. In Indonesia, very few acute febrile patients undergo    |
| 362 | aerobic blood culture testing since it is not standard practice in the healthcare system,      |
| 363 | largely due to resource and capacity restrictions [17]. The AFIRE study presents a unique      |
| 364 | opportunity to improve our understanding of BSIs in the country since aerobic blood            |
| 365 | cultures were performed on nearly all participants, regardless of clinical suspicion of        |
| 366 | bacteremia.                                                                                    |
| 367 | Microbial growth was observed in 10.3% of all participants, with bacteremia being              |
| 368 | ultimately confirmed in 6.3% of all participants (Fig 1). These proportions are similar to     |
| 369 | previous reports, where positivity rates ranged from 10.0 - 11.4% [17]. The high prevalence    |
| 370 | of dengue fever in Indonesia often complicates the clinical assessment of acute febrile        |
| I   |                                                                                                |

| 371 | illness [26], so specimens from all participants in the AFIRE study were retrospectively           |
|-----|----------------------------------------------------------------------------------------------------|
| 372 | tested for dengue NS1 antigen to exclude dengue as a cause of illness [19]. Data on co-            |
| 373 | infections with dengue virus and bacteremia is limited [27], though no participants in our         |
| 374 | study with confirmed bacteremia, or "True Positives," were found to be co-infected. The 14         |
| 375 | participants with positive dengue NS1 antigen results showed false positive blood cultures         |
| 376 | <del>{5 Staphylococcus hominis, 4 Staphylococcus epidermidis, 1 Kocuria rosea, 1 Micrococcus</del> |
| 377 | aureus, 1 Staphylococcus arlettae, 1 coagulase-negative Staphylococcus spp., and 1                 |
| 378 | Staphylococcus waneri)                                                                             |
| 379 | Among dengue negative participants with any microbial growth, 97.8% had blood                      |
| 380 | cultures performed from two sides of collection. One-sided blood culture lacks sufficient          |
| 381 | sensitivity for BSI detection [28], and two-sided cultures make it easier to distinguish true      |
| 382 | bacteremia and contamination [28,29]. It has been demonstrated that collecting two or              |
| 383 | more blood culture sets, each comprising two bottles, over twenty-four hours will detect           |
| 384 | over 94% of bacteremia episodes, compared to a detection rate of only 73% with the first           |
| 385 | blood culture [28]. In many developing countries, collecting multiple blood culture sets is        |
| 386 | generally not feasible, but the minimum practice of a single, one-sided blood culture still has    |
| 387 | value if clinical care teams understand its limitations. Our data suggest that, in situations      |
| 388 | where a single, one-sided blood culture is performed, the likelihood of missing a case of          |
| 389 | bacteremia is 39% (35/89) (8.9% (89/1000) vs 5.4% (54/1000) (Fig 1). Indonesian clinicians         |
| 390 | should consider this reduced sensitivity when acting on culture results.                           |
| 391 | The reliability and interpretation of blood culture results is significantly affected by           |
| 392 | both contamination rates and the use of antibiotics prior to blood collection. General target      |
| 393 | rates for culture contamination have been set at 3% [29], and in our study we observed an          |
| 394 | overall contamination rate of 3.6%. These findings are consistent with previous reports,           |

| 395 | including a 2010-2013 study at Sardjito Hospital in Yogyakarta that found a contamination      |
|-----|------------------------------------------------------------------------------------------------|
| 396 | rate of 4.1% in children at the pediatric ICU and in pediatric wards [30]. Additional reports  |
| 397 | from rural Thailand and Taiwan found contamination rates ranging from 4.1-6.1% and 2.6%,       |
| 398 | respectively [31,32]. The proportion of participants who were given intravenous antibiotics    |
| 399 | prior to blood collection in our study was high (40.2%), and this may alter the blood culture  |
| 400 | results considerably [33,34]. In Indonesia, antibiotic therapy is often initiated preemptively |
| 401 | and without confirmatory testing in an attempt to maximize positive clinical outcomes [35].    |
| 402 | This broad use of antibiotics likely masks the true prevalence of bacteremia and may have      |
| 403 | negative consequences for patients who subsequently appear to have no infection. Among         |
| 404 | participants with false positives or no growth, 111 had culturable microbes confirmed by       |
| 405 | other methods (Table 4), 7 of which died (Table 5). 56.8% of these overall participants        |
| 406 | received antibiotics prior to blood collection. The expansion of molecular methods would       |
| 407 | significantly help to tackle this problem, as nucleic acid probe and amplification tests have  |
| 408 | been shown to significantly improve the speed and accuracy of results in blood stream          |
| 409 | infections even after antibiotic use (33,34).                                                  |
| 410 | White blood cell counts, particularly leukopenia and leukocytosis, have been used to           |
| 411 | predict blood culture results (35–37). However, the accuracy of systemic inflammatory          |
| 412 | response syndrome (SIRS) criteria [38], Shapiro criteria [39], and the quick Sequential Organ  |
| 413 | Failure Assessment (qSOFA) score [40] could not be confirmed in our study. This is primarily   |
| 414 | due to the significant difference in leukocyte profiles between participants with Salmonella   |
| 415 | spp. versus non-Salmonella spp. infections. Our study suggests, as proposed by Ombelet         |
| 416 | [41] and Seigel [42] that leukocytosis should not be used as a predictor for positive blood    |
| 417 | <del>cultures in <i>S. enterica</i>-endemic areas.</del>                                       |

| 418 | We found that Salmonella spp. infection was the most common community-acquired                 |
|-----|------------------------------------------------------------------------------------------------|
| 419 | BSI (Table 1) at 55.4% of cases, which aligns with previous studies conducted in limited-      |
| 420 | resource environments [30,31]. The majority of Salmonella bacteremia was in pediatrics,        |
| 421 | which is consistent with a previous report from a blood culture study in Jakarta where the     |
| 422 | incidence rate of typhoid fever was higher in the 2-15 year age group, with a mean age of      |
| 423 | onset of 10.2 years [43]. This commonly observed age association may be due to poor            |
| 424 | hygiene practices or the consumption of foods, particularly street food, outside of the home   |
| 425 | [44]. Though over half of bacteremia cases were due to Salmonella spp. infection, only         |
| 426 | 21.4% of bacteremia deaths were due to the pathogen. Among these fatal cases, all had          |
| 427 | significant comorbidities, suggesting that patients with multiple comorbidities would benefit  |
| 428 | from prioritization of blood culture diagnostics.                                              |
| 429 | Despite the high prevalence of Salmonella spp. among participants with bacteremia,             |
| 430 | previous reports have found the overall sensitivity of blood cultures to be only 66% (95% Cl   |
| 431 | 56–75%) when compared to more sensitive tests such as bone marrow cultures [45].               |
| 432 | Though bone marrow cultures were not performed as part of our study, further molecular         |
| 433 | and serological testing as part of the AFIRE study identified an additional 51 cases in the    |
| 434 | false positive and no growth groups (Table 4), 2 of which were fatal. Most participants with   |
| 435 | negative blood cultures and false positive results (41.5%) had already received IV antibiotics |
| 436 | prior to blood collection, which may have substantially diminished the yield of blood          |
| 437 | cultures [33,34]. While blood collection prior to antibiotic administration is ideal, an       |
| 438 | environment like Indonesia, where preemptive antibiotic use is common, would significantly     |
| 439 | benefit from supplementing blood culture testing with molecular and serological tests.         |
| 440 | These tests do have drawbacks, as molecular diagnostics can have poor sensitivity due to       |
| 441 | the low organism burden in bodily fluids [46], and serological diagnostics require increasing  |

| 442                                                  | titers in convalescent specimens compared to acute specimens given high background                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 443                                                  | antibody levels in endemic regions [47]. Further research on combining a clinical prediction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 444                                                  | algorithm with disease-specific blood cultures for patients with febrile illnesses in typhoid-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 445                                                  | endemic areas could be a potential route to improve patient outcomes in a community-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 446                                                  | based setting while waiting for the wider adoption of molecular and serological testing.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 447                                                  | Among cases of Salmonella spp. bacteremia, the prevalence of antimicrobial resistance to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 448                                                  | the antibiotic of choice was only 3.9% (Fig 2), which is similar to previous studies in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 449                                                  | Indonesia [48–50]. In the 2011–2015 period, rates of resistance against most antimicrobials                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 450                                                  | for S. Typhi and S. Paratyphi were low, indicating that there is a distinct epidemiological                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 451                                                  | dynamic of enteric fever in Indonesia compared to the rest of the world [48,51]. This could                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 452                                                  | be due to different strains of S. Typhi and S. Paratyphi which may possess different genes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 453                                                  | that contribute to resistance [48,50], though we did not perform genotyping or sequencing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 454                                                  | as part of our study.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 454<br>455                                           | as part of our study.<br>In addition to <i>Salmonella spp.</i> bacteremia, we identified cases of bacteremia caused                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 455                                                  | In addition to Salmonella spp. bacteremia, we identified cases of bacteremia caused                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 455<br>456                                           | In addition to <i>Salmonella spp.</i> bacteremia, we identified cases of bacteremia caused<br>by other WHO GLASS and non-GLASS pathogens. <i>E. coli</i> was the second most common cause                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 455<br>456<br>457                                    | In addition to <i>Salmonella spp.</i> bacteremia, we identified cases of bacteremia caused<br>by other WHO GLASS and non-GLASS pathogens. <i>E. coli</i> was the second most common cause<br>of BSI, with over half of isolates possessing some form of antimicrobial resistance. Both fatal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 455<br>456<br>457<br>458                             | In addition to <i>Salmonella spp.</i> bacteremia, we identified cases of bacteremia caused<br>by other WHO GLASS and non-GLASS pathogens. <i>E. coli</i> was the second most common cause<br>of BSI, with over half of isolates possessing some form of antimicrobial resistance. Both fatal<br>cases were found to possess third generation cephalosporin (3GC) and fluoroquinolone                                                                                                                                                                                                                                                                                                                                                                                         |
| 455<br>456<br>457<br>458<br>459                      | In addition to <i>Salmonella spp.</i> bacteremia, we identified cases of bacteremia caused<br>by other WHO GLASS and non-GLASS pathogens. <i>E. coli</i> was the second most common cause<br>of BSI, with over half of isolates possessing some form of antimicrobial resistance. Both fatal<br>cases were found to possess third generation cephalosporin (3GC) and fluoroquinolone<br>resistance. The global incidence of community-acquired BSI due to <i>E. coli</i> is relatively high,                                                                                                                                                                                                                                                                                 |
| 455<br>456<br>457<br>458<br>459<br>460               | In addition to <i>Salmonella spp.</i> bacteremia, we identified cases of bacteremia caused<br>by other WHO GLASS and non-GLASS pathogens. <i>E. coli</i> was the second most common cause<br>of BSI, with over half of isolates possessing some form of antimicrobial resistance. Both fatal<br>cases were found to possess third generation cephalosporin (3GC) and fluoroquinolone<br>resistance. The global incidence of community-acquired BSI due to <i>E. coli</i> is relatively high,<br>with an estimated 50-60 cases per 100,000 population [52–54], and the proportion of 3GC                                                                                                                                                                                      |
| 455<br>456<br>457<br>458<br>459<br>460<br>461        | In addition to <i>Salmonella spp</i> . bacteremia, we identified cases of bacteremia caused<br>by other WHO GLASS and non-GLASS pathogens. <i>E. coli</i> was the second most common cause<br>of BSI, with over half of isolates possessing some form of antimicrobial resistance. Both fatal<br>cases were found to possess third generation cephalosporin (3GC) and fluoroquinolone<br>resistance. The global incidence of community-acquired BSI due to <i>E. coli</i> is relatively high,<br>with an estimated 50-60 cases per 100,000 population [52–54], and the proportion of 3GC<br>resistance has reached levels >60% in some parts of the world [55,56]. We found 3GC-                                                                                             |
| 455<br>456<br>457<br>458<br>459<br>460<br>461<br>462 | In addition to <i>Salmonella spp</i> . bacteremia, we identified cases of bacteremia caused<br>by other WHO GLASS and non-GLASS pathogens. <i>E. coli</i> was the second most common cause<br>of BSI, with over half of isolates possessing some form of antimicrobial resistance. Both fatal<br>cases were found to possess third generation cephalosporin (3GC) and fluoroquinolone<br>resistance. The global incidence of community acquired BSI due to <i>E. coli</i> is relatively high,<br>with an estimated 50 60 cases per 100,000 population [52–54], and the proportion of 3GC<br>resistance has reached levels >60% in some parts of the world [55,56]. We found 3GC-<br>resistance rates of 35.7% in our study, which is consistent with the WHO GLASS report of |

| 466 | Bacteremia from S. aureus infection was found in 10.9% cases in our study, and the           |
|-----|----------------------------------------------------------------------------------------------|
| 467 | observed mortality rate of 20% was consistent with a previous report [59]. Both participants |
| 468 | who died were diabetic and contracted oxacillin-sensitive infections, suggesting that the    |
| 469 | cause of death may have been due more to the timing of diagnosis and treatment. It is well-  |
| 470 | known that diabetics are at high risk for infections with S. aureus [60], so comorbidities   |
| 471 | should be strongly considered when prioritizing blood culture testing. Two participants with |
| 472 | systemic lupus erythematosus (SLE) developed S. aureus BSIs, which has been associated       |
| 473 | with classic hyper IgE syndrome [61]. The colonization of <i>S. aureus</i> in the body often |
| 474 | increases in patients with SLE and may predispose them to BSI, worsening the SLE itself and  |
| 475 | leading to a feedback loop with the potential to reinforce autoimmune symptoms [62,63].      |
| 476 | The proportion of MRSA in our study (10%) was lower than the WHO GLASS report (24.9%         |
| 477 | (IQR 11.4-42.7)) [23], though this is understandable given that our study was not a          |
| 478 | systematic surveillance of S. aureus infections across the country. Geographic variation of  |
| 479 | CAI with MRSA has been observed in the Asia-Pacific region, including Taiwan, the            |
| 480 | Philippines, Vietnam, and Sri Lanka (30-39%); Korea and Japan (15-20%); and Thailand,        |
| 481 | India, and Hong Kong (3-9%) [64,65]. Data from Indonesia remains limited, but a recent       |
| 482 | study has shown that the carriage rate of MRSA in the nose and throat of patients admitted   |
| 483 | to surgery and internal medical wards at Dr. Soetomo Hospital in Surabaya was 8.1% among     |
| 484 | 643 patients [66]. Additionally, a report on 259 S. aureus isolates collected from clinical  |
| 485 | cultures of patients at four tertiary care hospitals in Denpasar, Malang, Padang, and        |
| 486 | Semarang found that 6.6% and 18.5% were MRSA and PVL-positive methicillin-susceptible S.     |
| 487 | aureus, respectively [67].                                                                   |
| 488 | Microbial growth was observed in 10.3% of all participants, with bacteremia being            |
| 489 | ultimately confirmed in 6.3% of all participants (Fig 1). These proportions are similar to   |

| 490 | previous reports, where positivity rates ranged from 10.0 - 11.4% [17]. The high prevalence   |
|-----|-----------------------------------------------------------------------------------------------|
| 491 | of dengue fever in Indonesia often complicates the clinical assessment of acute febrile       |
| 492 | illness [25], so specimens from all participants in the AFIRE study were retrospectively      |
| 493 | tested for dengue NS1 antigen to exclude dengue as a cause of illness [19]. Data on co-       |
| 494 | infections with dengue virus and bacteremia is limited. A literature review of published case |
| 495 | reports and studies from January 1943 to March 2016 found 3 studies in Singapore and          |
| 496 | Taiwan reporting concurrent bacteremia in 0.18-7% of dengue fever cases [40–42]. A            |
| 497 | concurrent dengue virus and S. Typhi case was also reported from Bandung, Indonesia [43].     |
| 498 | In all of these studies, blood was collected for bacterial culture because patients did not   |
| 499 | improve clinically a few days to a week after dengue fever was diagnosed. Furthermore, in     |
| 500 | the majority of cases, dengue virus infection was confirmed by serology only (IgM detected    |
| 501 | or four-fold IgG increase). These reports support our finding that simultaneous infection     |
| 502 | with bacteria and dengue virus is rare. In our study, bacterial growth observed in 14         |
| 503 | participants with positive dengue NS1 antigen tests were considered false positive blood      |
| 504 | cultures (5 Staphylococcus hominis, 4 Staphylococcus epidermidis, 1 Kocuria rosea, 1          |
| 505 | Micrococcus aureus, 1 Staphylococcus arlettae, 1 coagulase-negative Staphylococcus spp.,      |
| 506 | and 1 Staphylococcus waneri).                                                                 |
| 507 | Among dengue-negative participants with any microbial growth, 97.8% had blood                 |
| 508 | cultures performed from two sides of collection. One-sided blood culture lacks sufficient     |
| 509 | sensitivity for BSI detection [44], and two-sided cultures make it easier to distinguish true |
| 510 | bacteremia and contamination [44,45]. It has been demonstrated that collecting two or         |
| 511 | more blood culture sets, each comprising two bottles, over twenty-four hours will detect      |
| 512 | over 94% of bacteremia episodes, compared to a detection rate of only 73% with the first      |
| 513 | blood culture [44]. In many developing countries, collecting multiple blood culture sets is   |

| 514 | generally not feasible, but the minimum practice of a single, one-sided blood culture still has |
|-----|-------------------------------------------------------------------------------------------------|
| 515 | value if clinical care teams understand its limitations. Our data suggest that, in situations   |
| 516 | where a single, one-sided blood culture is performed, the likelihood of missing a case of       |
| 517 | bacteremia is 39% (35/89) (8.9% (89/1000) vs 5.4% (54/1000) (Fig 1). Indonesian clinicians      |
| 518 | should consider this reduced sensitivity when acting on culture results.                        |
| 519 | The reliability and interpretation of blood culture results is significantly affected by        |
| 520 | both contamination rates and the use of antibiotics prior to blood collection. General target   |
| 521 | rates for culture contamination have been set at 3% [45], and in our study we observed an       |
| 522 | overall contamination rate of 3.6%. These findings are consistent with previous reports,        |
| 523 | including a 2010-2013 study at Sardjito Hospital in Yogyakarta that found a contamination       |
| 524 | rate of 4.1% in children at the pediatric ICU and in pediatric wards [46]. Additional reports   |
| 525 | from rural Thailand and Taiwan found contamination rates ranging from 4.1-6.1% and 2.6%,        |
| 526 | respectively [47,48]. The proportion of participants who were given intravenous antibiotics     |
| 527 | prior to blood collection in our study was high (40.2%), and this may alter the blood culture   |
| 528 | results considerably [49,50]. In Indonesia, antibiotic therapy is often initiated preemptively  |
| 529 | and without confirmatory testing in an attempt to maximize positive clinical outcomes [51].     |
| 530 | This broad use of antibiotics likely masks the true prevalence of bacteremia and may have       |
| 531 | negative consequences for patients who subsequently appear to have no infection. Among          |
| 532 | participants with false positives or no growth, 111 had culturable microbes confirmed by        |
| 533 | other methods (Table 4), 7 of which died (Table 5). 56.8% of these overall participants         |
| 534 | received antibiotics prior to blood collection. The expansion of molecular methods would        |
| 535 | significantly help to tackle this problem, as nucleic acid probe and amplification tests have   |
| 536 | been shown to significantly improve the speed and accuracy of results in blood stream           |
| 537 | infections even after antibiotic use [52,53].                                                   |

| 538 | White blood cell counts, particularly leukopenia and leukocytosis, have been used to           |  |
|-----|------------------------------------------------------------------------------------------------|--|
| 539 | predict blood culture results. However, the accuracy of systemic inflammatory response         |  |
| 540 | syndrome (SIRS) criteria [54], Shapiro criteria [55], and the quick Sequential Organ Failure   |  |
| 541 | Assessment (qSOFA) score [56] could not be confirmed in our study. This is primarily due to    |  |
| 542 | the significant difference in leukocyte profiles between participants with Salmonella spp.     |  |
| 543 | versus non-Salmonella spp. infections. Our study suggests, as proposed by Ombelet [57] and     |  |
| 544 | Seigel [58] that leukocytosis should not be used as a predictor for positive blood cultures in |  |
| 545 | S. enterica-endemic areas.                                                                     |  |
| 546 | We found that Salmonella spp. infection was the most common community-acquired                 |  |
| 547 | BSI (Table 1) at 55.4% of cases, which aligns with previous studies conducted in limited-      |  |
| 548 | resource environments [46,47]. The majority of Salmonella bacteremia was in pediatrics,        |  |
| 549 | which is consistent with a previous report from a blood culture study in Jakarta where the     |  |
| 550 | incidence rate of typhoid fever was higher in the 2-15 year age group, with a mean age of      |  |
| 551 | onset of 10.2 years [59]. This commonly observed age association may be due to poor            |  |
| 552 | hygiene practices or the consumption of foods, particularly street food, outside of the home   |  |
| 553 | [60]. Though over half of bacteremia cases were due to Salmonella spp. infection, only         |  |
| 554 | 21.4% of bacteremia deaths were due to the pathogen. Among these fatal cases, all had          |  |
| 555 | significant comorbidities, suggesting that patients with multiple comorbidities would benefit  |  |
| 556 | from prioritization of blood culture diagnostics.                                              |  |
| 557 | Despite the high prevalence of Salmonella spp. among participants with bacteremia,             |  |
| 558 | previous reports have found the overall sensitivity of blood cultures to be only 66% (95% CI   |  |
| 559 | 56–75%) when compared to more sensitive tests such as bone marrow cultures [61].               |  |
| 560 | Though bone marrow cultures were not performed as part of our study, further molecular         |  |
| 561 | and serological testing as part of the AFIRE study identified an additional 51 cases in the    |  |

| 562 | false positive and no growth groups (Table 4), 2 of which were fatal. Most participants with   |
|-----|------------------------------------------------------------------------------------------------|
| 563 | negative blood cultures and false positive results (41.5%) had already received IV antibiotics |
| 564 | prior to blood collection, which may have substantially diminished the yield of blood          |
| 565 | cultures [49,50]. While blood collection prior to antibiotic administration is ideal, an       |
| 566 | environment like Indonesia, where preemptive antibiotic use is common, would significantly     |
| 567 | benefit from supplementing blood culture testing with molecular and serological tests.         |
| 568 | These tests do have drawbacks, as molecular diagnostics can have poor sensitivity due to       |
| 569 | the low organism burden in bodily fluids [62], and serological diagnostics require increasing  |
| 570 | titers in convalescent specimens compared to acute specimens given high background             |
| 571 | antibody levels in endemic regions [63]. Further research on combining a clinical prediction   |
| 572 | algorithm with disease-specific blood cultures for patients with febrile illnesses in typhoid- |
| 573 | endemic areas could be a potential route to improve patient outcomes in a community-           |
| 574 | based setting while waiting for the wider adoption of molecular and serological testing.       |
| 575 | Among cases of Salmonella spp. bacteremia, the prevalence of antimicrobial resistance to       |
| 576 | the antibiotic of choice was only 3.9% (Fig 2), which is similar to previous studies in        |
| 577 | Indonesia [64–66]. In the 2011–2015 period, rates of resistance against most antimicrobials    |
| 578 | for S. Typhi and S. Paratyphi were low, indicating that there is a distinct epidemiological    |
| 579 | dynamic of enteric fever in Indonesia compared to the rest of the world [64,67]. This could    |
| 580 | be due to different strains of S. Typhi and S. Paratyphi which may possess different genes     |
| 581 | that contribute to resistance [64,65], though we did not perform genotyping or sequencing      |
| 582 | as part of our study.                                                                          |
| 583 | In addition to Salmonella spp. bacteremia, we identified cases of bacteremia caused            |
| 584 | by other WHO GLASS and non-GLASS pathogens. E. coli was the second most common cause           |

of BSI, with over half of isolates possessing some form of antimicrobial resistance. Both fatal

| 586 | cases were found to possess third-generation cephalosporin (3GC) and fluoroquinolone          |
|-----|-----------------------------------------------------------------------------------------------|
| 587 | resistance. The global incidence of community-acquired BSI due to E. coli is relatively high, |
| 588 | with an estimated 50-60 cases per 100,000 population [68–70], and the proportion of 3GC       |
| 589 | resistance has reached levels >60% in some parts of the world [71,72]. We found 3GC-          |
| 590 | resistance rates of 35.7% in our study, which is consistent with the WHO GLASS report of      |
| 591 | 36.6% (interquartile range [IQR] 17.5-58.3) [37]. The fluoroquinolone-resistance rates of     |
| 592 | 22% that we observed were high but consistent with previous reports from Indonesia            |
| 593 | [73,74].                                                                                      |

594 Bacteremia from S. aureus infection was found in 10.9% cases in our study, and the 595 observed mortality rate of 20% was consistent with a previous report [75]. Both participants 596 who died were diabetic and contracted oxacillin-sensitive infections, suggesting that the 597 cause of death may have been due more to the timing of diagnosis and treatment. It is well-598 known that diabetics are at high risk for infections with S. aureus [76], so comorbidities 599 should be strongly considered when prioritizing blood culture testing. Two participants with 600 systemic lupus erythematosus (SLE) developed S. aureus BSIs, which has been associated 601 with classic hyper-IgE syndrome [77]. The colonization of *S. aureus* in the body often 602 increases in patients with SLE and may predispose them to BSI, worsening the SLE itself and 603 leading to a feedback loop with the potential to reinforce autoimmune symptoms [78,79]. 604 The proportion of MRSA in our study (10%) was lower than the WHO GLASS report (24.9% 605 (IQR 11.4-42.7)) [37], though this is understandable given that our study was not a 606 systematic surveillance of S. aureus infections across the country. Geographic variation of 607 CAI with MRSA has been observed in the Asia-Pacific region, including Taiwan, the 608 Philippines, Vietnam, and Sri Lanka (30-39%); Korea and Japan (15-20%); and Thailand, 609 India, and Hong Kong (3-9%) [80,81]. Data from Indonesia remains limited, but a recent

| 610 | study has shown that the carriage rate of MRSA in the nose and throat of patients admitted       |  |
|-----|--------------------------------------------------------------------------------------------------|--|
| 611 | to surgery and internal medical wards at Dr. Soetomo Hospital in Surabaya was 8.1% among         |  |
| 612 | 643 patients [82]. Additionally, a report on 259 S. aureus isolates collected from clinical      |  |
| 613 | cultures of patients at four tertiary care hospitals in Denpasar, Malang, Padang, and            |  |
| 614 | Semarang found that 6.6% and 18.5% were MRSA and PVL-positive methicillin-susceptible S.         |  |
| 615 | aureus, respectively [83].                                                                       |  |
| 616 | Besides E. coli and S. aureus, we observed the other WHO GLASS pathogens K.                      |  |
| 617 | pneumonia, S. pneumonia, and Acinetobacter spp. in our study. K. pneumonia was mostly            |  |
| 618 | found in patients with UTI and respiratory illnesses. The two fatal cases were most likely       |  |
| 619 | associated with the participants' chronic illnesses (stroke and kidney failure), as none of the  |  |
| 620 | isolates were 3GC, fluroquinolone, or co-trimoxazole resistant. Both cases of S. pneumonia       |  |
| 621 | bacteremia were found in pediatric participants, and both were fatal. The participant with a     |  |
| 622 | penicillin-sensitive infection had myelodysplasia syndrome, and the participant with a           |  |
| 623 | ceftriaxone-resistant infection had clinical meningitis. S. pneumonia was also found by          |  |
| 624 | molecular methods in 8 participants whose blood cultures were negative, supporting a             |  |
| 625 | previous report that successful diagnostic approaches using blood cultures alone                 |  |
| 626 | are difficult because of reduced sensitivity [68]. [84]. Acinetobacter lwoffii was identified in |  |
| 627 | two participants, both having gastro-intestinal symptoms and receiving an initial diagnosis      |  |
| 628 | of typhoid fever. Treatment with cefixime resolved the infections. A similar case with fever,    |  |
| 629 | abdominal pain, and diarrhea has been reported in a 64 year-old man in Texas, USA [ $6985$ ].    |  |
| 630 | Our study found the most frequent BSI pathogens to be S. Typhi and E. coli, though               |  |
| 631 | multidrug-resistant E. coli was the most problematic. The challenges of AMR in Indonesia         |  |
| 632 | are similar to those of many other low and middle-income countries in the region and             |  |
| 633 | globally [20]. Misuse and overuse of antibiotics in humans, livestock, and aquaculture may       |  |
|     |                                                                                                  |  |

Field Code Changed

| 634 | be the key drivers of resistance in the country [86]. Despite current policies related to         |
|-----|---------------------------------------------------------------------------------------------------|
| 635 | antimicrobial use in Indonesia, frequent and unnecessary prescription of antibiotics by           |
| 636 | physicians, high rates of self-medication, and over-the-counter access to antibiotics remain      |
| 637 | common [87]. Since 2016, the Indonesia Ministry of Health has boosted their AMR                   |
| 638 | stewardship program to tackle this growing challenge, directing substantial funding to the        |
| 639 | national AMR control committee [20]. Further support for AMR prevention and the                   |
| 640 | alignment of national policies with global policies and standards will substantially improve      |
| 641 | the growing challenge of AMR infections in Indonesia.                                             |
| 642 | Our study has several limitations. First, the blood specimens analyzed as part of this            |
| 643 | study were collected only from a limited number of extremely ill patients admitted to             |
| 644 | tertiary hospitals. Blood culture positivity rates, AMR patterns, and clinical outcomes may       |
| 645 | not be generalizable to the Indonesian population at-large, though better understanding           |
| 646 | this critically ill population will hopefully lead to a reduction in mortality from BSIs. Second, |
| 647 | only aerobic blood cultures were performed, which may have resulted in missed BSIs caused         |
| 648 | by anaerobic bacterial. The generally low yield of anaerobic bacteria combined with               |
| 649 | increasing costs and volumes of blood drawn [13,72,73][13,88,89] make anaerobic cultures          |
| 650 | impractical for many hospitals in Indonesia. In the future, rationally targeting the use of       |
| 651 | anaerobic culture bottles based on careful clinical assessment may result in substantial          |
| 652 | savings and facilitate the broader adoption of the diagnostic in the country [74].[90]. Lastly,   |
| 653 | AMR susceptibility testing in this study was performed and reported according to general          |
| 654 | practice in Indonesia, as our study was not initially designed as an AMR study. Consequently,     |
| 655 | our data has substantial gaps and missing information. A standardized approach and                |
| 656 | electronic results reporting system in Indonesia would significantly improve the accuracy         |
| 657 | and utility of AMR susceptibility testing.                                                        |

# 659 Conclusion

| 660 | We presented aerobic blood culture findings from a multi-centre study of patients             |
|-----|-----------------------------------------------------------------------------------------------|
| 661 | with acute febrile illness admitted to eight major hospitals across Indonesia. Our universal  |
| 662 | use of aerobic blood cultures is unique in Indonesia, the results of which help clarify the   |
| 663 | epidemiology and burden of BSI, rates of contamination among CAI, and common AMR              |
| 664 | patterns in Indonesia. Bacteremia was observed in 8.9% participants, with the most            |
| 665 | frequent pathogens being Salmonella spp., E. coli, and S. aureus. Two Salmonella spp. cases   |
| 666 | had evidence of AMR, and several E. coli cases were multidrug resistant (42.9%) or            |
| 667 | monoresistant (14.3%). Culture contamination was observed in 3.6% cases. Our data             |
| 668 | suggest that blood cultures should be included as a routine diagnostic test, and pre-         |
| 669 | screening patients for the most common viral infections, such as dengue, influenza and        |
| 670 | chikungunya viruses, would conserve scarce resources without negatively impacting patient     |
| 671 | benefit. The routine practice of AMR susceptibility testing on positive blood cultures in     |
| 672 | Indonesia is encouraging and should be continued to inform clinical decisions on patient      |
| 673 | treatment in real-time. The country could benefit from clear guidance at the national level,  |
| 674 | particularly regarding the timing of blood collection prior to antibiotic administration, the |
| 675 | prioritization of patients with comorbidities, blood collection practices to reduce           |
| 676 | environmental contamination, and the supplementation of blood cultures with molecular         |
| 677 | assays to combat false-negative results. Additionally, Indonesia could greatly benefit from a |
| 678 | nationwide program for the systematic collection and dissemination of blood culture and       |
| 679 | AMR results.                                                                                  |

# 681 Acknowledgements

- 682 We would like to thank all of the patients who participated in this study, the site study
- 683 teams and investigators, US-NIAID and Indonesia NIHRD, the Indonesian Ministry of Health,
- 684 the INA-RESPOND Network Steering Committee, and the sample repository team.
- 685

## 686 **References**

| 687 | <u> 41.</u> | David A. Smith, Sara M. Nehring. Bacteremia. Treasure Island (FL): StatPearls             | Formatted: Font: Calibri, English (United Kingdom) |
|-----|-------------|-------------------------------------------------------------------------------------------|----------------------------------------------------|
| 688 |             | Publishing; 2022. Available: https://www.ncbi.nlm.nih.gov/books/NBK441979/                |                                                    |
| 689 | 2.          | Goto M, Al-Hasan MN. Overall burden of bloodstream infection and nosocomial               | Formatted: Font: Calibri, English (United Kingdom) |
| 690 |             | bloodstream infection in North America and Europe. Clin Microbiol Infect. 2013;19:        |                                                    |
| 691 |             | <u>501–509. doi:10.1111/1469-0691.12195</u>                                               |                                                    |
| 692 | <u>3.</u>   | McNamara JF, Righi E, Wright H, Hartel GF, Harris PNA, Paterson DL. Long-term             | Formatted: Font: Calibri, English (United Kingdom) |
| 693 |             | morbidity and mortality following bloodstream infection: A systematic literature          |                                                    |
| 694 |             | <u>review. J Infect. 2018;77: 1–8. doi:10.1016/j.jinf.2018.03.005</u>                     |                                                    |
| 695 | 4           | Peters RPH, Zijlstra EE, Schijffelen MJ, Walsh AL, Joaki G, Kumwenda JJ, et al. A         | Formatted: Font: Calibri, English (United Kingdom) |
| 696 |             | prospective study of bloodstream infections as cause of fever in Malawi: clinical         |                                                    |
| 697 |             | predictors and implications for management. Trop Med Int Health. 2004;9: 928–934.         |                                                    |
| 698 |             | doi:10.1111/j.1365-3156.2004.01288.x                                                      |                                                    |
| 699 | 2.          | David A. Smith, Sara M. Nehring, Bacteremia, Treasure Island (FL): StatPearls             | Formatted: Font: Calibri, English (United Kingdom) |
| 700 |             | Publishing; 2022. Available: https://www.ncbi.nlm.nih.gov/books/NBK441979/                |                                                    |
| 701 | 3           | Goto M, Al Hasan MN. Overall burden of bloodstream infection and nosocomial               | Formatted: Font: Calibri, English (United Kingdom) |
| 702 |             | bloodstream infection in North America and Europe. Clin Microbiol Infect. 2013;19:        |                                                    |
| 703 |             | <del>501–509. doi:10.1111/1469-0691.12195</del>                                           |                                                    |
| 704 | 4           | McNamara JF, Righi E, Wright H, Hartel GF, Harris PNA, Paterson DL. Long-term             | Formatted: Font: Calibri, English (United Kingdom) |
| 705 |             | morbidity and mortality following bloodstream infection: A systematic literature          |                                                    |
| 706 |             | review. J Infect. 2018;77: 1–8. doi:10.1016/j.jinf.2018.03.005                            |                                                    |
| 707 | 5.          | Gaibani P, Rossini G, Ambretti S, Gelsomino F, Pierro AM, Varani S, et al. Blood culture  |                                                    |
| 708 |             | systems: rapid detection – how and why? Int J Antimicrob Agents. 2009;34: S13–S15.        |                                                    |
| 709 |             | doi:10.1016/S0924-8579(09)70559-X                                                         |                                                    |
| 710 | 6.          | William A. Blood Culture Systems: From Patient to Result. In: Azevedo L, editor. Sepsis - |                                                    |
| 711 |             | An Ongoing and Significant Challenge. InTech; 2012. doi:10.5772/50139                     |                                                    |

- Lamy B, Dargère S, Arendrup MC, Parienti J-J, Tattevin P. How to Optimize the Use of Blood Cultures for the Diagnosis of Bloodstream Infections? A State-of-the Art. Front Microbiol. 2016;7. doi:10.3389/fmicb.2016.00697
- Prestinaci F, Pezzotti P, Pantosti A. Antimicrobial resistance: a global multifaceted
   phenomenon. Pathog Glob Health. 2015;109: 309–318.
   doi:10.1179/2047773215Y.000000030
- Hu B, Tao Y, Shao Z, Zheng Y, Zhang R, Yang X, et al. A Comparison of Blood Pathogen
   Detection Among Droplet Digital PCR, Metagenomic Next-Generation Sequencing, and
   Blood Culture in Critically III Patients With Suspected Bloodstream Infections. Front
   Microbiol. 2021;12: 641202. doi:10.3389/fmicb.2021.641202
- Trung NT, Thau NS, Bang MH, Song LH. PCR-based Sepsis@Quick test is superior in
   comparison with blood culture for identification of sepsis-causative pathogens. Sci Rep.
   2019;9: 13663. doi:10.1038/s41598-019-50150-y
- Weinstein MP. Blood Culture Contamination: Persisting Problems and Partial Progress.
   J Clin Microbiol. 2003;41: 2275–2278. doi:10.1128/JCM.41.6.2275-2278.2003
- Hall KK, Lyman JA. Updated Review of Blood Culture Contamination. Clin Microbiol Rev.
  2006;19: 788–802. doi:10.1128/CMR.00062-05
- 13. Dargère S, Parienti J-J, Roupie E, Gancel P-E, Wiel E, Smaiti N, et al. Unique blood culture for diagnosis of bloodstream infections in emergency departments: a prospective multicentre study. Clin Microbiol Infect. 2014;20: O920–O927. doi:10.1111/1469-0691.12656
- 73314.Bates DW. Predicting Bacteremia in Hospitalized Patients: A Prospectively Validated734Model. Ann Intern Med. 1990;113: 495. doi:10.7326/0003-4819-113-7-495
- 15. Salluzzo R, Reilly K. The Rational Ordering of Blood Cultures in the Emergency
  Department. Qual Assur Util Rev. 1991;6: 28–31. doi:10.1177/0885713x9100600106
- 16. Little JR, Trovillion E, Fraser V. High Frequency of Pseudobacteremia at a University
   Hospital. Infect Control Hosp Epidemiol. 1997;18: 200–202. doi:10.1086/647588
- Teerawattanasook N, Tauran PM, Teparrukkul P, Wuthiekanun V, Dance DAB, Arif M,
   et al. Capacity and Utilization of Blood Culture in Two Referral Hospitals in Indonesia
   and Thailand. Am J Trop Med Hyg. 2017;97: 1257–1261. doi:10.4269/ajtmh.17-0193
- 742 18. Doern GV, Carroll KC, Diekema DJ, Garey KW, Rupp ME, Weinstein MP, et al. Practical
  743 Guidance for Clinical Microbiology Laboratories: A Comprehensive Update on the
  744 Problem of Blood Culture Contamination and a Discussion of Methods for Addressing
  745 the Problem. Clin Microbiol Rev. 2019;33. doi:10.1128/CMR.00009-19
- Gasem MH, Kosasih H, Tjitra E, Alisjahbana B, Karyana M, Lokida D, et al. An
   observational prospective cohort study of the epidemiology of hospitalized patients

| 748<br>749               |                  | with acute febrile illness in Indonesia. PLoS Negl Trop Dis. 2020;14: e0007927.<br>doi:10.1371/journal.pntd.0007927                                                                                                                                                                                          |      |                  |              |           |          |         |
|--------------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------------------|--------------|-----------|----------|---------|
| 750<br>751<br>752        | 20.              | Parathon H, Kuntaman K, Widiastoety TH, Muliawan BT, Karuniawati A, Qibtiyah M, et<br>al. Progress towards antimicrobial resistance containment and control in Indonesia.<br>BMJ. 2017; j3808. doi:10.1136/bmj.j3808                                                                                         |      |                  |              |           |          |         |
| 753<br>754<br>755        | <del>21</del> 21 | <ol> <li>Gasem MH, Wagenaar JFP, Goris MGA, Adi MS, Isbandrio BB, Hartskeerl RA, et al.<br/>Murine typhus and leptospirosis as causes of acute undifferentiated fever, Indonesia.<br/>Emerg Infect Dis. 2009;15: 975–977. doi:10.3201/eid1506.081405</li> </ol>                                              |      |                  |              |           |          |         |
| 756<br>757<br>758<br>759 | <u>22.</u>       | Capeding MR, Chua MN, Hadinegoro SR, Hussain IIHM, Nallusamy R, Pitisuttithum P, et<br>al. Dengue and other common causes of acute febrile illness in Asia: an active<br>surveillance study in children. PLoS Negl Trop Dis. 2013;7: e2331.<br>doi:10.1371/journal.pntd.0002331                              |      |                  |              |           |          |         |
| 760<br>761<br>762        | <u>23.</u>       | Punjabi NH, Taylor WRJ, Murphy GS, Purwaningsih S, Picarima H, Sisson J, et al.<br>Etiology of acute, non-malaria, febrile illnesses in Jayapura, northeastern Papua,<br>Indonesia. Am J Trop Med Hyg. 2012;86: 46–51. doi:10.4269/ajtmh.2012.10-0497                                                        |      |                  |              |           |          |         |
| 763<br>764<br>765        | <u>24.</u>       | Kosasih H, de Mast Q, Widjaja S, Sudjana P, Antonjaya U, Ma'roef C, et al. Evidence for<br>endemic chikungunya virus infections in Bandung, Indonesia. PLoS Negl Trop Dis.<br>2013;7: e2483. doi:10.1371/journal.pntd.0002483                                                                                |      |                  |              |           |          |         |
| 766<br>767<br>768<br>769 | <u>25.</u>       | Utama IMS, Lukman N, Sukmawati DD, Alisjahbana B, Alam A, Murniati D, et al. Dengue<br>viral infection in Indonesia: Epidemiology, diagnostic challenges, and mutations from<br>an observational cohort study. Messer WB, editor. PLoS Negl Trop Dis. 2019;13:<br>e0007785. doi:10.1371/journal.pntd.0007785 | Form | <b>atted:</b> Fo | nt: Calibri, | English ( | United K | ingdom) |
| 770<br>771<br>772<br>773 | <u>26.</u>       | Kosasih H, Alisjahbana B, Nurhayati null, de Mast Q, Rudiman IF, Widjaja S, et al. The<br>Epidemiology, Virology and Clinical Findings of Dengue Virus Infections in a Cohort of<br>Indonesian Adults in Western Java. PLoS Negl Trop Dis. 2016;10: e0004390.<br>doi:10.1371/journal.pntd.0004390            |      |                  |              |           |          |         |
| 774<br>775<br>776<br>777 | <u>27.</u>       | Pranata IWA, Diana A, Heryanto MR, Lukman N, Kosasih H, Djauhari H, et al.<br>Persistence of anti-Salmonella O9 IgM as measured by Tubex® TF may contribute to<br>the over-diagnosis of typhoid fever in endemic areas. Bali Med J. 2022;11: 11.<br>doi:10.15562/bmj.v11i1.3035                              |      |                  |              |           |          |         |
| 778<br>779<br>780        | <u>28.</u>       | Zeng Z, Zhan J, Chen L, Chen H, Cheng S. Global, regional, and national dengue burden<br>from 1990 to 2017: A systematic analysis based on the global burden of disease study<br>2017. EClinicalMedicine. 2021;32: 100712. doi:10.1016/j.eclinm.2020.100712                                                  |      |                  |              |           |          |         |
| 781<br>782<br>783        | <u>29.</u>       | Harapan H, Michie A, Yohan B, Shu P-Y, Mudatsir M, Sasmono RT, et al. Dengue viruses<br>circulating in Indonesia: A systematic review and phylogenetic analysis of data from<br>five decades. Rev Med Virol. 2019;29: e2037. doi:10.1002/rmv.2037                                                            |      |                  |              |           |          |         |

| 30.                      | Harapan H, Michie A, Mudatsir M, Sasmono RT, Imrie A. Epidemiology of dengue                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                          | hemorrhagic fever in Indonesia: analysis of five decades data from the National Disease<br>Surveillance. BMC Res Notes. 2019;12: 350. doi:10.1186/s13104-019-4379-9                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| <u>31.</u>               | Kosasih H, Roselinda null, Nurhayati null, Klimov A, Xiyan X, Lindstrom S, et al.<br>Surveillance of influenza in Indonesia, 2003–2007. Influenza Other Respir Viruses.<br>2013;7: 312–320. doi:10.1111/j.1750-2659.2012.00403.x                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| <u>32.</u>               | Kosasih H, Widjaja S, Surya E, Hadiwijaya SH, Butarbutar DPR, Jaya UA, et al. Evaluation<br>of two IgM rapid immunochromatographic tests during circulation of Asian lineage<br>Chikungunya virus. Southeast Asian J Trop Med Public Health. 2012;43: 55–61.                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| <u>33.</u>               | Centers for Disease Control and Prevention. Influenza (Flu). Guidance: Use of Rapid<br>Diagnostic Test. 2016. Available:<br>https://www.cdc.gov/flu/professionals/diagnosis/clinician_guidance_ridt.htm#:~:text=<br>Sensitivities%20of%20RIDTs%20are%20generally,commonly%20than%20false%20posit<br>ive%20results.     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| <u>34.</u>               | Chaterji S, Allen JC, Chow A, Leo Y-S, Ooi E-E. Evaluation of the NS1 rapid test and the WHO dengue classification schemes for use as bedside diagnosis of acute dengue fever in adults. Am J Trop Med Hyg. 2011;84: 224–228. doi:10.4269/ajtmh.2011.10-0316                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| <u>35</u> .              | Gonzalez MD, Chao T, Pettengill MA. Modern Blood Culture: Management Decisions<br>and Method Options. Clin Lab Med. 2020;40: 379–392. doi:10.1016/j.cll.2020.07.001                                                                                                                                                    | Formatted: Font: Calibri, English (United Kingdom)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| <del>22</del> 3(         | Brisse S, Stefani S, Verhoef J, Van Belkum A, Vandamme P, Goessens W. Comparative<br>evaluation of the BD Phoenix and VITEK 2 automated instruments for identification of<br>isolates of the Burkholderia cepacia complex. J Clin Microbiol. 2002;40: 1743–1748.<br>doi:10.1128/JCM.40.5.1743-1748.2002                | Formatted: Font: Calibri, English (United Kingdom)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| <del>23</del> 3]         | Z. World Health Organization. Global antimicrobial resistance surveillance system:<br>manual for early implementation. 2015. Available: http://www.who.int/antimicrobial-<br>resistance/publications/surveillance-system-manual/en/                                                                                    | Formatted: Font: Calibri, English (United Kingdom)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| <del>2</del> 4 <u>38</u> | Vincent J-L, Marshall JC, Namendys-Silva SA, François B, Martin-Loeches I, Lipman J,<br>et al. Assessment of the worldwide burden of critical illness: the intensive care over<br>nations (ICON) audit. Lancet Respir Med. 2014;2: 380–386. doi:10.1016/S2213-<br>2600(14)70061-X                                      | Formatted: Font: Calibri, English (United Kingdom)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| <del>25</del> 39         | 2. Fleischmann C, Scherag A, Adhikari NKJ, Hartog CS, Tsaganos T, Schlattmann P, et al.<br>Assessment of Global Incidence and Mortality of Hospital-treated Sepsis. Current<br>Estimates and Limitations. Am J Respir Crit Care Med. 2016;193: 259–272.<br>doi:10.1164/rccm.201504-07810C                              | Formatted: Font: Calibri, English (United Kingdom)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| <del>26.</del>           | Utama IMS, Lukman N, Sukmawati DD, Alisjahbana B, Alam A, Murniati D, et al.<br><u>40</u> Dengue viral infection in Indonesia: Epidemiology, diagnostic challenges, and<br>mutations from an observational cohort study. Messer WB, editor. PLoS Negl Trop Dis.<br>2019;13: e0007785. doi:10.1371/journal.pntd.0007785 | Formatted: Font: Calibri, English (United Kingdom)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                          | 31.         32.         33.         34.         35.         2231         2232         2431         2531                                                                                                                                                                                                                | <ul> <li>Surveillance. BMC Res Notes. 2019;12: 350. doi:10.1186/s13104-019-4379-9</li> <li>Kosasih H, Roselinda null, Nurhavati null, Klimov A, Xiyan X, Lindstrom S, et al.<br/>Surveillance of influenza in Indonesia, 2003–2007. Influenza Other Respir Viruses.<br/>2013;7: 312–320. doi:10.1111/j.1750-2659.2012.00403.x</li> <li>Kosasih H, Widiaja S, Surva E, Hadiwijaya SH, Butarbutar DPR, Jaya UA, et al. Evaluation<br/>of two IgM rapid immunochromatographic tests during circulation of Asian lineage<br/>Chikungunya virus. Southeast Asian J Trop Med Public Health. 2012;43: 55–61.</li> <li>Centers for Disease Control and Prevention. Influenza (Flu). Guidance: Use of Rapid<br/>Diagnostic Test. 2016. Available:<br/>https://www.cdc.gov/flu/professionals/diagnosis/clinician_guidance_ridt.htm#:::text=<br/>Sensitivities%20of%20RIDTs%20are%20generally.commonly%20than%20false%20posit<br/>ive%20results.</li> <li>Chaterji S, Allen JC, Chow A, Leo Y-S, Ooi E-E. Evaluation of the NS1 rapid test and the<br/>WHO dengue classification schemes for use as bedside diagnosis of acute dengue fever<br/>in adults. Am J Trop Med Hyg. 2011;84: 224–228. doi:10.4269/ajtmh.2011.10-0316</li> <li>Gonzalez MD, Chao T, Pettengill MA. Modern Blood Culture: Management Decisions<br/>and Method Options. Clin Lab Med. 2020;40: 379–392. doi:10.1016/j.cll.2020.07.001</li> <li>Evaluation of the BD Phoenix and VITEK 2 automated instruments for identification of<br/>evaluation of the BD Phoenix and VITEK 2 automated instruments for identification of<br/>isolates of the Burkholderia cepacia complex. J Clin Microbial. 2002;40: 1743–1748.<br/>doi:10.1128/JCM.40.5.1743-1748.2002</li> <li>World Health Organization. Global antimicrobial resistance surveillance system:<br/>manual for early implementation. 2015. Available: http://www.who.int/antimicrobial-<br/>resistance/publications/surveillance-system-manual/en/</li> <li>Sigo Vincent J-L, Marshall JC, Namendys-Siiva SA, François B, Martin-Loeches I, Lipman J,<br/>et al. Assessment of the worldwide burden of critical illness: the intensive care</li></ul> |

| 822               | 27. Trunfio M, Savoldi A, Viganò O, d'Arminio Monforte A. Bacterial coinfections in dengue                                                                                                                                                                                | Formatted: Font: Calibri, English (United Kingdom) |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| 823<br>824        | virus disease: what we know and what is still obscure about an emerging concern.<br>Infection. 2017;45: 1–10. doi:10.1007/s15010-016-0927-6                                                                                                                               |                                                    |
| 825<br>826<br>827 | 2841. Thein T-L, Ng E-L, Yeang MS, Leo Y-S, Lye DC. Risk factors for concurrent bacteremia<br>in adult patients with dengue. J Microbiol Immunol Infect. 2017;50: 314–320.<br>doi:10.1016/j.jmii.2015.06.008                                                              |                                                    |
| 828<br>829<br>830 | 42.See KC, Phua J, Yip HS, Yeo LL, Lim TK. Identification of concurrent bacterial infection in<br>adult patients with dengue. Am J Trop Med Hyg. 2013;89: 804–810.<br>doi:10.4269/ajtmh.13-0197                                                                           |                                                    |
| 831<br>832        | 43. Sudjana P, Jusuf H. Concurrent dengue hemorrhagic fever and typhoid fever infection<br>in adult: case report. Southeast Asian J Trop Med Public Health. 1998;29: 370–372.                                                                                             |                                                    |
| 833               | 44. Lee A, Mirrett S, Reller LB, Weinstein MP. Detection of Bloodstream Infections in                                                                                                                                                                                     | Formatted: Font: Calibri, English (United Kingdom) |
| 834<br>835        | Adults: How Many Blood Cultures Are Needed? J Clin Microbiol. 2007;45: 3546–3548.<br>doi:10.1128/JCM.01555-07                                                                                                                                                             |                                                    |
| 836               | 2945. Wilson ML, Clinical and Laboratory Standards Institute. Principles and procedures for                                                                                                                                                                               | Formatted: Font: Calibri, English (United Kingdom) |
| 837<br>838        | blood cultures: approved guideline. Wayne, Pa.: Clinical and Laboratory Standards Institute; 2007.                                                                                                                                                                        |                                                    |
| 839               | 3046. Murni IK, Duke T, Daley AJ, Kinney S, Soenarto Y. True Pathogen or Contamination:                                                                                                                                                                                   | Formatted: Font: Calibri, English (United Kingdom) |
| 840<br>841        | Validation of Blood Cultures for the Diagnosis of Nosocomial Infections in a Developing Country. J Trop Pediatr. 2018;64: 389–394. doi:10.1093/tropej/fmx081                                                                                                              |                                                    |
| 0.40              |                                                                                                                                                                                                                                                                           |                                                    |
| 842<br>843<br>844 | <ul> <li>3147. Rhodes J, Jorakate P, Makprasert S, Sangwichian O, Kaewpan A, Akarachotpong T, et al. Population-based bloodstream infection surveillance in rural Thailand, 2007–2014.</li> <li>BMC Public Health. 2019;19: 521. doi:10.1186/s12889-019-6775-4</li> </ul> | Formatted: Font: Calibri, English (United Kingdom) |
| 845               | 3248. Chang C-J, Wu C-J, Hsu H-C, Wu C-H, Shih F-Y, Wang S-W, et al. Factors Associated                                                                                                                                                                                   | Formatted: Font: Calibri, English (United Kingdom) |
| 846<br>847<br>848 | with Blood Culture Contamination in the Emergency Department: Critical Illness, End-<br>Stage Renal Disease, and Old Age. Lazzeri C, editor. PLOS ONE. 2015;10: e0137653.<br>doi:10.1371/journal.pone.0137653                                                             |                                                    |
| 849               | 3349. Scheer CS, Fuchs C, Gründling M, Vollmer M, Bast J, Bohnert JA, et al. Impact of                                                                                                                                                                                    | Formatted: Font: Calibri, English (United Kingdom) |
| 850<br>851<br>852 | antibiotic administration on blood culture positivity at the beginning of sepsis: a prospective clinical cohort study. Clin Microbiol Infect. 2019;25: 326–331. doi:10.1016/j.cmi.2018.05.016                                                                             |                                                    |
| 853               | 3450. Rand KH, Beal SG, Rivera K, Allen B, Payton T, Lipori GP. Hourly Effect of                                                                                                                                                                                          | Formatted: Font: Calibri, English (United Kingdom) |
| 854<br>855        | Pretreatment With IV Antibiotics on Blood Culture Positivity Rate in Emergency<br>Department Patients. Open Forum Infect Dis. 2019;6: ofz179. doi:10.1093/ofid/ofz179                                                                                                     |                                                    |
| 856               | 3551. Limato R, Nelwan EJ, Mudia M, de Brabander J, Guterres H, Enty E, et al. A                                                                                                                                                                                          | Formatted: Font: Calibri, English (United Kingdom) |
| 857<br>858<br>859 | multicentre point prevalence survey of patterns and quality of antibiotic prescribing in<br>Indonesian hospitals. JAC-Antimicrob Resist. 2021;3: dlab047.<br>doi:10.1093/jacamr/dlab047                                                                                   |                                                    |
|                   |                                                                                                                                                                                                                                                                           |                                                    |

| 860        | 3652. She RC, Bender JM. Advances in Rapid Molecular Blood Culture Diagnostics:                                                                | Formatted: Font: Calibri, English (United Kingdom) |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| 861<br>862 | Healthcare Impact, Laboratory Implications, and Multiplex Technologies. J Appl Lab<br>Med. 2019;3: 617–630. doi:10.1373/jalm.2018.027409       |                                                    |
| 863        | 3753. Harris AM, Bramley AM, Jain S, Arnold SR, Ampofo K, Self WH, et al. Influence of                                                         | Formatted: Font: Calibri, English (United Kingdom) |
| 864        | Antibiotics on the Detection of Bacteria by Culture-Based and Culture-Independent                                                              | (,                                                 |
| 865<br>866 | Diagnostic Tests in Patients Hospitalized With Community-Acquired Pneumonia. Open<br>Forum Infect Dis. 2017;4: ofx014. doi:10.1093/ofid/ofx014 |                                                    |
| 867        | 3854. Jones GR, Lowes JA. The systemic inflammatory response syndrome as a predictor of                                                        | Formatted: Font: Calibri, English (United Kingdom) |
| 868        | bacteraemia and outcome from sepsis. QJM. 1996;89: 515–522.                                                                                    | (,                                                 |
| 869        | doi:10.1093/qjmed/89.7.515                                                                                                                     |                                                    |
| 870        | 3955. Shapiro NI, Wolfe RE, Wright SB, Moore R, Bates DW. Who needs a blood culture? A                                                         | Formatted: Font: Calibri, English (United Kingdom) |
| 871<br>872 | prospectively derived and validated prediction rule. J Emerg Med. 2008;35: 255–264. doi:10.1016/j.jemermed.2008.04.001                         |                                                    |
| 873        | 40 <u>56</u> . Seymour CW, Liu VX, Iwashyna TJ, Brunkhorst FM, Rea TD, Scherag A, et al.                                                       | Formatted: Font: Calibri, English (United Kingdom) |
| 874        | Assessment of Clinical Criteria for Sepsis: For the Third International Consensus                                                              |                                                    |
| 875        | Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA. 2016;315: 762.                                                                       |                                                    |
| 876        | doi:10.1001/jama.2016.0288                                                                                                                     |                                                    |
| 877        | 4157. Ombelet S, Barbé B, Affolabi D, Ronat J-B, Lompo P, Lunguya O, et al. Best Practices                                                     | Formatted: Font: Calibri, English (United Kingdom) |
| 878        | of Blood Cultures in Low- and Middle-Income Countries. Front Med. 2019;6: 131.                                                                 |                                                    |
| 879        | doi:10.3389/fmed.2019.00131                                                                                                                    |                                                    |
| 880        | 4258. Seigel TA, Cocchi MN, Salciccioli J, Shapiro NI, Howell M, Tang A, et al. Inadequacy of                                                  | Formatted: Font: Calibri, English (United Kingdom) |
| 881        | Temperature and White Blood Cell Count in Predicting Bacteremia in Patients with                                                               |                                                    |
| 882        | Suspected Infection. J Emerg Med. 2012;42: 254–259.                                                                                            |                                                    |
| 883        | doi:10.1016/j.jemermed.2010.05.038                                                                                                             |                                                    |
| 884        | 4359. Ochiai RL. a study of typhoid fever in five Asian countries: disease burden and                                                          | Formatted: Font: Calibri, English (United Kingdom) |
| 885        | implications for controls. Bull World Health Organ. 2008;86: 260–268.                                                                          |                                                    |
| 886        | doi:10.2471/BLT.06.039818                                                                                                                      |                                                    |
| 887        | 44 <u>60</u> . Nuruzzaman H, Syahrul F. Risk Analysis of Typhoid Fever Based on Personal Hygiene                                               | Formatted: Font: Calibri, English (United Kingdom) |
| 888        | and Street Food Consumption Habit at Home. J Berk Epidemiol. 2016;4: 74–86.                                                                    |                                                    |
| 889        | 45 <u>61</u> . Mogasale V, Ramani E, Mogasale VV, Park J. What proportion of Salmonella Typhi                                                  | Formatted: Font: Calibri, English (United Kingdom) |
| 890        | cases are detected by blood culture? A systematic literature review. Ann Clin Microbiol                                                        |                                                    |
| 891        | Antimicrob. 2016;15: 32. doi:10.1186/s12941-016-0147-z                                                                                         |                                                    |
| 892        | 4662. Andrews JR, Ryan ET. Diagnostics for invasive Salmonella infections: Current                                                             | Formatted: Font: Calibri, English (United Kingdom) |
| 893        | challenges and future directions. Vaccine. 2015;33: C8–C15.                                                                                    |                                                    |
| 894        | doi:10.1016/j.vaccine.2015.02.030                                                                                                              |                                                    |
| 895        | 4763. Keddy K, Sooka A, Letsoalo M, Hoyland G, Chaignat CL, Morrissey A, et al. Sensitivity                                                    | Formatted: Font: Calibri, English (United Kingdom) |
| 896        | and specificity of typhoid fever rapid antibody tests for laboratory diagnosis at two                                                          | ,                                                  |

| 897<br>898               | sub-Saharan African sites. Bull World Health Organ. 2011;89: 640–647.<br>doi:10.2471/BLT.11.087627                                                                                                                                                                                                                                      |                                                                                                          |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| 899<br>900<br>901<br>902 | <ul> <li>Hardjo Lugito NP, Cucunawangsih. Antimicrobial Resistance of Salmonella enterica<br/>Serovars Typhi and Paratyphi Isolates from a General Hospital in Karawaci, Tangerang,<br/>Indonesia: A Five-Year Review. Int J Microbiol. 2017;2017: 1–7.<br/>doi:10.1155/2017/6215136</li> </ul>                                         | Formatted: Font: Calibri, English (United Kingdom)                                                       |
| 903<br>904<br>905<br>906 | 49 <u>65</u> . Chiou C-S, Lauderdale T-L, Phung DC, Watanabe H, Kuo J-C, Wang P-J, et al.<br>Antimicrobial Resistance in Salmonella enterica Serovar Typhi Isolates from<br>Bangladesh, Indonesia, Taiwan, and Vietnam. Antimicrob Agents Chemother. 2014;58:<br>6501–6507. doi:10.1128/AAC.03608-14                                    | Formatted: Font: Calibri, English (United Kingdom)                                                       |
| 907<br>908<br>909        | 66. Punjabi NH, Agtini MD, Ochiai RL, Simanjuntak CH, Lesmana M, Subekti D, et al. Enteric<br>fever burden in North Jakarta, Indonesia: a prospective, community-based study. J<br>Infect Dev Ctries. 2013;7: 781–787. doi:10.3855/jidc.2629                                                                                            | Formatted: Font: Calibri, English (United Kingdom)                                                       |
| 910<br>911<br>912<br>913 | 50 <u>67</u> — Chiou C-S, Lauderdale T-L, Phung DC, Watanabe H, Kuo J-C, Wang P-J, et al.<br>Antimicrobial Resistance in Salmonella enterica Serovar Typhi Isolates from<br>Bangladesh, Indonesia, Taiwan, and Vietnam. Antimicrob Agents Chemother. 2014;58:<br>6501–6507. doi:10.1128/AAC.03608-14                                    | Formatted: Font: Calibri, English (United Kingdom)                                                       |
| 914<br>915<br>916<br>917 | 51. Crump JA, Sjölund-Karlsson M, Gordon MA, Parry CM. Epidemiology, Clinical<br>Presentation, Laboratory Diagnosis, Antimicrobial Resistance, and Antimicrobial<br>Management of Invasive Salmonella Infections. Clin Microbiol Rev. 2015;28: 901–937.<br>doi:10.1128/CMR.00002-15                                                     | Formatted: Font: Calibri, English (United Kingdom)                                                       |
| 918<br>919<br>920<br>921 | <ul> <li>5268. Abernethy J, Guy R, Sheridan EA, Hopkins S, Kiernan M, Wilcox MH, et al.<br/>Epidemiology of Escherichia coli bacteraemia in England: results of an enhanced<br/>sentinel surveillance programme. J Hosp Infect. 2017;95: 365–375.<br/>doi:10.1016/j.jhin.2016.12.008</li> </ul>                                         | Formatted: Font: Calibri, English (United Kingdom)                                                       |
| 922<br>923<br>924<br>925 | 5369. Bou-Antoun S, Davies J, Guy R, Johnson AP, Sheridan EA, Hope RJ. Descriptive<br>epidemiology of Escherichia coli bacteraemia in England, April 2012 to March 2014.<br>Euro Surveill Bull Eur Sur Mal Transm Eur Commun Dis Bull-Eurosurveillance, 2016;21.<br>doi:10.2807/1560-7917.ES.2016.21.35.30329                           | Formatted: Font: Calibri, English (United Kingdom) Formatted: Font: Calibri, English (United Kingdom)    |
| 926<br>927<br>928<br>929 | 54 <u>70</u> . Williamson DA, Lim A, Wiles S, Roberts SA, Freeman JT. Population-based incidence<br>and comparative demographics of community-associated and healthcare-associated<br>Escherichia coli bloodstream infection in Auckland, New Zealand, 2005- <u>2011. BMC</u><br>Infect Dis. 2013;13: 385. doi:10.1186/1471-2334-13-385 | Formatted: Font: Calibri, English (United Kingdom)<br>Formatted: Font: Calibri, English (United Kingdom) |
| 930<br>931<br>932<br>033 | 5571. Diekema DJ, Hsueh P-R, Mendes RE, Pfaller MA, Rolston KV, Sader HS, et al. The<br>Microbiology of Bloodstream Infection: 20-Year Trends from the SENTRY Antimicrobial<br>Surveillance Program. Antimicrob Agents Chemother. 2019;63.                                                                                              | Formatted: Font: Calibri, English (United Kingdom)                                                       |

933 doi:10.1128/AAC.00355-19

| 934               | 5672. Peirano G, Pitout JDD. Extended-Spectrum β-Lactamase-Producing                                                                                                                               |   | Formatted: Font: Calibri, English (United Kingdom) |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|----------------------------------------------------|
| 935<br>936        | Enterobacteriaceae: Update on Molecular Epidemiology and Treatment Options.<br>Drugs. 2019;79: 1529–1541. doi:10.1007/s40265-019-01180-3                                                           |   |                                                    |
| 937               | 5773. Dahesihdewi A, Sugianli AK, Parwati I. The surveillance of antibiotics resistance in                                                                                                         |   | Formatted: Font: Calibri, English (United Kingdom) |
| 938               | Indonesia: a current reports. Bali Med J. 2019;8: 565. doi:10.15562/bmj.v8i2.1386                                                                                                                  |   |                                                    |
| 939               | 5874. Lestari ES, Severin JA, Filius PMG, Kuntaman K, Duerink DO, Hadi U, et al.                                                                                                                   | _ | Formatted: Font: Calibri, English (United Kingdom) |
| 940               | Antimicrobial resistance among commensal isolates of Escherichia coli and                                                                                                                          |   |                                                    |
| 941<br>942        | Staphylococcus aureus in the Indonesian population inside and outside hospitals. Eur J<br>Clin Microbiol Infect Dis. 2007;27: 45–51. doi:10.1007/s10096-007-0396-z                                 |   |                                                    |
| 943               | 5975. van Hal SJ, Jensen SO, Vaska VL, Espedido BA, Paterson DL, Gosbell IB. Predictors of                                                                                                         |   | Formatted: Font: Calibri, English (United Kingdom) |
| 944<br>945        | Mortality in Staphylococcus aureus Bacteremia. Clin Microbiol Rev. 2012;25: 362–386. doi:10.1128/CMR.05022-11                                                                                      |   |                                                    |
| 946               | 6076. Hansen M-LU, Gotland N, Mejer N, Petersen A, Larsen AR, Benfield T, et al. Diabetes                                                                                                          |   | Formatted: Font: Calibri, English (United Kingdom) |
| 947<br>948<br>949 | increases the risk of disease and death due to <i>Staphylococcus aureus</i> bacteremia. A matched case-control and cohort study. Infect Dis. 2017;49: 689–697. doi:10.1080/23744235.2017.1331463   |   |                                                    |
| 950               | 6177. Schopfer K, Feldges A, Baerlocher K, Parisot RF, Wilhelm JA, Matter L. Systemic lupus                                                                                                        |   | Formatted: Font: Calibri, English (United Kingdom) |
| 951<br>952        | erythematosus in Staphylococcus aureus hyperimmunoglobulinaemia E syndrome.<br>BMJ. 1983;287: 524–526. doi:10.1136/bmj.287.6391.524                                                                |   |                                                    |
| 953               | 6278. Battaglia M, Garrett-Sinha LA. Bacterial infections in lupus: Roles in promoting                                                                                                             |   | Formatted: Font: Calibri, English (United Kingdom) |
| 954<br>955        | immune activation and in pathogenesis of the disease. J Transl Autoimmun. 2021;4: 100078. doi:10.1016/j.jtauto.2020.100078                                                                         |   |                                                    |
| 956               | 6379. Sirobhushanam S, Parsa N, Reed TJ, Berthier CC, Sarkar MK, Hile GA, et al.                                                                                                                   |   | Formatted: Font: Calibri, English (United Kingdom) |
| 957<br>958<br>959 | Staphylococcus aureus Colonization Is Increased on Lupus Skin Lesions and Is Promoted by IFN-Mediated Barrier Disruption. J Invest Dermatol. 2020;140: 1066-1074.e4. doi:10.1016/j.jid.2019.11.016 |   |                                                    |
| 060               | (480 Sang LU, Usuah D. D. Chung DD. Ka KS, Kang C. L. Dask KD, at al. Saraad of mathicillin                                                                                                        |   |                                                    |
| 960<br>961        | 6480. Song J-H, Hsueh P-R, Chung DR, Ko KS, Kang C-I, Peck KR, et al. Spread of methicillin-<br>resistant Staphylococcus aureus between the community and the hospitals in Asian                   |   | Formatted: Font: Calibri, English (United Kingdom) |
| 962               | countries: an ANSORP study. J Antimicrob Chemother. 2011;66: 1061–1069.                                                                                                                            |   |                                                    |
| 963               | doi:10.1093/jac/dkr024                                                                                                                                                                             |   |                                                    |
| 964               | 6581. Chuang Y-Y, Huang Y-C. Molecular epidemiology of community-associated meticillin-                                                                                                            | _ | Formatted: Font: Calibri, English (United Kingdom) |
| 965<br>966        | resistant Staphylococcus aureus in Asia. Lancet Infect Dis. 2013;13: 698–708.<br>doi:10.1016/S1473-3099(13)70136-1                                                                                 |   |                                                    |
| 967               | 6682, Kuntaman K, Hadi U, Setiawan F, Koendori EB, Rusli M, Santosaningsih D, et al.                                                                                                               |   | Formatted: Font: Calibri, English (United Kingdom) |
| 968               | PREVALENCE OF METHICILLIN RESISTANT STAPHYLOCOCCUS AUREUS FROM NOSE AND                                                                                                                            |   |                                                    |
| 969               | THROAT OF PATIENTS ON ADMISSION TO MEDICAL WARDS OF DR SOETOMO                                                                                                                                     |   |                                                    |
| 970<br>971        | HOSPITAL, SURABAYA, INDONESIA. Prevalence of methicillin resistant <i>Staphylococcus</i><br>aureus from nose and throat of patients on admission to medical wards of Dr Soetomo                    |   |                                                    |
| P/1               | utreus nom nose and throat of patients on admission to medical Wards of Dr Soetomo                                                                                                                 |   |                                                    |

| 972        | Hospital, Surabaya, Indonesia, Southeast Asian J Trop Med Public Health. 2016;47: 66–          | Formatted: Font: Calibri, English (United Kingdom) |
|------------|------------------------------------------------------------------------------------------------|----------------------------------------------------|
| 973        | 70.                                                                                            |                                                    |
| 974        | 6783. Santosaningsih D, Santoso S, Budayanti NS, Suata K, Lestari ES, Wahjono H, et al.        | Formatted: Font: Calibri, English (United Kingdom) |
| 975        | Characterisation of clinical Staphylococcus aureus isolates harbouring mecA or Panton-         |                                                    |
| 976        | Valentine leukocidin genes from four tertiary care hospitals in Indonesia. Trop Med Int        |                                                    |
| 977        | Health. 2016;21: 610–618. doi:10.1111/tmi.12692                                                |                                                    |
| 978        | 6884. Korsgaard J, Møller JK, Kilian M. Antibiotic treatment and the diagnosis of              | Formatted: Font: Calibri, English (United Kingdom) |
| 979        | Streptococcus pneumoniae in lower respiratory tract infections in adults. Int J Infect         |                                                    |
| 980        | Dis. 2005;9: 274–279. doi:10.1016/j.ijid.2004.07.013                                           |                                                    |
| 981        | 6985. Regalado NG, Martin G, Antony SJ. Acinetobacter Iwoffii: Bacteremia associated with      | Formatted: Font: Calibri, English (United Kingdom) |
| 982        | acute gastroenteritis. Travel Med Infect Dis. 2009;7: 316–317.                                 | Formatted: Pont. Calibri, English (Onited Kingdom) |
| 983        | doi:10.1016/j.tmaid.2009.06.001                                                                |                                                    |
| 705        | d0.10.1010/j.tmdd.2003.00.001                                                                  |                                                    |
| 984        | 7086. Van Boeckel TP, Brower C, Gilbert M, Grenfell BT, Levin SA, Robinson TP, et al. Global   | Formatted: Font: Calibri, English (United Kingdom) |
| 985        | trends in antimicrobial use in food animals. Proc Natl Acad Sci. 2015;112: 5649–5654.          |                                                    |
| 986        | doi:10.1073/pnas.1503141112                                                                    |                                                    |
| 987        | 7187. Hadi U, Duerink DO, Lestari ES, Nagelkerke NJ, Werter S, Keuter M, et al. Survey of      |                                                    |
| 987<br>988 | antibiotic use of individuals visiting public healthcare facilities in Indonesia. Int J Infect | Formatted: Font: Calibri, English (United Kingdom) |
| 989        | Dis. 2008;12: 622–629. doi:10.1016/j.ijid.2008.01.002                                          |                                                    |
| ,0,        | bis. 2000,12. 022 025. doi:10.1010/j.iju.2000.01.002                                           |                                                    |
| 990        | 7288. Kirn TJ, Weinstein MP. Update on blood cultures: how to obtain, process, report, and     | Formatted: Font: Calibri, English (United Kingdom) |
| 991        | interpret. Clin Microbiol Infect. 2013;19: 513-520. doi:10.1111/1469-0691.12180                |                                                    |
| 992        | 7389. Bartlett JG, Dick J. The controversy regarding routine anaerobic blood cultures. Am J    | Formattad Fort Calibri Forlick (United Kingdom)    |
| 992<br>993 | Med. 2000;108: 505–506. doi:10.1016/S0002-9343(00)00321-1                                      | Formatted: Font: Calibri, English (United Kingdom) |
| 275        | MCa. 2000,100, 303–300, doi:10.1010/30005-3343(00)00351-1                                      |                                                    |
| 994        | 7490. Lafaurie M, d'Anglejan E, Donay JL, Glotz D, Sarfati E, Mimoun M, et al. Utility of      | Formatted: Font: Calibri, English (United Kingdom) |
| 995        | anaerobic bottles for the diagnosis of bloodstream infections. BMC Infect Dis. 2020;20:        |                                                    |
| 996        | 142. doi:10.1186/s12879-020-4854-x                                                             |                                                    |
|            |                                                                                                |                                                    |

#### Comments to the Author

1. Is the manuscript technically sound, and do the data support the conclusions?

The manuscript must describe a technically sound piece of scientific research with data that supports the conclusions. Experiments must have been conducted rigorously, with appropriate controls, replication, and sample sizes. The conclusions must be drawn appropriately based on the data presented. Reviewer #1: Yes Reviewer #2: Yes

2. Has the statistical analysis been performed appropriately and rigorously? Reviewer #1: Yes Reviewer #2: Yes

3. Have the authors made all data underlying the findings in their manuscript fully available?

The PLOS Data policy requires authors to make all data underlying the findings described in their manuscript fully available without restriction, with rare exception (please refer to the Data Availability Statement in the manuscript PDF file). The data should be provided as part of the manuscript or its supporting information, or deposited to a public repository. For example, in addition to summary statistics, the data points behind means, medians and variance measures should be available. If there are restrictions on publicly sharing data—e.g. participant privacy or use of data from a third party—those must be specified. Reviewer #1: Yes Reviewer #2: Yes

4. Is the manuscript presented in an intelligible fashion and written in standard English?

PLOS ONE does not copyedit accepted manuscripts, so the language in submitted articles must be clear, correct, and unambiguous. Any typographical or grammatical errors should be corrected at revision, so please note any specific errors here. Reviewer #1: Yes Reviewer #2: No

5. Review Comments to the Author

Please use the space provided to explain your answers to the questions above. You may also include additional comments for the author, including concerns about dual publication, research ethics, or publication ethics. (Please upload your review as an attachment if it exceeds 20,000 characters)

Reviewer #1: This compilation of data from different centers over many years is commendable. This highlights the issues faced in diagnostic microbiology in developing countries. It is an interesting paper with important observations and discussions. Some spellings need review and correction. Recommend to submit after corrections.

**Response**: Thank you very much for your comments, we really appreciate it. We have corrected the spelling errors.

Reviewer #2: The Characteristics of Bacteremia among Patients with Acute Febrile Illness Requiring Hospitalization in Indonesia.

Evaluation. This report addresses an important subject in Bacteriemia and Acute Febrile illness; i.e., the worrying trend of antimicrobial resistance in bacterial pathogens (Salmonella and Non Salmonella spp). It reports the frequency and distribution of bacterial pathogens in blood culture and its susceptibility pattern isolated from various specimens from a seven medical center in Indonesia, from which similar reports are scarce. Though it is better attempt by Soedarmono et al., to know information on bacteremia and other causative agent of Acute Febrile illeness in Indonesia.

**Response**: Thank you very much for your comments, we really appreciate it.

### Comments

1. Give rationale of the study? Why is NS1 antigen screening only performed? What about other viral agents related AFI?

**Response**: We have added more information regarding this issue in the Methods.

Lines 135-146 now read: During the baseline visit, blood was collected for cultures, clinically relevant rapid diagnostic tests when available, and dengue virus rapid diagnostic tests. Dengue virus infection remains a significant burden across Indonesia [28,29], with disease incidence increasing in recent years [30]. Though other viral agents are present in Indonesia, none are as prevalent as dengue virus [24,31], and most are challenging to diagnose due to limitations with available rapid diagnostic tests [32,33]. Given the widespread prevalence of dengue virus infection, and the very high specificity (almost 100%) and good sensitivity (70-87%) of NS1 antigen rapid diagnostic tests [34], we employed universal dengue virus screening to rapidly resolve the unknown etiologies of study participants. Participants with negative NS1 antigen tests were further considered for BSIs through blood culture tests and other etiologies, as determined through advanced testing at the INA-RESPOND reference laboratory.

2.Why you performed Blood culture 0f 1459 Cases? You have mentioned 1464 were enrolled? What about 5??

**Response**: We only performed blood culture for 1459 patients, as the remaining 5 subjects did not have enough blood for blood culture test.

Lines 207-210 now read: The remaining 5 participants had insufficient blood specimens for following reasons: 1 adult was in a severe condition (decreased of consciousness), 2 participants (1 child and 1 adult) self-discharged against medical advice, and the guardians of 2 children refused to allow more blood to be drawn.

3.At the end of introduction, please give some update of Acute Febrile illness and their epidemiology in Indonesia.

**Response**: Thank you very much for the suggestion. We have added some update of acute febrile illness and their epidemiology in Indonesia.

Lines 97-111 now read: The epidemiology of pathogens associated with fever in Indonesia is not well understood, as public health surveillance data is limited and only a few local studies have been conducted [19,21–26]. Among published studies, dengue virus, chikungunya virus, influenza virus, *Salmonella* Typhi, *Rickettsia spp.*, and *Leptospira spp*. are consistently the most common causes of acute febrile illness hospitalizations. A study in Papua from November 1997 to February 2000 enrolled 226 hospitalized patients that were negative for malaria, the majority of whom were determined to have typhoid fever (18%), leptospirosis (12%), rickettsioses (8%), and dengue fever (7%) [23]. An observational fever study in Bandung identified dengue virus in 12.4% of fever episodes, followed by *S*. Typhi (7.4%), and chikungunya virus (7.1%) [24,26,27]. A 2005-2006 study in Semarang found rickettsioses and leptospirosis in 7% and 10%, respectively, of 137 acute undifferentiated fever cases [21]. The parent study of the research presented here found the most prevalent pathogens among participants at eight hospitals in 7 major cities in Indonesia to be dengue virus (27-52%), *Rickettsia spp*. (2-12%), *S*. Typhi (0.9-13%), influenza virus (2-6%), *Leptospira spp*. (0-5%), and chikungunya virus (0-4%) [19].

4. Which are the hospitals included in the study, please mentions the name of hospitals.

**Response**: We have included the name of hospitals in the Methods.

Lines 121-127 now read: A prospective observational study enrolling febrile patients who required hospitalization was conducted by the Indonesia Research Partnership on Infectious Disease (INA-RESPOND) from July 2013 to June 2016 at eight major hospitals in seven provincial capitals in Indonesia: Dr. Cipto Mangunkusumo Hospital in Jakarta, Sulianti Saroso Infectious Disease Hospital in Jakarta, Dr. Wahidin Sudirohusodo Hospital in Makassar, Dr. Sardjito Hospital in Yogyakarta, Dr. Hasan Sadikin Hospital in Bandung, Sanglah General Hospital in Denpasar, Dr. Soetomo Hospital in Surabaya, and Dr. Kariadi Hospital, in Semarang.

5. How do you calculate sample size? Is it sufficient to draw conclusion regarding bacteremia (causative bacterial pathogens) in Indonesia?

**Response**: As this study was an observational study to find etiologies of acute febrile illness during a certain period of time (2013-2016), we did not specifically calculate the sample size for drawing the conclusion regarding bacteremia in Indonesia. Since we performed the analysis of blood culture results from almost all participants (>99% participants, approximately 100 adults and 100 children from each hospital), though cannot be generalizable to the Indonesian population at-large, we expected that the data will provide better understanding of the bacteremia in hospitalized population with fever and hopefully will lead to a reduction in mortality from BSIs.

6. What is your inclusion and exclusion criteria? Please mention Clearly.

**Response**: We have added the inclusion and exclusion criteria.

Lines 128-131 now read: Briefly, inclusion criteria consisted of axillary body temperature  $\geq$ 38°C,  $\geq$ 1 year of age, and hospitalization within the past 24 hours. Patients were excluded from the study if they had subjective fever for  $\geq$ 14 days or were hospitalized in the last 3 months.

7.Please give the ethical approval committee name and approval number and date.

**Response**: The name of the ethical approval committee and approval number had already provided under the "Ethical Clearance" (lines 197-203); and we have added the date.

Ethical approvals for the AFIRE study were granted by the Institutional Review Boards of the National Institute of Health Research and Development (NIHRD), Indonesia Ministry of Health (KE.01.05/EC/407/2012) dated 23 May 2012, the Faculty of Medicine at the University of Indonesia and RSUPN Dr. Cipto Mangunkusumo Hospital (451/PT02.FK/ETIK/2012) dated 23 July 2012, and RSUD Dr. Soetomo Hospital (192/Panke.KKE/VIII/2012) dated 13 August 2012.

8. How do assure the Quality controls and quality check of your results, either BD 135 Phoenix (Becton Dickinson) or VITEK 2 (bioMérieux, Inc., Durham, North Carolina), System?

**Response**: Blood culture tests were performed at the hospital's accredited clinical laboratory, which provides patient diagnostic services. All instruments and standards were calibrated appropriately according to manufacturer guidelines. Every site's laboratory performed quality control (QC) to ensure proper performance and sent the QC report to protocol team to be reviewed. All tests were run alongside appropriate positive and negative control to ensure the integrity and accuracy of the results. For example, QC for VITEK 2 system; each new lot number of ID cards is tested with stock culture organisms. Susceptibility cards are tested weekly against stock culture organisms.

The QC organisms uses as follows:

<u>Weekly:</u> AST-GP 67 cards *Enterococcus faecalis* ATCC 29212 AST-GN 66 cards *E. coli* ATCC 25922 non fermenter PSA ATCC 27853 fermenter *E. coli* ATCC 35218 non fermenter ID-NH cards *Elkenella corrodens* ATCC BAA-1152 <u>New Lots:</u> ID-GP cards

#### Enterococcus casseliflavis ATCC 700327 ID-GN cards Enterobacter hormechei (E.cloacae) ATCC 700323

Lines 163-171 now read: Blood cultures were performed and analyzed at the hospitals' nationally accredited clinical laboratories by trained, certified staff. All instruments and standards were calibrated appropriately according to manufacturer guidelines, and all tests were run alongside appropriate positive and negative control to ensure the integrity and accuracy of the results. Organism identification was considered acceptable when the confidence level in the automated growth identification system was ≥95% probability [34]. Quality control tests were performed weekly at all site laboratories, and each new lot of ID cards was tested using validated stocks of culture organisms.

9.What is the volume of blood sample collected and used in culture from children and adults?

**Response:** This is already stated in the text. Blood volumes of approximately 5-8 mL for adults and 1-3 mL for children were collected from each arm, whenever possible, directly into separate aerobic blood culture bottles (lines 150-152).

10.It is better to give numerator value after percentage values.

**Response**: We have changed the presentation throughout the manuscript.

11.Please give the full name of bacteria initially such as Staphylococcus aureus and then short form S. aureus and other bacteria throughout the manuscript.

Response: We have followed your suggestion.

12.Please mention the more information on infections with dengue virus and bacteremia in Indonesia.

**Response**: We found no dengue virus and bacteremia co-infection in our study, as mentioned in the Discussion. We have added more informations about dengue virus and bacteremia.

Lines 355-368 now read: Data on co-infections with dengue virus and bacteremia is limited. A literature review of published case reports and studies from January 1943 to March 2016 found 3 studies in Singapore and Taiwan reporting concurrent bacteremia in 0.18-7% of dengue fever cases [40–42]. A concurrent dengue virus and *S*. Typhi case was also reported from Bandung, Indonesia [43]. In all of these studies, blood was collected for bacterial culture because patients did not improve clinically a few days to a week after dengue fever was diagnosed. Furthermore, in the majority of cases, dengue virus infection was confirmed by serology only (IgM detected or four-fold IgG increase). These reports support our finding that simultaneous infection with bacteria and dengue virus is rare. In our study, bacterial growth observed in 14 participants with positive dengue NS1 antigen tests were considered false positive blood cultures (5 *Staphylococcus hominis*, 4 *Staphylococcus epidermidis*, 1

Kocuria rosea, 1 Micrococcus aureus, 1 Staphylococcus arlettae, 1 coagulase-negative Staphylococcus spp., and 1 Staphylococcus waneri).

13.Please corelate conclusion with your findings.

**Response:** Thank you very much, we have correlated our conclusion with our findings.

Lines 522-541 now read: We presented aerobic blood culture findings from a multi-centre study of patients with acute febrile illness admitted to eight major hospitals across Indonesia. Our universal use of aerobic blood cultures is unique in Indonesia, the results of which help clarify the epidemiology and burden of BSI, rates of contamination among CAI, and common AMR patterns in Indonesia. Bacteremia was observed in 8.9% participants, with the most frequent pathogens being Salmonella spp., E. coli, and S. aureus. Two Salmonella spp. cases had evidence of AMR, and several E. coli cases were multidrug resistant (42.9%) or monoresistant (14.3%). Culture contamination was observed in 3.6% cases. Our data suggest that blood cultures should be included as a routine diagnostic test, and pre-screening patients for the most common viral infections, such as dengue, influenza and chikungunya viruses, would conserve scarce resources without negatively impacting patient benefit. The routine practice of AMR susceptibility testing on positive blood cultures in Indonesia is encouraging and should be continued to inform clinical decisions on patient treatment in real-time. The country could benefit from clear guidance at the national level, particularly regarding the timing of blood collection prior to antibiotic administration, the prioritization of patients with comorbidities, blood collection practices to reduce environmental contamination, and the supplementation of blood cultures with molecular assays to combat false-negative results. Additionally, Indonesia could greatly benefit from a nationwide program for the systematic collection and dissemination of blood culture and AMR results.

6. PLOS authors have the option to publish the peer review history of their article (what does this mean?). If published, this will include your full peer review and any attached files.

If you choose "no", your identity will remain anonymous but your review may still be made public.

Do you want your identity to be public for this peer review? For information about this choice, including consent withdrawal, please see our Privacy Policy. Reviewer #1: Yes: Dr Shishir Gokhale Reviewer #2: No