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S1 Appendices 

Appendix A. Adhesion stress calculation 

To compute the adhesion stress, we consider a potential acting between an adhesion 

molecule and a receptor in the cell membrane. Here, we use a 6-3 potential: 
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where  D0  is the distance associated with the energy minimum and  u0  sets the magnitude of the 

binding energy. The force due to this single interaction is 
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where  f0 = 6u0/D0. As  D0  is the location of the energy minimum, we also see that  fadh(D0) = 0. 

We use D0 = 50 nm in our simulations. Realistically, one might expect this distance to be much 

smaller (molecular scale), but the longer range here effectively includes membrane fluctuations 

and filopodia and serves as an upper limit. Adhesion potentials with a range of tens to hundreds 

of nanometers are common when modeling cells and vesicles at the mesoscopic scale [1, 2]. 

To solve for the overall adhesion stress, we integrate over the ligand-coated surface 

(surface coordinates [r, θ] ) and the region of membrane being considered (surface coordinates  

[s, ψ] ) (Fig S1A). 

Fig S1. Adhesion force calculation.  

(A) The cell geometry is depicted from the side, as well as from the top, including definitions of coordinates used in 

the text. (B) Adhesion stress components are plotted as a function of arc length  s  for the cell shape shown in part A 

at a relative ligand density of 10%. 
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Individual interaction forces are specified as vectors, that is 
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The distance between a point on the membrane and a point on the surface is given by 

 2 2 2( , , , ) ( cos cos ) ( sin sin )m m mD r s r r r r z     = − + − +  (S4) 

The distance  zm  is adjusted from the  z  coordinate used elsewhere so that the surface  z = 0  

corresponds to the zero-force distance  D0, i.e.  zm = z + D0.  

The direction of the force is expressed by a unit vector (we only calculate the  r  and  z  

components, as the angular component cancels out due to symmetry) 
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Considering a region of the cell membrane extending from  s = scur – l/2  to  s = scur + l/2  along 

the arc length and from ψ = -Δψ/2  to  ψ = Δψ/2  in the angular direction, we compute the 

pairwise force by the total integral 
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where  ρl  is the ligand density on the substrate and  ρR  is the receptor density on the cell 

membrane. In practice, we lump  f0  and  ρR  into a single parameter  σ0 = f0ρR , which effectively 

serves as a force per unit area of cell membrane (see S7 Table).  

The stress per unit area of membrane is given by 
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In the limit  lΔψ → 0 , we obtain the final expression, as given in the main text 
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This integral is not readily carried out analytically. Therefore, we evaluate it numerically 

in MATLAB by performing trapezoidal integration in both dimensions, using log-spaced meshes 

for both  r  and  θ. Results of this integration are essentially identical to those of integration with 

MATLAB built-in functions, but computation time is reduced well over 10-fold. An example of 
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the adhesion stress components computed as a function of arc length 𝑠 along the cell contour 

defined in Fig S1A is shown in Fig S1B for  ρl = 10%. 

In practice, we modify the adhesion strength in simulations by varying the scaling factor  

σ0ρl , but we cannot directly extract the ligand density  ρl. Instead, we infer the adhesion energy 

per unit area  γ  from the equilibrium contact area  Ac  using simple geometry, conservation of 

volume, and the Young-Dupre equation, as explained in the main text. Using these estimated 

values of adhesion energy  γ(Ac)  and the typical binding energy of a low affinity Fcγ receptor to 

IgG (Ebind ≈ 6 × 10-20 J [3]), we estimate the IgG density  ρIgG,est  as 
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We perform a linear fit between  ρIgG,est  and the relative adhesion strength  ρl / ρl,max  to 

compute the effective IgG densities tested in our Brownian Zipper model (Fig S2B). From this 

fit, we find that  ρl = 10% roughly corresponds to  ρIgG,est = 1,000 μm-2. 

Fig S2. Relationship between estimated IgG density and model adhesion strength.  

A linear fit relates model adhesion strength to IgG density based on the equilibrium contact areas obtained from 

simulations. 
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Appendix B. Derivation of a power law for contact area growth in passive 

spreading 

To develop an approximate analytical prediction of the functional dependence of the 

contact area on time, we start from the overall energy balance for our passive model cell 

spreading on a flat surface with adhesion energy density  γ , analogous to the energy balance in 

the spreading of a viscous droplet [4]. After canceling a factor of 2π, this yields 
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where  rc  is the cell contact radius,  μ  is the effective cell viscosity,  eij  denotes the  i,j  

component of the rate-of-strain tensor (repeated indices are summed over),  τ  is the cortical 

tension, and  p  is the pressure inside the cell.  The left-hand side corresponds to energy gain due 

to cell-surface adhesion. The first term on the right-hand side is the viscous dissipation rate [5], 

the second term is the work required to deform the cortex, and the third is the change in energy 

due to changes in pressure and/or volume. In our simulations volume is kept constant, and any 

energy required for pressure changes is much lower than for changes of the surface area or 

tension; therefore, we neglect the last term of Eq (S10) in the following analysis. 

To estimate the remaining terms in the energy balance, we assume that the passively 

spreading cell adopts the shape of a spherical cap with contact radius  rc and radius of curvature  

Rcell (Fig S3A). This geometry defines the contact angle as: 
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We focus this analysis on initial contact area growth, during which the contact angle is small and 

we can treat  Rcell  as a constant. Based on this geometry and features of the calculated flow 

profile (Fig S3A inset), we estimate the viscous dissipation rate and work required to deform the 

cortex as follows. 

We first expand the dissipation term to include all non-zero components of the rate-of-

strain tensor (all derivatives with respect to the polar angle are zero given axial symmetry): 
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The main effect of the adhesion force is to “pull down” the membrane onto the flat surface; that 

is, the z-component of the adhesion stress generally dominates (Fig 1B). Accordingly, we expect  

vz  to dominate over  vr  in the portion of the cell closest to the substrate, which is confirmed by 

our calculations (Fig S3A inset). Furthermore, due to incompressibility, we know 
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r r z

 
+ + =
 

 (S13) 



5 

 

Therefore, if the contributions of  vr  are small,  ∂vz/∂z  must also be small, and we are left with: 
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Fig S3. Energy balance calculations.  

(A) Geometry of a spreading droplet during early spreading. The inset illustrates fluid velocities (arrows) at the 

boundary near the contact line as predicted by a typical Brownian zipper simulation. (B) Simplified geometry of a 

wedge used to represent a spreading droplet. The top panel defines variable used in the text. The bottom panel 

illustrates the manner of contact area growth implemented in our model. (C) Local dissipation per unit volume at the 

contact line for two early time points as computed by a Brownian zipper simulation at a ligand density of 10%. The 

dissipation is tightly confined to the point of contact. (D) Total viscous dissipation rate was directly computed using 

linear shape functions and plotted against rc
2 drc/dt on a log-log axis. Simulated values were binned and averaged for 

each interval on the x-axis. Error bars indicate standard deviation of binned data.  

As a test geometry for points near the surface, we consider a wedge-like shape, as shown 

in Fig S3B. The exact functional form of  vz  within this wedge cannot be readily inferred a 

priori. Instead, we identify characteristic length scales to estimate the velocity gradient. We 

expect the z-velocity to be highest close to the surface, that is, within the length scale set by the 

adhesion potential (D0). The associated distance in the r-direction  Δr  (Fig S3B) is given by:  
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Before estimating the velocity gradient, we relate  vz  to the rate of contact radius growth, 

drc/dt. Because there is no slip at the contact line itself, the only way for the contact area to 

increase is for nonadherent membrane to approach and touch the surface past the contact line. 

We consider a sample point close to the surface at which the membrane moves at maximum 

velocity  vmax  in the negative z direction (Fig S3B). If this point moves down from a distance  δz  

from the surface, then the contact line moves outward by a distance of  δr  in the r-direction (Fig 

S3B), given by 
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In terms of velocities, this yields 
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Combining Eqs (S15) and (S17) and assuming the velocity gradient is highest in the direction 

tangent to the membrane, we approximate the sought velocity gradient: 
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We insert these estimates into the dissipation term (Eq (S14)) and integrate over the wedge: 
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Inserting the definition of  Δr  from Eq (S15) and assuming  Δr  << 3rc , we find 
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where  Π0 = μ/(2Rcell
3). We verify this relationship by comparing it to numerically computed 

dissipation rates obtained in Brownian zipper simulations (Fig S3C-D). The dissipation rate per 

unit volume is highest in a small region near the contact line (Fig S3C). We integrate to compute 

the total dissipation rate at each time step, and then plot this as a function of  rc
2(drc/dt)  to 

compare it to our approximate analytical prediction from Eq (S20) (Fig S3D). When plotted on a 

log-log axis, this curve shows a linear region with a slope of 2, in agreement with the scaling in 

Eq (S20). 

We next estimate the work required to deform the cortex, as given by the second term on 

the right-hand side of Eq (S10). For a spherical cap of contact radius  rc  and height  h: 
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Early in spreading, h is approximately constant and tension changes slowly, therefore 
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Inserting the approximations from Eq (S20) and Eq (S22) into the energy balance (Eq (S10)) and 

simplifying, we arrive at the following differential equation: 
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In early spreading, tension changes more slowly than 𝑟𝑐; therefore, it can be treated as a constant. 

This leads to the spreading law observed in our model as well as in a previous computational 

model of passive cell spreading [2] 
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Appendix C. Development and testing of constitutive relations for cortical 

tension and protrusion stress 

To best match the real-life behavior of cells, we developed versions of the piecewise 

relationships for tension (Eq 1) and protrusion stress (Eq 11) that have continuous first 

derivatives (C1).  We accomplished this by using polynomials to transition between each 

piecewise domain from the original C0 relations. For tension, we use 
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The C1 version of protrusion stress requires two separate transition regions, which we achieve 

using cubic polynomials: 
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The 𝑐 and 𝑑 coefficients are found by solving the appropriate linear systems. Their values 

generally depend on the contact area Ac at different values of surface area deformation; namely, 

at  Acell = 1.13 Acell,0  ,  Acell = 1.26 Acell,0  , and  Acell = 1.39 Acell,0.  These are derived from sample 

runs of the simulation. 

A comparison of the non-smooth (C0) relationships with their smooth (C1) counterparts 

reveals only minor differences in the respective graphs (Figs S4A and S5A). Furthermore, 

simulations performed with C1 vs. C0 relationships result only in slight changes in spreading 

dynamics that do not affect the main takeaways of this study (Figs S4B-C and S5B). 

Fig S4. Results of simulations using alternative cortical tension constitutive relations.  

(A) Alternative relationships between cortical tension and cell surface area. (B) Brownian zipper results do not 

change qualitatively for different choices of cortical tension constitutive relations. (C) Contact area over time for the 

pure protrusive zipper varies only slightly between simulations using different relationships for cortical tension. 
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To confirm that our findings were not dependent on the relationships chosen for tension 

and protrusion stress, we also tested alternative expressions. For tension, a simpler relationship 

that has been used in previous numerical studies of cell deformations [6] is exponential: 
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As shown in Fig S4B-C, this relationship does not qualitatively alter the Brownian Zipper or 

protrusive zipper contact area curves. 

A simpler assumption for growth of the protrusion stress is that the stress grows linearly 

as a function of contact area: 
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Remarkably, we find that even this simple relationship gives rise to the sigmoidal growth of 

contact area over time observed experimentally (Fig S5C), indicating this is a general feature of 

our model that does not depend sensitively on the exact relationship chosen for protrusion stress. 

Fig S5. Results of simulations using alternative protrusion stress constitutive relations.  

(A) Alternative relationships between protrusion stress and cell-substrate contact area. (B) Results of the pure 

protrusive zipper simulation using the C1 relationship only differ slightly from the C0 version. (C) A linear 

relationship between protrusion stress and contact area gives rise to a sigmoidal contact area vs. time curve.  
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Appendix D. Details of finite element implementation 

The governing equations are given in Methods, referred to as the “velocity equation” (Eq 

17) and the “pressure equation” (Eq 18) below. Both equations are readily cast into a Galerkin 

form, which then is rewritten in matrix form as is conventional for finite element methods.  

For reference, we give the elemental contributions to the stiffness matrices and load 

vectors for each finite element system, following the notation used by Hughes [7]. Na is used to 

denote the finite element shape function associated with node a. We use bilinear quadrilateral 

shape functions and compute all integrals using two-by-two Gauss quadrature. 

The velocity equation (Eq 17) gives rise to the linear system 

 all =Kv F  (S29) 

The vector 𝐯𝑎𝑙𝑙 contains the velocity values  [vr, vz]  at each node, and the global stiffness 

matrix K and global load vector F are assembled from elemental contributions. The contributions 

from nodes a and b belonging to element e are given as follows, where  Ωe  denotes the element 

domain (note the factor of  2πr  due to axial symmetry, as well as the term  (Na Nb/r
2)  which 

arises when computing ∇v in cylindrical coordinates) 
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For the load vector 
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where the second term in the load vector arises from the Neumann boundary condition (stress 

balance) and  Γe denotes the boundary of the element. The vector  [σr, σz]  denotes the boundary 

stresses given by adding the adhesion stress, protrusion stress, and cortical stress, which are only 

non-zero for those elements which belong to the free boundary of the cell. For elements in 

contact with the substrate, there is no contribution from the no-slip boundary condition because 

the enforced velocity is equal to zero. 

The pressure equation (Eq 18) gives rise to the linear system 



11 

 

 
all =Q p G  (S32) 

The vector  pall  contains the pressure value p at each node. The global stiffness matrix Q and 

global load vector G are assembled from elemental contributions given by 
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The expression for Ga incorporates the assumption that  ∇p ∙ n  is zero along the cell boundary, 

as dictated by the boundary condition, and  ∇2p = 0  everywhere, which is satisfied exactly for an 

incompressible fluid. Derivatives of  [vr, vz]  are computed using bilinear quadrilateral shape 

functions. 

This system of equations is solved iteratively, as described in Methods. Examples of the 

fluid velocities and pressures obtained by the Brownian zipper model (Fig S6A) and the 

protrusive zipper model (Fig 6B) are included for illustration. 
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Fig S6. Example velocity and pressure fields obtained by finite element computations.  

(A) Fluid velocity vector fields and pressure scalar fields (heat maps) are shown for purely adhesion-driven 

spreading with a ligand density of 10%. The magnitude of fluid velocity decays relatively quickly over time. (B) 

Fluid velocity vector fields and pressure scalar fields (heat maps) are shown for purely protrusion-driven spreading. 

The velocities maintain a similar magnitude over time due to the time-dependent increase in protrusion stress. 
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Appendix E. Numerical testing and optimization 

The accuracy of numerical computations such as used in this study can be affected by 

several factors. In this appendix, we document tests that we have carried out to verify the 

robustness of our numerical predictions. All tests of the Brownian zipper model are conducted 

for a ligand density (ρl) of 10%, and all tests of the protrusive zipper model are carried out in the 

absence of adhesion stress.  

I. Test for incompressibility 

Solving the governing equations for the perturbed Stokes equations given in Methods 

(Eqs 17 and 18) yields an approximate satisfaction of incompressibility. The degree to which 

incompressibility is enforced depends on the magnitude of the perturbation parameter  ϵ  in Eq 

18. Specifically, as  ϵ  goes to zero, the fluid becomes more incompressible. However, if  ϵ  is too 

small, there are numerical difficulties. Thus, it is worthwhile to evaluate how closely 

incompressibility is satisfied for different values of  ϵ. In our model,  ϵ  scales with the 

characteristic radius of an individual element  hmesh  and the effective viscosity  μ [8]. As 

described in Eq 15 of the main text, we generally require that  ϵ ≤ hmesh
2/μ , but we can write 

more generally 
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where  ò   is a dimensionless scaling factor that should have a magnitude less than or equal to 

one to satisfy the above inequality. Here, we assess how this parameter affects the error in our 

model. 

We quantify the degree of compressibility at different locations in the cell body in terms 

of the local rate of dilatation, obtained by integrating  ∇ ∙ v  over individual elements and 

dividing by the element volume  Vel. That is, 

 
( )

Dilatation rate = 
el

el

dV

V

 v
 (S36) 

This dilatation rate has units of inverse seconds and describes the rate of fluid expansion 

per unit volume. In general, we expect the largest departures from perfect incompressibility to 

occur in the immediate vicinity of the perimeter of the contact region, due to a well-known 

singularity that has been examined thoroughly for different cases of droplet spreading [4]. 

Focusing on this region, we have characterized how our choice of the value of  ϵ  affects the 

dilatation rate (Fig. S7A). We evaluate the overall error of the model in terms of the mean square 

error (MSE) for the incompressibility condition 

 
( )

2

MSE =
tot

dV

V

 v
 (S37) 
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The MSE initially depends only weakly on the value of  ò , but increases considerably at higher 

values, as expected (Fig S7B-C). Generally, a value o𝑓  1=ò   results in sufficiently low error 

while also avoiding numerical difficulties associated with lower values of  ò .   

Fig S7. Testing for incompressibility.  

(A) Heat maps of the dilatation rate within the leading edge of the cell for purely protrusion-driven spreading at  t = 

15 s for different values of  ò . (B) Volumetric mean square error is plotted as a function of  ò  for Brownian 

Zipper simulations at  t = 15 s.  (C) Volumetric mean square error is plotted as a function of  ò   for protrusion-only 

spreading at  t = 15 s.   

II. Time-step testing  

The optimal time step  Δt  for fluid mechanics simulations depends on fluid velocity and 

the mesh resolution. A common reference for this is the Courant number, generally given by 

 
v t

C
l


=  (S38) 

where  l  is a characteristic length and  v  is a characteristic velocity. For numerical stability,  C  

should be much less than one. 

We use Eq (S38) to determine the appropriate time step for the minimum ratio of  l/v  

across all elements; that is 
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all el

, ,

min min min ,
span span

r c z c

r zl
t C C

v v v

   
 = =           

 (S39) 

where  rspan  is the span of the element in the r direction,  zspan  is the span of the element in the z 

direction,  [vr,c, vz,c]  is the velocity vector at the centroid of the element, and  C  is the desired 

Courant number. For instance, if  C = 0.1 , fluid flow crosses at most 10% of any individual 

element during a single time step. We performed a series of simulations using decreasing values 

of  C  to establish at which Courant number our computations converge satisfactorily. Figure S8 

shows examples of testing different time steps for the Brownian Zipper model (Fig S8A) and the 

protrusive zipper model with no adhesion stress (Fig S8B). For smaller time steps, the contact 

area curves become smoother and converge to a single solution. Generally, we find that  C ≤ 0.1  

performs well in these cases, which is the value we choose for our simulations. 

Fig S8. Time-step testing.  

Contact area versus time for different Courant numbers for (A) the Brownian zipper model and (B) purely 

protrusion-driven spreading. 

 

III. Mesh refinement 

We ensured that the results of our simulations do not depend significantly on the mesh 

resolution as follows. When constructing the mesh, we start by specifying the boundary nodes, 

choosing tight spacing near the substrate and gradually increasing spacing to 0.17 μm over the 

rest of the cell contour (Fig S9A). After parameterizing the contour, we use transfinite 

interpolation to construct the interior mesh ([9], Fig S9A). Using a global edge spacing of 0.17 

μm generally results in about 2,000 elements. Here, we focus on refining the mesh spacing close 

to the surface where the stresses are most concentrated. 

For both the Brownian zipper model and the protrusive zipper model, we tested minimum 

boundary point spacing values  Δsmin  of 25 nm, 10 nm, 5 nm, and 2.5 nm. In both cases, we find 
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convergence for  Δsmin ≤ 5 nm (Fig S9B-C). For our simulations in the main paper, we use Δsmin 

= 2.5 nm. 

Fig S7. Mesh refinement.  

(A) Illustration of mesh construction including our choice of relevant boundary spacing intervals. Convergence of 

the simulations is evaluated by inspection of contact-area-versus-time curves obtained with different minimum mesh 

spacings close to the substrate (Δsmin) for (B) the Brownian zipper model and (C) purely protrusion-driven 

spreading. 
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Appendix F. Additional testing of the discrete adhesion model 

As outlined in the main text, we introduced two main rules to implement a version of our 

protrusive zipper with discrete adhesion sites: 1) If the cell membrane is less than a threshold 

distance from a ligand (set by the magnitude of membrane fluctuations dictated by Eq 12), the 

membrane is considered bound, and 2) the protrusion stress decays as a function of time since 

last binding a ligand (Eq 13). The second rule contains a free parameter  t0 , corresponding to a 

characteristic decay time for the protrusion stress. Because this parameter is not directly 

quantifiable from our data, we sought to determine how sensitive the outcomes of this version of 

the model were to our choice of  t0 (Fig S10). 

Fig S10. Effect of varying t0 on the protrusive zipper with discrete adhesion sites.  

Contact-area-versus-time for spreading over different densities of discrete binding sites, plotted for  t0 = 33 s (faster 

decay) (A) and for no time-dependent decay of the protrusion stress (B). (C) The relationship between maximum 

contact area and IgG density depends on how quickly the protrusion stress decays.  



18 

 

In the main text, we use  t0 = 66 s, and here we tested  t0  with either half this value (33 s, 

faster decay) or twice this value (132 s, slower decay). We also tested the model without any 

decay by setting  t0 = ∞. Regardless of the choice of t0, we observe the same qualitative behavior 

of the model – spreading speeds remain similar across different ligand densities, but maximum 

contact area increases as a function of ligand density (Fig S10A,B). However, the exact 

relationship between ligand density and maximum contact area depends on the choice of  t0. 

Faster decay rates (lower  t0 ) generally resulted in earlier termination of spreading, but with slow 

or absent decay, cells continue spreading longer (Fig S10). This difference is most evident at 

lower ligand densities, where a more sustained protrusion stress is required to overcome larger 

gaps between ligands. 

We also noted that our experiments seemed to indicate a saturation in maximum contact 

area for IgG densities greater than about 1,000 μm-2, but our model predicts a continued increase 

in maximum contact area up to the highest density tested (30,000 μm-2). At these higher densities 

of IgG, receptors are the limiting factor of the maximum adhesion strength, which is not 

accounted for in our model. Therefore, we conducted additional proof-of-principle simulations in 

which both ligands and receptors were treated as discrete.  

On the order of 1×106  Fcγ receptors are present in the membrane of a passive neutrophil 

[10, 11]. The total membrane surface area includes not just the apparent surface area, but also 

membrane folds such as microvilli. Because neutrophils can expand their apparent surface area 

up to three times its resting value [12, 13], we conservatively estimated the total receptor density  

ρFcγR  as 1×106 / 3SA0 , or about 1,470 receptors per square micron.  

Because these receptors are generally mobile, we assumed that any given receptor 

effectively occupied a length of membrane  δl  dictated by receptor mobility (effective diffusion 

coefficient  Deff ) and the current time step  Δt : 

 4 effl D t =   (S40) 

If a given receptor is centered at a point on the membrane specified by arc length  sR  , then the 

receptor can diffuse within a range bounded by  sR – δl  and  sR + δl during a time interval of  Δt 

(Fig S11A inset). We here postulate that, for any given ligand, if the minimum distance to this 

receptor, dmin, is less than  dthresh  (given by Eq 12 in the main text), then binding occurs. 

Using the above approach to discretize receptors, we require the total region over which 

each receptor can diffuse (2δl from Eq (S40)) to be less than the receptor spacing; otherwise, the 

entire membrane would be available to bind free ligand, as in the original discrete adhesion 

model. This places an upper limit of about 4×10-4
  μm2/s on  Deff , much lower than the values 

reported for Fcγ receptor diffusion coefficients (about 0.01 to 0.1 μm2/s) [14]. However,  Deff  

should be viewed as an effective parameter, capturing not only diffusion but also the effects of 

lateral confinement [15] and close contacts [16]. 

As a proof of concept, we performed simulations with ρFcγR = 1,470 μm-2 and  Deff = 

1×10-4
  μm2/s. (Fig S11) These simulations indeed showed that spreading on lower densities of 

IgG was similar to our original simulations, but spreading on the highest density terminated 
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earlier due to limited receptor availability (Fig S11A,B). The results of this version of the model 

yielded an even better match to the experimentally measured relationship between IgG density 

and maximum contact area (Fig 8C).  

 

Fig S11. Protrusive zipper with discrete ligands and discrete receptors. 

(A) Sample cell profiles for spreading over different densities of binding sites with receptors only present in the 

membrane segments shown in red. The inset defines the variables used in the text. (B) Spreading over low densities 

of IgG (30 μm-2) is unaffected by a discrete receptor model, whereas spreading is receptor-limited on high densities 

of IgG (30,000 μm-2). 
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