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1 Sequence-based peptide clustering1

To assess the ability to separate strong binders from weak binders based only on the peptide sequences, CD-Hit2

[1, 2], a greedy incremental clustering algorithm, was used for classifying the peptide sequences of TCR 2B4.3

The input sequences contained a total of 44 experimentally determined strong binders (including the native4

peptide present in the crystal structure), as well as 231 experimentally determined weak binders as described5

in the main text. A strong binder was identified if it is classified in the same category of the native sequence.6

The best performance of CD-Hit correctly identifies the cluster including 19 strong binders (native peptide7

included) and no weak binders, using a sequence identity threshold of 0.5.8

2 Additional hold-out tests on an extended dataset9

To test the limit of RACER’s transferability over a more diversified coverage of peptide sequence, we included10

more strong binders from the [3], where all peptides of TCR 2B4 that ends up with more than one copy from11

the deep-sequencing experiments were included, constituting an extended dataset. RACER was applied on12

a more demanding set of hold-out tests on the original dataset used in the main text, as well as this more13

extended dataset.14

In the leave-50%-out-test, these strong binders were randomly shuffled before partitioned into two sets. One15

set was used in the training set, the other set, together with the experimentally determined weak binders, were16

used as the testing set. We switched two sets of strong binders for an equivalent testing, therefore constituting17

two testing cases for each data set. As shown in Fig. 4, the leave-50%-out-test demonstrates that RACER18

can fully separate strong binders from the weak ones, with an average recognition Z-score equal to 5.26 for the19

original dataset, and 4.63 for the extended dataset.20

In the leave-90%-out-test, the strong binders were randomly shuffled into 10 sets, and we only used one of21

them for training, the other 9 sets, together with the experimentally determined weak binders, were used as22

the testing set. Therefore, we have 10 testing cases for each dataset. As shown in Fig. 4, the leave-90%-out-23

test again demonstrate RACER’s success in distinguishing strong binders from weak ones in both the original24

dataset (average Z-score of 4.74) and the extended dataset (average Z-score of 4.50).25

To push the limit of RACER’s predictive power, we added an additional leave-99%-out test for the extended26

dataset, where ∼ 4 strong binders were included in the training set, and a leave-one-in test, where only one27

strong binder was included in the training set. We summarize the percentage of strong peptides that failed28

to be detected (failure is defined to occur whenever the binding energies of the withheld binders are larger29

than the median of the weak binders). As shown in Fig. 3, the amount of peptides that can be recognized by30

RACER gradually decreases as fewer peptides were included in training, and if we only include one peptide in31

our training, the performance of RACER is worse than an alternative test that uses the identity of sequences32

based on the native peptide of the crystal structure (PDB ID: 3QIB).33

3 Sequence diversity in the leave-one-out test34

To see the coverage of sequence diversity of peptides that succeeded or failed to be recognized by RACER, we35

calculated the sequence identity of the peptide sequences that were used in our leave-one-out test of the TCR36

2B4, based on the native peptide presented in the crystal structure (PDB ID: 3QIB). As shown in Fig. 1,37

RACER capably recognizes strong binders with small sequence identity in both the original dataset and the38

extended dataset, with some cases having little to no sequence identity.39

4 The standard protein force field cannot fully resolve strong binders40

from weak binders41

Two commonly used force fields were utilized to test the performance of standard protein force fields for42

distinguishing strong TCR binders from weak ones. This analysis was applied to the three TCRs investigated43

in the main text. The default AWSEM force field [4] was previously optimized for folding protein structures44

[5]. The Miyazawa-Jernigan (MJ) potential [6] is one of the most widely used knowledge-based force fields,45
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derived from a statistical analysis of large protein repositories. Both force fields have been demonstrated to46

perform well in describing the structural dynamics of generic proteins. However, when replacing our optimized47

TCR parameters with these two force fields, the resulting model is unable to clearly separate the strong binders48

from the weak ones. (Fig. 5).49

5 Improving predictive accuracy by including target TCR struc-50

tures51

For blind assessment of TCR transferability, we ask whether we can improve prediction accuracy if there are52

available strong binders presented in the structures of the target TCRs. To test this, we added the set of53

interactions calculated from the crystal structures of the other two TCRs as two additional strong binders in54

the training set. For example, in the case of TCR 2B4, the set of interactions from the crystal structures of55

TCR 5CC7 and 226 were added into the training set of TCR 2B4, constituting a total of 46 strong binders.56

Same procedure was repeated for TCR 5CC7 and TCR 226. We find that the new energy model demonstrates57

significant improvement in Z-scores (Fig. 7, compared with Fig. 5a). These results suggest that further58

incorporation of additional crystal structures of target TCRs may lead to improved resolution of strong and59

weak binders via refinement of the optimized energy model.60

6 Extended test of RACER’s transferability across different TCRs61

restricted to the same MHC-II allele62

To test the transferability of RACER beyond the coverage of the TCR-p-MHCs used in the main text, we63

further tested the performance of RACER on the data provided in [7]. The data includes all the TCRs64

associated with different MHC-II alleles until 2017. One strongly binding peptide, and four weakly binding65

peptides were provided for each TCR. We used RACER to perform a leave-one-out prediction for all the cases66

where more than one TCRs are shared among the same allele, by excluding one TCR from training and using67

the optimized energy model to predict the binding affinity of the withheld TCR. The first 50 eigenvectors68

of the B matrix in Eq. (5) (see Method for details) were found to be well-determined. The influence of the69

remaining eigenvectors of the B matrix on the optimized interaction parameters in γ was reduced according70

to a filtering scheme (see Method for details). As shown in Figure 6, RACER was able to recognize the strong71

peptide (Z-score > 1) for 21 out of the 26 tests. It is worth noting that there are many cases where TCRs72

associated with the same MHC allele share different Vα and Vβ genes. RACER works less well for cases73

where only 2 TCRs are available, and better when there are 3 ∼ 5 cases, regardless of whether they share the74

same or different Vα and Vβ genes. This additional test further supports the predictive power of RACER75

trained with a small set (around 3 to 5 copies) of available TCR-peptide structures/sequences. To challenge76

RACER’s predictive capacity when statistical learning is performed on a TCR-pMHC pair distinct from either77

the target predicted TCR or peptide, we intentionally selected a TCR-pMHC structure with the same MHC78

allele having different Vα and Vβ genes, where available, from the target as the template. We replaced the79

CDR3 loops with target sequences using trivial alignment (case III of Fig. 1), and repeat the same test as80

above. As shown by Fig. 9, RACER can still recognize 19 out of the 26 examples (Z-score > 1). The success81

of this test highlight RACER’s predictive power across different TCRs associated with the same MHC allele.82

7 Comparison with ERGO, a sequence-based predictor trained by83

neural network84

ERGO [8] is a sequence-based TCR-peptide prediction tool trained by neural networks. ERGO implemented85

two types of models: Long short-term memory (LSTM) and Autoencoder, together with two training datasets:86

McPAS-TCR (2 × 104 TCR by 300 peptides) and VDJdb (4 × 104 TCR by 200 peptides). We applied ERGO87

to calculate the binding scores of the strong and weak binders of the three TCRs in [3]. We found ERGO88

performs best when the Autoencoder was applied based on the VDJdb database. As shown in Fig. 10, ERGO89

can only recognize the strong binders of TCR 5CC7 with a Z-score of 2.85.90
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8 Additional statistical evaluation of RACER-derived thymic se-91

lection92

We have argued in our previous paper [9] that a well-functioning immune system should utilize a majority of93

thymic self-peptides in the deletion of self-reactive T-cells. This desideratum can be used to determine if a94

high-throughput model is behaving in a statistically sensible manner; specifically, a reasonable model of thymic95

selection would feature most self-peptides contributing to T-cell selection. A rank order of self-peptides based96

on their ability to recognize T-cells, defined as the peptide potency, characterizes the extent to which each97

self-peptide is utilized in thymic selection. The RACER-derived potency using 2B4-optimized data generates98

reasonable behavior with respect to this criterion (Fig. 11a). In addition, our prior theoretical work posited99

that optimal thymic selection occurs at survival cutoffs near 1/e [10, 9]. Calculating the product of survival100

and recognition probabilities yields a broad curve maximized at intermediate selection cutoffs, including 1/e101

(Fig. 11c).102

We also compared RACER-derived repertoire-level CDR3 sequence similarity to experimentally determined103

antigen-specific T-cell repertoires [11]. Our post-selection simulated TCRs recognizing the top 10 foreign104

antigens were collected and clustered using a discrete Hamming metric with CDR3 sequence weights as in [11].105

Dendrograms obtained from hierarchical clustering identified a diverse set of TCRs (Fig. 12a). Because our106

model sampled a sparse (105) subset of CDR3 sequence space, we then augmented our repertoire by in silico107

site-directed mutagenesis to include 100 closely related TCRs for each foreign antigen. This augmented antigen-108

specific repertoire recapitulates features of experimentally determined antigen-specific repertoires comprised of109

diverse and homologous clusters of TCR sequences (Fig. 12b), and demonstrates RACER’s ability to identify110

diverse TCRs with shared antigen specificity.111

9 Detailed future development of RACER112

While RACER effectively resolved strong and weak binders of [7] in all cases where the training and test113

peptide were identical, approximately half of the cases examined here contained training and test peptides114

that are dissimilar (Fig. 9). For these cases where training and test peptides are different, RACER correctly115

predicts 67% of the examples (Z-score > 1.0). The resulting predictive accuracy demonstrates that our116

structurally informed pairwise model can resolve TCR-p-MHC specificity in a majority of available test cases.117

Further experimental validation will be required to definitively assess RACER’s ability to resolve TCR-p-118

MHC specificity across all possible TCR-peptide pairs within a given MHC allele. This challenge remains a119

top priority for future investigations on repertoire-level TCR-peptide assessment.120

In designing RACER to achieve rapid and accurate predictions, our calculation only includes pairwise121

energetic interactions, while omitting other contributions to peptide binding affinity, such as conformational122

entropy. This is in line with analogous assumptions when computing mutational free energies utilizing poten-123

tials derived from protein co-evolutionary information (discussed in [12]) where there is a careful discussion124

on how the leading order binding energy differences are mostly due to direct residue-residue interactions.125

While RACER maintains reasonably high predictive accuracy, more accurate assessments of the TCR-p-MHC126

binding free energy will likely lead to improvements and will be a focus of subsequent work.127

10 Contact maps and their influence of T-cell survival and recog-128

nition129

In cases with available crystal structures, contact map analysis revealed a largely conserved interaction pattern130

for TCR-peptide pairs associated with the IEk MHC-II allele (Fig. 4), providing an explanation for the131

transferability of RACER-derived interactions when trained on a particular crystal structure. Moreover, these132

results demonstrate how differences in the contact maps may manifest as shifts in the mean binding energy133

between T-cells and thymic self-peptides, thereby affecting a TCR’s post-thymic selection inclusion probability134

(Fig. 6). Previous investigations have characterized the probability distribution for generating particular TCR135

sequences in VDJ recombination, and have even suggested that the a posteriori observed post-selection TCRs136

had greater generation probabilities [13, 14], with so-called “public” TCR sequences being observed in multiple137
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individuals. Incorporation of contact maps into our generative model contributes to variations in T-cell survival138

probability, and may offer a physical interpretation of why public repertoires survive thymic selection at higher139

rates [15], in addition to providing an explicit means of estimating post-selection T-cell prevalence within a140

given MHC-class restriction.141

11 Supplementary Figures 1-13 and Table 1142
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Supplementary Figure 1: The normalized count frequency of the sequence identity, calculated based on the
native peptide of TCR 2B4, between the experimentally determined strong binders (black), randomized decoy
binders (blue), and experimentally determined weak binders (orange). For the strong binders, the probability
distributions are further organized based on whether or not they are successfully detected in the leave-one-
out test. For the strong binders, the normalization was carried out with the total number of strong binders
being the normalization factor, to emphasize the contrast between the number of detected/undetected cases.
Detailed percentage of histograms within each bin are noted. We show the distribution of sequence identities
for the original dataset (including all strong binders where the final copies of peptides from the experiment
were amplified to contain at least 50 copies following the affinity-based selection), and an extended dataset
(including additional peptides where the final copy numbers were larger than 1).

Supplementary Figure 2: RACER-derived binding energies of peptides of TCR 2B4 (Fig. 2a) as a function of
sequence identity, calculated based on the native peptide of the crystal structure (PDB ID: 3QIB). Solid lines
indicate average binding energy, and their corresponding shaded regions depict standard deviations. Binding
energies were calculated based on strong binders (black), experimentally determined weak binders (red) and
the randomized decoys of strong binders (blue). The energies for the original data set (left) and extended
data set (right) were both presented.
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Supplementary Figure 3: Cross-validation test of TCR 2B4 with RACER for the extended dataset, where
more diversified strong binders were included for a more comprehensive test. RACER performs well, reliably
detecting > 99% of the strong binders, until leaving 99% of the peptides out. At this point RACER’s per-
formance deteriorates due to a lack of training data. When only one peptide is included in the training set,
RACER performs worse than a selection based only on the sequence identity of peptides calculated based on
the native peptide in the crystal structure (PDB ID: 3QIB) of the TCR 2B4.

TCR
Gene usage (al-
pha)

Gene usage
(beta)

CDR sequences
(alpha)

CDR sequences
(beta)

Native peptide
sequence

2B4
V:TRAV4N-
4*01
J:TRAJ56*01

V:TRBV26*01
J:TRBJ2-5*01

CDR1:TTMRA
CDR2:LASGT
CDR3:AALRAT
GGNNKLT

CDR1:KGHPV
CDR2:FQNQEV
CDR3:ASSLNW
SQDTQY

ADLIAYLKQA
TKG

5CC7
V:TRAV4N-
4*01
J:TRAJ34*01

V:TRBV26*01
J:TRBJ1-2*01

CDR1:TTMRA
CDR2:LASGT
CDR3:AAEASN
TNKVV

CDR1:KGHPV
CDR2:FQNQEV
CDR3:ASSLNN
ANSDYT

ANGVAFFLTP
FKA

226
V:TRAV4N-
4*01
J:TRAJ16*01

V:TRBV26*01
J:TRBJ1-2*01

CDR1:TTMRA
CDR2:LASGT
CDR3:AAEPSS
GQKLV

CDR1:KGHPV
CDR2:FQNQEV
CDR3:ASSLNN
ANSDYT

ADLIAYLKQA
TKG

Supplementary Table 1: Detailed information[16] of TCR 2B4, 5CC7 and 226 used in the main text. The
three TCRs used in our test shared the same V gene, their J genes are different from each other, resulting in
different CDR3 sequences.
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Supplementary Figure 4: Cross-validation test of TCR 2B4 with RACER (main text Fig. 2) where 50% (a, c,)
and 10% (b, d) of the strong binders were used as the training set (blue). The predicted binding energies of the
50% of withheld strong binders (yellow) are lower than the binding energies of the experimentally determined
weak binders (brown). The median of each set of binders was shown as a bar in the corresponding box plot.
The whiskers are placed at the first and last datum points that fall within (m, M), where m = Q1 - 1.5IQR
and M = Q3 + 1.5IQR, with IQR = Q3 - Q1 representing the interquartile range. The calculated Z-score of
each test was shown at the top. In both the original (a, b,) and extended (c,d) dataset, the leave-50%-out
and leave-90%-out test demonstrate RACER’s predictive capacity for recognizing strong binders of the TCR
2B4.
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Supplementary Figure 5: The protein interaction parameters from standard force field cannot fully separate
strong binders from weak ones. a, The performance using the default parameters from the AWSEM force field
[4]. b, The performance using the parameters from the Miyazawa-Jernigan (MJ) potential [6]. Compare this
with the main text Figure 2 shows the advantage of RACER in terms of identifying strong binders from weak
binders.
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Supplementary Figure 6: The contact maps of TCR-peptide pairs associated with different MHCII alleles share
less structural similarity, compared with the main text Figure 4. Contact maps are calculated using distances
from each pairwise TCR-peptide amino acid combination using Eq. 6 for the following TCR-p-MHC pairs:
4P2Q - peptide ADGLAYFRSSFK presented by MHC-II IEk to TCR 5cc7 a, CDR3α (AAEASNTNKVV)
and b, CDR3β (ASSLNNANSDYT); 3MBE - peptide AMKRHGLDNYRG presented by MHC-II IAg to TCR
21.3 c, CDR3α (AAEDGGSGNKLI) and d, CDR3β (ASSWDRAGNTLY); 3C5Z - peptide FEAWKAKANKA
presented by MHC-II IAb to TCR B3K506 e, CDR3α (ALVISNTNKVV) and f, CDR3β (ASIDSSGNTLY).
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Supplementary Figure 7: Probability density distributions of the predicted binding energies of experimentally
determined strong (brown, with mean depicted in red) and weak (grey, with mean depicted in black) binders
of each of the three TCRs (2B4, 5CC7 and 226), using another TCR for training. In addition, structures
of the other two TCRs are included into the training sets. The title of each figures follows the format of
“target training TCRs+Xtals”, with “Xtals” means the crystal structures of the other two TCRs were added
into the training set.
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Supplementary Figure 8: Further leave-one-out test of RACER’s predictive transferability over TCRs, using
data from [7]. The TCRs were grouped by their associated MHC allele, with their Vα and Vβ genes noted
at the bottom. Asterisks are marked for TCRs sharing identical peptides within the same allele. RACER
successfully predicted lower binding energies for strong binders (blue) relative to weak binders (brown). The
prediction Z-score is provided above each case. RACER was able to successfully recognize the strong-binding
peptide (Z-score > 1) for 21 out of the 26 tests. RACER’s predictive accuracy is reduced in cases where only
2 TCRs are available, and shows improvement when there are 3∼5 cases, regardless of whether they share the
same Vα and Vβ genes.
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Supplementary Figure 9: Additional leave-one-out test of RACER’s predictive transferability over TCRs, using
data from [7]. One template structure, intentionally selected to have Vα and Vβ genes that are distinct from
the target structure (where available), is used to build the target structure; this is accomplished by replacing
the CDR3 loops with target sequences based on trivial alignment (case III of Fig. 1). Asterisks mark examples
where the template structure shares the same peptide sequence as the target structure. For all remaining
cases target amino acid sequences are explicitly compared to the template sequence, with red (resp. cyan)
positions having different (resp. identical) amino acid entries. Double-ended arrows indicate those examples
where the template and the target have also been switched for another prediction test. RACER successfully
predicted lower binding energies of the strong binders (blue) relative to the weak binders (brown). The TCRs
were grouped by their associated MHC allele, with their Vα and Vβ genes, as well as the template structures
labeled at the bottom. RACER-predicted Z-scores are listed at the top of each case. RACER was able to
recognize the strong peptide (Z-score > 1) for 19 out of the 26 challenging tests, and maintains predictive
accuracy when only restricted to test cases which include distinct peptides from the training step (accuracy
67%.
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Supplementary Figure 10: The performance of ERGO [8] for differentiation of the strong and weak binders
of three TCRs. The best performance of ERGO, using Autoencoder trained on the database VDJdb, can
recognize the strong binders of TCR 5CC7, with a recognition Z score of 2.85. However, ERGO cannot fully
differentiate the strong binders of TCR 2B4 and 226.

Supplementary Figure 11: Comparison of RACER recognition characteristics to previous models [9]. RACER-
derived estimates of post-thymic selection T-cell repertoire recognition rates reveal similarity in the ability
to recognize foreign and point-mutated self antigen, in agreement with previous models. a, Participation
of self-peptides in the deletion of reactive TCRs is quantified by plotting the total number of unique TCRs
recognized as a function of each self-peptide rank-ordered based on selection potency. b, The probability
of post-selection individual TCR recognition of foreign and point-mutated self-peptide as a function of the
percentage of surviving TCRs following negative selection; positive standard deviations are given for estimates
obtained in the RACER model (in all plots purple represents outputs of the RACER model, red and blue
correspond to PIRA and RICE models from [9], respectively) c, The product of thymic selection survival
probability and recognition probability of random and point-mutated self-peptides as a function of T-cells
survival probability in the RACER model.
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Supplementary Figure 12: Quantification of the foreign epitope-specific T-cell repertoire. Each of the 104

T-cells were filtered based on their ability to recognize foreign epitopes in the RACER simulation, performed
for the pre-thymic selection and post-selection T-cell repertoire. Each foreign epitope was then sorted by the
number of total post-selection T-cells that recognized that antigen. a, Dendrograms of the identified post-
selection recognizing T-cells for the top 10 recognized peptides are constructed using hierarchical clustering
using an averaged hamming distance on the primary CDR3 sequence of each T-cell in a similar manner as
in [11]. b, For each peptide, two dissimilar TCRs were selected randomly from the left and right side of the
highest dendrogram clade. Each of these TCR underwent mutagenesis by point-mutating a single entry in
the CDR3 region 50 times for a total of 100 mutated (closely-related) TCRs (blue and red clusters). These
TCRs were then subject to the same thymic selection and foreign peptide recognition steps as previously, and
dendrograms of these and the original TCRs were constructed (the following peptide sequences were identified
by RACER as the most immunogenic: 865=ADWINQGSDWWKG, 574=ADLIALLLMWWKG, 364=ADA-
IAEAANCSKG, 49=ADEINKHEKWWKG, 647=ADMIDSKSTSAKG, 520=ADSIAHCGKFSKG, 386=AD-
WITHNWALWKG, 394=ADCIAYPKRDAKG, 550=ADYINACKSDAKG, 588=ADYINPTWAHAKG).
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Supplementary Figure 13: RACER ensures comparable accuracy with or without structural relaxation after
changing peptide sequences. The binding energies of experimentally determined strong and weak binders as
predicted by RACER with a, and without b, structural relaxation after switching the peptide sequences. The
coarse-grained nature of RACER significantly reduces the chance for steric clashes to occur after changing
peptide residues, resulting in comparable modeling performance.
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