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Fig. S1. Schematic illustration of the preparation process of YFeOs.
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Fig. S2. XRD patterns of YFeOs after the treatment at different temperatures.
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Fig. S3. XRD patterns of YFeOs with different Ti doped ratios.
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Fig. S4. (a) Light harvesting efficiency spectra for YFeOs with different Ti doped ratios. (b)
Electrochemical impedance spectra (EIS) of pure YFeOs, 3%, 5% and 7% Ti-doped YFeOs in a 1
M NaOH electrolyte at 1.6 V vs RHE. The right inset is an equal circuit for the catalyst/electrolyte
interfaces. Electrochemical impedance spectrum fitting result is shown in Table S3. Rs is the
electrolyte resistance. R and CPE is the charge-transfer resistance from the bulk to the surface of

catalyst and the constant phase element, respectively.

Fig. S4 showed the photo-absorption curve of pure YFeOs, 3%, 5% and 7% Ti-doped YFeO:s.
YFeOs showed good light harvest and absorption capacity'. The cutoff wavelength of YFeOs

could reach about 700 nm.
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Fig. S5. XPS survey spectra. (a) XPS survey spectra of pure YFeOs and 3% Ti-doped YFeO3
from 0 to 1000 eV. XPS spectra of pure YFeOs and 3% Ti-doped YFeOs: (b) Ti2p, (¢) Y 3d, (d) O
1s

Fig. S5a showed the XPS survey spectra of pure YFeOs and 3% Ti-doped YFeOs from 0 to 1000
eV. Fig. S5¢c showed the high-resolution Y 3d region with two spin-orbit doublets with the main
peaks. The Ti 2p region XPS spectra of pure YFeOs and 3% Ti-doped YFeOs were distinguished
by Fig. S5b. There were two signals in the spectra of 3% Ti-doped YFeOs located at 458.2 eV and
464.3 eV corresponding to Ti 2p3/2 and Ti 2p1/2, which was agreed with the reported date?. It
meant the doped Ti ions were presented as Ti** species. Fig. S5d showed the O 1s XPS spectra.
At lower binding energy represent the oxygen in lattice and the surface absorbed oxygen observed
at higher binding energy. The shift of O 1s peak to higher energy after Ti doping again proved that
Ti element successfully entered the lattice of YFeOa.



Fig. S6. SEM and EDS images. (a) YFeOs, (b) 3% Ti-doped YFeOs, (c) 5% Ti-doped YFeOs, (d)
7% Ti-doped YFeOa.
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Fig. S7. TEM images. Low-resolution TEM of (a) YFeOs, (d) 3% Ti-doped YFeOs. In the high-
resolution TEM images, the lattice spacings of (b) YFeOs, (e) 3% Ti-doped YFeOs are visible.
Electron diffraction spot of (c) YFeOs, (f) 3% Ti-doped YFeOs
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Fig. S8. The specific surface area and pore size distributions of the samples. (a) Nitrogen
adsorption-desorption isotherms. (b) Pore size distribution based on BJH model. (c) The BET
surface areas of pure and 3% Ti-doped YFeOs.

The specific surface area and pore size distributions of the samples were measured using the
BET method. As noted in Supplementary Fig. 8a the isotherms were classified as type IV with H2
hysteresis loops (0.5-1 P/Po) according to the International Union of Pure and Applied Chemistry
(IUPAC) classification and the specific surface area of 3% Ti-doped YFeOs reached 18.38 m2g-",
similarly to that of pure YFeOs (16.81 m2g) (Fig. S8c).
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Fig. S9. Spherical aberration-corrected scanning transmission electron (STEM) images. (a, b)
annular bright field (ABF) image of pure YFeOs and Ti-YFeOs and (c) high-angel annular dark field
(HADDF) image of Ti-YFeOs. (The right is the selected area of the left.) The scale bars are 1nm.
(d) The corresponding fast Fourier transform (FFT) patterns of Ti-YFeOs. (e) The crystal structure
model of (001) plane and (f) perpendicular to the (001) plane. (g) Profile of the line in (c). The yellow
and blue spheres represent Fe and Y atoms.
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Fig. $10. Shell-isolated nanoparticle-enhanced Raman spectroscopy of H202 (3 wt.% H202/H20)
and H2'802 (180 isotope labelling, 2-3 wt.% H2'802/H20).
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Fig. S11. Photo-Fenton reaction performance. (a) Time dependent RhB solution degradation in
different systems. Specially, in pure YFeOs light and 3% Ti-doped YFeOs light systems, there were

no H20:. (b) Time dependent RhB solution degradation for pure YFeOs and 3%, 5%, 7% Ti-doped
YFeOs with H20:. (c, d) the corresponding Langmuir-Hinshelwood kinetics plots in these systems.
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Fig. S12. UV-vis spectral changes for RhB degradation with Ti-YFeOs/H20z2/light system.
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Fig. S14. Calibration curve of 4-CP for 3-dimension excitation emission matrix fluorescence
spectroscopy (3D-EEM). The left part showed 3D-EEM of 4-CP aqueous solutions with different
concentrations (0 to 5 mg L™"). The excitation range was 270 to 340 nm, and the emission range
was 290 to 450 nm. The right part showed that 3D-EEM intensity of 4-CP aqueous solutions had a
linear relationship with the concentrations.
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Fig. $15. Calibration curve under 4-aminoantipyrine methods. The left part showed the light
absorption curves of 4-CP solutions with different concentrations (0 to 3 mg L") under the test of
4-aminoantipyrine methods. The right part showed that light absorption intensity of 4-CP aqueous
solutions had a linear relationship with the concentrations.
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Fig. $16. 3D-EEM fluorescence spectra of 4-CP after different time degradation. (From left to right:
0 min, 30min, 90min, 180min.)
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Fig. S17. Degradation efficiencies of RhB in Ti-YFeOs/H20: light system with 3-round reactions.
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Fig. S18. Calibration curves of Fe3* ions under the 1, 10-phenanthroline method and detection
curves of Fe3* ions for the different systems. (a) The light absorption curves with different-
concentration Fe3* ions under the test of 1, 10-phenanthroline methods. (b) The light absorption
intensity had a linear relationship with the concentrations. (c) Absorptance curves of Fe®* ions in
the solution after reaction for pure YFeOs and Ti-YFeOs under the 1, 10-phenanthroline method.
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Furthermore, it was clear that *OH free radical was the main active species, but how it acts on
pollutants was unclear. In order to study the method of *OH active free radicals working in the
process of pollutant explanation, the degradation products of the model compound 4-chlorophenol
were analyzed by electrospray high resolution mass spectrometry (ESI-HRMS) analysis (Fig. S22
and S23) in negative ion mode (ESI), and the proposed molecular transformation pathways were
inferred (Fig. 4g). Initial substrate 4-chlorophenol (deprotonated excimer ion peak m/z 127 by
ionization in ESI mass spectrometry) was mainly degraded by the substitution, addition, or oxidation
reaction of *OH active species and its degradation pathway mainly showed three reaction channels.
The first reaction channel (down): 4-chlorophenol was oxidized dechlorination atom to form
hydroquinone by *OH active species and then, the ring-opening cracking of benzene ring was
induced by further oxidation to produce small carboxylic acids such as acetic acid, glycolic acid,
buteneic acid and so on. These molecules finally were oxidized and degraded to generate small
molecules of H20, CO2, H2CO3, etc. The second and third reaction channels (up) were continuous
oxidation of benzene ring followed by oxidative dechlorination. 4-chlorophenol was oxidized to 4-
Chlorobenzene-1,2-diol by substituting the hydrogen on the benzene ring with the *OH active
species. 4-Chlorobenzene-1,2-diol was continue oxidized to form dihydroxy-tetrachlorophenol and
then was oxidized dechlorination (channel 3). 4-Chlorobenzene-1,2-diol was directly oxidized
dechlorination to form phloroglucinol (channel 2). The benzene rings of these molecules were
broken down through the addition reactions, causing them to be degraded into small carboxylic
acids. And they finally were degraded to generate small molecules. In terms of the response
strength of the products (Fig. 4g) obtained from the three different paths, the first and second paths
were more favorable than the third one, which may be due to the highest Fukui index values of the
chlorine groups in 4-chlorophenol’s structure, leading to their preference for *OH species’ attacking?®.
As a result, the degradation of p-chlorophenol molecules was more prone to dechlorination followed

by oxidation and deep cracking of the benzene ring.
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Fig. S23. GC-MS information at 30 minutes. The chromatographic images and mass spectrometry
information were shown on the left and right, respectively. At 30 minutes of reaction, CeHsO3"
(m/z=125.02), CeHs02~ (m/z=109.03), CsH4ClO3~ (m/z=158.99) and CsHsO4~ (m/z=141.02) species
appeared. They belonged to channel 2, 1, 2 and 3, respectively. According to their integral strength,

channel 1 and 2 as the intermediate species may play dominant roles.
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Fig. S24. The structure of YFeOs and Ti-YFeOs.
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Table S1. EXAFS fitting parameters at the Fe K-edge for YFeOs and Ti-YFeOs.

Sample Shell N2 R(A)® o2(A?)° R factor
YFeO; Fe-O 5.10 212 0.00464 0.018
YFeOs3 Fe-Fe 6.01 3.63 0.00536 0.018

Ti-YFeO; Fe-O 51 214 0.00476 0.010

Ti-YFeO3 Fe-Fe 6.05 3.66 0.00787 0.010

aN: coordination numbers; °R: bond distance; °o?: Debye-Waller factors; R factor: goodness of fit.
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Table S2. Calculated free energy dates for the decomposition Path | and Path Il of H202 moles

on the surface of YFeOs and Ti-YFeOs. (The unitis eV.)

Sample H20: *H20:2 H-OOH(TS) *OOH+H *OH *OH
YFeO3 0 -4.34192 -3.26166 -4.81457 -3.413 -2.46
Ti-YFeO3 0 -4.43154 -4.03154 -4.69154  -3.20034 -2.46
Sample H202 *H20: HO-OH(TS) *OH+OH *OH *OH
YFeOs 0 -4.34192 -2.9351 -4.8143 -3.413 -2.46
Ti-YFeO3 0 -4.43154 -3.45461 -4.5143  -3.20034 -2.46
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Table S3. Electrochemical impedance spectrum fitting result in Fig.S4b.

Rs (Q) Rct (Q) CPE-T (F) CPE-P (F)
Pure YFO 38.09 9387 7.071E-06 0.968
3% Ti-doped YFeO; 38.74 2969 9.838E-06 0.961
5% Ti-doped YFeO; 38.49 2731 1.003E-06 0.959
7% Ti-doped YFeO; 45.6 4037 6.815E-06 0.971
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