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Fig. S1. Schematic illustration of the preparation process of YFeO3. 
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Fig. S2. XRD patterns of YFeO3 after the treatment at different temperatures. 
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Fig. S3. XRD patterns of YFeO3 with different Ti doped ratios. 
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Fig. S4. (a) Light harvesting efficiency spectra for YFeO3 with different Ti doped ratios. (b) 
Electrochemical impedance spectra (EIS) of pure YFeO3, 3%, 5% and 7% Ti-doped YFeO3 in a 1 
M NaOH electrolyte at 1.6 V vs RHE. The right inset is an equal circuit for the catalyst/electrolyte 
interfaces. Electrochemical impedance spectrum fitting result is shown in Table S3. Rs is the 
electrolyte resistance. Rct and CPE is the charge-transfer resistance from the bulk to the surface of 
catalyst and the constant phase element, respectively. 

 
Fig. S4 showed the photo-absorption curve of pure YFeO3, 3%, 5% and 7% Ti-doped YFeO3. 

YFeO3 showed good light harvest and absorption capacity1. The cutoff wavelength of YFeO3 
could reach about 700 nm. 
  



 
 

6 
 

 

Fig. S5. XPS survey spectra. (a) XPS survey spectra of pure YFeO3 and 3% Ti-doped YFeO3 
from 0 to 1000 eV. XPS spectra of pure YFeO3 and 3% Ti-doped YFeO3: (b) Ti 2p, (c) Y 3d, (d) O 
1s 
 

Fig. S5a showed the XPS survey spectra of pure YFeO3 and 3% Ti-doped YFeO3 from 0 to 1000 
eV. Fig. S5c showed the high-resolution Y 3d region with two spin-orbit doublets with the main 
peaks. The Ti 2p region XPS spectra of pure YFeO3 and 3% Ti-doped YFeO3 were distinguished 
by Fig. S5b. There were two signals in the spectra of 3% Ti-doped YFeO3 located at 458.2 eV and 
464.3 eV corresponding to Ti 2p3/2 and Ti 2p1/2, which was agreed with the reported date2. It 
meant the doped Ti ions were presented as Ti4+ species. Fig. S5d showed the O 1s XPS spectra. 
At lower binding energy represent the oxygen in lattice and the surface absorbed oxygen observed 
at higher binding energy. The shift of O 1s peak to higher energy after Ti doping again proved that 
Ti element successfully entered the lattice of YFeO3. 
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Fig. S6. SEM and EDS images. (a) YFeO3, (b) 3% Ti-doped YFeO3, (c) 5% Ti-doped YFeO3, (d) 
7% Ti-doped YFeO3. 
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Fig. S7. TEM images. Low-resolution TEM of (a) YFeO3, (d) 3% Ti-doped YFeO3. In the high-
resolution TEM images, the lattice spacings of (b) YFeO3, (e) 3% Ti-doped YFeO3 are visible. 
Electron diffraction spot of (c) YFeO3, (f) 3% Ti-doped YFeO3 
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Fig. S8. The specific surface area and pore size distributions of the samples. (a) Nitrogen 
adsorption-desorption isotherms. (b) Pore size distribution based on BJH model. (c) The BET 
surface areas of pure and 3% Ti-doped YFeO3. 

The specific surface area and pore size distributions of the samples were measured using the 
BET method. As noted in Supplementary Fig. 8a the isotherms were classified as type IV with H2 
hysteresis loops (0.5–1 P/P0) according to the International Union of Pure and Applied Chemistry 
(IUPAC) classification and the specific surface area of 3% Ti-doped YFeO3 reached 18.38 m2g-1, 
similarly to that of pure YFeO3 (16.81 m2g-1) (Fig. S8c).  
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Fig. S9. Spherical aberration-corrected scanning transmission electron (STEM) images. (a, b) 
annular bright field (ABF) image of pure YFeO3 and Ti-YFeO3 and (c) high-angel annular dark field 
(HADDF) image of Ti-YFeO3. (The right is the selected area of the left.) The scale bars are 1nm. 
(d) The corresponding fast Fourier transform (FFT) patterns of Ti-YFeO3. (e) The crystal structure 
model of (001) plane and (f) perpendicular to the (001) plane. (g) Profile of the line in (c). The yellow 
and blue spheres represent Fe and Y atoms.  

. 
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Fig. S10. Shell-isolated nanoparticle-enhanced Raman spectroscopy of H2O2 (3 wt.% H2O2/H2O) 
and H218O2 (18O isotope labelling, 2-3 wt.% H218O2/H2O). 
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Fig. S11. Photo-Fenton reaction performance. (a) Time dependent RhB solution degradation in 
different systems. Specially, in pure YFeO3 light and 3% Ti-doped YFeO3 light systems, there were 
no H2O2. (b) Time dependent RhB solution degradation for pure YFeO3 and 3%, 5%, 7% Ti-doped 
YFeO3 with H2O2. (c, d) the corresponding Langmuir-Hinshelwood kinetics plots in these systems.  
  

a

c d

b



 
 

13 
 

 

Fig. S12. UV–vis spectral changes for RhB degradation with Ti-YFeO3/H2O2/light system. 
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Fig. S13. The removal efficiencies of different pollutants after reacting for 3 h. 
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Fig. S14. Calibration curve of 4-CP for 3-dimension excitation emission matrix fluorescence 
spectroscopy (3D-EEM). The left part showed 3D-EEM of 4-CP aqueous solutions with different 
concentrations (0 to 5 mg L−1). The excitation range was 270 to 340 nm, and the emission range 
was 290 to 450 nm. The right part showed that 3D-EEM intensity of 4-CP aqueous solutions had a 
linear relationship with the concentrations. 
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Fig. S15. Calibration curve under 4-aminoantipyrine methods. The left part showed the light 
absorption curves of 4-CP solutions with different concentrations (0 to 3 mg L−1) under the test of 
4-aminoantipyrine methods. The right part showed that light absorption intensity of 4-CP aqueous 
solutions had a linear relationship with the concentrations. 
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Fig. S16. 3D-EEM fluorescence spectra of 4-CP after different time degradation. (From left to right: 
0 min, 30min, 90min, 180min.) 
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Fig. S17. Degradation efficiencies of RhB in Ti-YFeO3/H2O2 light system with 3-round reactions. 
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Fig. S18. Calibration curves of Fe3+ ions under the 1, 10-phenanthroline method and detection 
curves of Fe3+ ions for the different systems. (a) The light absorption curves with different-
concentration Fe3+ ions under the test of 1, 10-phenanthroline methods. (b) The light absorption 
intensity had a linear relationship with the concentrations. (c) Absorptance curves of Fe3+ ions in 
the solution after reaction for pure YFeO3 and Ti-YFeO3 under the 1, 10-phenanthroline method. 
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Fig. S19. Characterization of catalysts before and after reaction. (a) Fourier translation infrared 
spectroscopy (FT-IR) and (b) XRD of Ti-YFeO3 before and after reaction. 
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Fig. S20. Shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS) with H2O2 in 
different system. (Yellow: YFeO3 system and Red: Ti-YFeO3 system) 
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Fig. S21. DMPO-•O2− for different systems after 15-minute visible light irradiation, respectively. 
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Furthermore, it was clear that •OH free radical was the main active species, but how it acts on 

pollutants was unclear. In order to study the method of •OH active free radicals working in the 

process of pollutant explanation, the degradation products of the model compound 4-chlorophenol 

were analyzed by electrospray high resolution mass spectrometry (ESI-HRMS) analysis (Fig. S22 

and S23) in negative ion mode (ESI), and the proposed molecular transformation pathways were 

inferred (Fig. 4g). Initial substrate 4-chlorophenol (deprotonated excimer ion peak m/z 127 by 

ionization in ESI mass spectrometry) was mainly degraded by the substitution, addition, or oxidation 

reaction of •OH active species and its degradation pathway mainly showed three reaction channels. 

The first reaction channel (down): 4-chlorophenol was oxidized dechlorination atom to form 

hydroquinone by •OH active species and then, the ring-opening cracking of benzene ring was 

induced by further oxidation to produce small carboxylic acids such as acetic acid, glycolic acid, 

buteneic acid and so on. These molecules finally were oxidized and degraded to generate small 

molecules of H2O, CO2, H2CO3, etc. The second and third reaction channels (up) were continuous 

oxidation of benzene ring followed by oxidative dechlorination. 4-chlorophenol was oxidized to 4-

Chlorobenzene-1,2-diol by substituting the hydrogen on the benzene ring with the •OH active 

species. 4-Chlorobenzene-1,2-diol was continue oxidized to form dihydroxy-tetrachlorophenol and 

then was oxidized dechlorination (channel 3). 4-Chlorobenzene-1,2-diol was directly oxidized 

dechlorination to form phloroglucinol (channel 2). The benzene rings of these molecules were 

broken down through the addition reactions, causing them to be degraded into small carboxylic 

acids. And they finally were degraded to generate small molecules. In terms of the response 

strength of the products (Fig. 4g) obtained from the three different paths, the first and second paths 

were more favorable than the third one, which may be due to the highest Fukui index values of the 

chlorine groups in 4-chlorophenol’s structure, leading to their preference for •OH species’ attacking3. 

As a result, the degradation of p-chlorophenol molecules was more prone to dechlorination followed 

by oxidation and deep cracking of the benzene ring. 
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Fig. S22. Mass spectrum of 4-CP decomposition intermediate products. 
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Fig. S23. GC-MS information at 30 minutes. The chromatographic images and mass spectrometry 

information were shown on the left and right, respectively. At 30 minutes of reaction, C6H5O3− 

(m/z=125.02), C6H5O2− (m/z=109.03), C6H4ClO3− (m/z=158.99) and C6H5O4− (m/z=141.02) species 

appeared. They belonged to channel 2, 1, 2 and 3, respectively. According to their integral strength, 

channel 1 and 2 as the intermediate species may play dominant roles. 
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Fig. S24. The structure of YFeO3 and Ti-YFeO3. 
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Fig. S25. Calculated H2O2 adsorption energy profiles for Ti sites at Ti-YFeO3 (blue), Fe sites at 
pure YFeO3 (yellow) and Fe sites at Ti-YFeO3 (red). 
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Table S1. EXAFS fitting parameters at the Fe K-edge for YFeO3 and Ti-YFeO3. 

 
 

aN: coordination numbers; bR: bond distance; cσ2: Debye-Waller factors; R factor: goodness of fit. 
  

Sample Shell Na R(Å)b σ2(Å2)c R factor 

YFeO3 Fe-O 5.10 2.12 0.00464 0.018 

YFeO3 Fe-Fe 6.01 3.63 0.00536 0.018 

Ti-YFeO3 Fe-O 5.11 2.14 0.00476 0.010 

Ti-YFeO3 Fe-Fe 6.05 3.66 0.00787 0.010 
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Table S2. Calculated free energy dates for the decomposition Path I and Path II of H2O2 moles 
on the surface of YFeO3 and Ti-YFeO3. (The unit is eV.) 

 

Sample H2O2 *H2O2 H-OOH(TS) *OOH+H *OH •OH 

YFeO3 0 -4.34192 -3.26166 -4.81457 -3.413 -2.46 

Ti-YFeO3 0 -4.43154 -4.03154 -4.69154 -3.20034 -2.46 

Sample H2O2 *H2O2 HO-OH(TS) *OH+OH *OH •OH 

YFeO3 0 -4.34192 -2.9351 -4.8143 -3.413 -2.46 

Ti-YFeO3 0 -4.43154 -3.45461 -4.5143 -3.20034 -2.46 
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Table S3. Electrochemical impedance spectrum fitting result in Fig.S4b. 
  

 Rs (Ω) Rct (Ω) CPE-T (F) CPE-P (F) 

Pure YFO 38.09 9387 7.071E-06 0.968 

3% Ti-doped YFeO3 38.74 2969 9.838E-06 0.961 

5% Ti-doped YFeO3 38.49 2731 1.003E-06 0.959 

7% Ti-doped YFeO3 45.6 4037 6.815E-06 0.971 
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