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Supplementary Tables 

Table S1 Data-driven parameter settings for BioTIP application in 6 datasets  

Object to count \ dataset 
hESC            

Bargaje 

2017  

lung             

Treutlein 

2014 

E8.25 

2019 

GSE87038  

E8.25 

2018 

Ibarra-

Soria 

EB      

GSE130146  

Simulated 

EMT  

Input Number of 

analyzed cells 929 131 7240* 11,039 1,531 5,362 

Input Number of 

detected/expressed 

genes 96 10,251 10.9k 12,703 15,200 18 

Input Number of global 

HVGs 

Not 

applicable 3,198 3,073 4,000 4,000 

Not 

applicable 

Parameter 

1 

Cutoff to select 

variable gene per 

cluster (b%) 80% 10% 10% 10% 10% 100% 

Output 1 Number of the pool 

of cluster-specific 

HVG  96 754 1.9k 2.3k 961 18 

Parameter 

2 

FDR for PCC 

before constructing 

gene modules 0.2 0.2 0.2 0.05 0.2 0.05 

Output 2 Number of genes in 

a cluster-specific 

network  70-76 49-340 64-294 131-387 213-336 17-18 

Parameter 

3 

Minimum module 

size (Number of 

genes) 10 30& 60&,** 30& 30& 6 

Parameter 

3 

Minimum DNB 

score to select CTS 

candidate 4& 2 2 2 2 0# 

Output 3 Resultant number 

of genes in the 

identified CTSs 18-43 32-180 60-90 33-127 58-64 11 and 12 

*: We apply BioTIP to 12 clusters of 7240 cells but discuss the robustness and stability with only 

6 clusters of 1362 cells for two reasons -- 1) to speed up the calculation, 2) to compare with 

QuanTC that has been applied to the same 1362 cells.  

**: When discussing robustness against different clustering inputs, we set this parameter to 30 to 

scan more modules.  

#: No signature is higher than 1 nor empirical significant because the expression matrix contains 

only 18 highly interactive genes.  

&: We show consistent BioTIP predictions when tuning this parameter. 
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Table S2 The classic developing mesoderm cell-lineage markers 

Cluster 

ID, E8.25 

2019 data 

Cell Identity 

Up-

regulated 

marker  

Lineage Reference 

C16 
Muscle 

mesenchyme 
Dlk1 Mesenchymal fibroblast (Chen et al., 2021) 

  Hand1 Mesoderm / cardiac 
(Mittnenzweig et al., 2021) 
(Bargaje et al., 2017) 

    Slc2a1 Muscle (Coudert et al., 2018) 

C13 early HEP Etv2 Mesoderm (Mittnenzweig et al., 2021) 

  Dlk1, Mest Mesenchym fibroblast (Chen et al., 2021) 

  Tal1, Lmo2 Hematopoietic (Chan et al., 2007) 

    Kdr 
Hematoendothelial/ 

cardiac 
(Evseenko et al., 2010) 

C15 later HEP CD34 Hematoendothelial (Evseenko et al., 2010) 

  Cdh5 Endothelial (Pijuan-Sala et al., 2019) 

    

Spi1 

(Pu.1), 

Itga2b 

Hematopoietic (Pijuan-Sala et al., 2019) 

C6 Endothelium Mest  Mesenchymal fibroblast (Chen et al., 2021) 

    Esam Endothelial (Pijuan-Sala et al., 2019) 
 

Reference: 

Bargaje, R., et al. (2017). Cell population structure prior to bifurcation predicts efficiency of directed 

differentiation in human induced pluripotent cells. Proc Natl Acad Sci U S A 114, 2271-2276. 

Chan, W.Y., et al. (2007). The paralogous hematopoietic regulators Lyl1 and Scl are coregulated by 

Ets and GATA factors, but Lyl1 cannot rescue the early Scl-/- phenotype. Blood 109, 1908-1916. 

Chen, B., et al., and Dun, X.P. (2021). Single Cell Transcriptome Data Analysis Defines the 

Heterogeneity of Peripheral Nerve Cells in Homeostasis and Regeneration. Front Cell Neurosci 15, 

624826. 

Coudert, E., et al. (2018). Expression of glucose transporters SLC2A1, SLC2A8, and SLC2A12 in 

different chicken muscles during ontogenesis. J Anim Sci 96, 498-509. 

Evseenko, D., et al. (2010). Mapping the first stages of mesoderm commitment during differentiation 

of human embryonic stem cells. Proc Natl Acad Sci U S A 107, 13742-13747. 

Mittnenzweig, M., et al. (2021). A single-embryo, single-cell time-resolved model for mouse 

gastrulation. Cell 184, 2825-2842 e2822. 

Pijuan-Sala, B., et al. (2019). A single-cell molecular map of mouse gastrulation and early 

organogenesis. Nature 566, 490-495. 
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Supplementary Figures with Legends 

Figure S1 
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Fig S1. Robustness of BioTIP, related to Figs 2, 3, 5, S7d, S13, S14 

a, Results of the hESC data running on different clustering methods and variable key parameters 

(y-labels). In parathesis is the defined number of cell clusters. Red star indicates the published 

clusters for this dataset, based on which we detail the BioTIP analysis in Fig 2.   

Left: Green bars showing the Jaccard scores quantifying a CT detection against the gold standard 

(GS) bifurcations – the established CT at primitive streak (PS) and the repeatedly detected CT at 

cardiomyocyte progenitor (CP) (by three tools -- BioTIP, MuTrans, and QuanTC). Green squares 

check when a prediction includes a transition state. Blue bars show the normalized F1 scores 

indicating each CT state. Red squares check if a CTS contains the GS markers – a previously 

evaluated transition markers at day 2.5 (around the PS state), for each run.  

Right: ROC plot comparing five clustering methods (with optimal parameters) that detected both 

GS markers as CTS members at PS, using nine consistently identified CTS member genes as a 

proxy gold standard (PGS). AUC scores are given in paratheses. 

b-e, Like panel a but using proxy gold standard (PGS), showing the results in four independent 

datasets. There are no evaluated transition marker genes for any of the datasets. Therefore, we 

infer two types of PGSs for each dataset.  

(1) For CT detection, the GS bifurcation(s) are the known transition state in the system 

and/or the one predicted by both BioTIP and QuanTC. An exception is panel c, in which the HP 

state is additionally considered because it has significant and stable CTS detected by BioTIP 

from down-sampled data (Fig S7d). These CT clusters serving as proxy GS are listed on the top-

right of the green bars.  

(2) For CTS identification, the proxy GS markers are consistently predicted genes 

indicating the best-known transition state in a system, specified atop the blue bars.  

The BioTIP results demonstrated in main Figures are highlighted in red. 𝑥𝑔 𝑦 ≥ 𝑧 call: x 

reproducibly identified CTS genes by at least y out of z predictions; SNNGraph: nearest-

neighbor graph clustering; Soft.wo.TC: the stable states defined by soft clustering approach 

using QuanTC pipeline then excluding the transition cells.  

Other abbreviations: hESC: human embryonic stem cells; EB: embryoid body; EMT: epithelial-

to-mesenchymal transition; SNNGraph: nearest-neighbor graph; TC: transition cell; QuanTC: a 

model-free method to detect transition cells; E16.5: embryonic day 16.5; eHEP: early haemato-

endothelial progenitor; lHRP: later haemato-endothelial progenitor; EP: endothelial progenitor; 

HP: haematopoietic progenitor; FLK1+: FLK1-expressing mesoderm; eMeso: early mesoderm; 

CP: cardiomyocyte progenitor. 
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Figure S2 

 

  



P a g e  | S8 

 

 
 

Fig S2. Analysis of the hESC dataset, related to Fig 2 

a, Top: Established cell lineage markers.  Bottom: TSNE plot showing marker gene expression 

of individual cells, numbered by 18 unique cell cluster IDs. Each dot represents a single cell. Dot 

color decodes expression levels on log-2 scale.  E: epiblast, PS: primitive streak; M: mesoderm, 

En: endoderm, CP: cardiomyocyte progenitor, CM: cardiomyocyte.  

b, A graph view of network modulation determined by the random-walk approach for 

preselected HVGs (dots) for C9 cells. Background colors represent different gene modules. The 

module size is listed in parentheses. 

c-d, Bar plot of significant upstream regulators for the 18 genes (panel c) or 23 genes (panel d) 

charactering C9. Bar color decodes the molecular types of these upstream regulators. Also shown 

are the target genes and enrichment p-values (IPA analysis). Red font highlights the established 

fate-determining TFs (for either PS or CM state) and early-warning genes for the bifurcation.  
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Figure S3 

 
Fig S3. Applying existing Ic approach to six datasets, related to Fig 5.   

a, Ic scores in hESC after sampling n=20 background (measured) genes. Boxplot shows the 

scores per cluster after 100 runs. The red line connects the average scores. Clusters are ordered 

along an inferred trajectory in Fig 5c. The red label highlights the gold-standard TC clusters, 

each is compared to adjacent clusters using Wilcox test. *: P<0.05, **: P<0.01, ***: P<0.001, 

****:P<0.0001. 

b-f, Similar to panel a, one panel showing the results of one dataset. For big datasets, the global 

HVG is the background genes. The value of n is adjusted due to the size of background genes, 

although Ic scores has been shown to be robust to the value of n (Bargaje et al., 2017).  
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Figure S4 
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Fig S4. Applying QuanTC to the Bargaje dataset, related to Figs 2 and 5.   

a, The first 20 sorted eigenvalues (x-axis) of the graph Laplacian of the constructed consensus 

matrix. The number of consensus clusters (cC) (k=4, red arrow) was predicted, where the largest 

gap along the y-axis is observed. 

b, Two-dimensional probabilistic regularized embedding (PRE) visualization for four consensus 

clusters (left) or cell collection time points (right). 

c, Percentage of identified transition cells (TC) in each cluster relative to the total number of TC. 

Font color in the x-axis is consistent with panel b. Dashed box: the relatively stable cluster where 

the most transition cells are similar to the true cell label chosen as the starting cluster to infer 

potential transition trajectories.  

d, Transition trajectories with node colors consistent with panel b. Percentages of TC between 

clusters are shown.  

e, Heatmap of normalized expression of 5 top marker genes and 6 top transition genes for the 

chosen trajectory with the highest proportion of cells involved. Columns represent cells ordered 

along the transition trajectory and rows represent genes. Color indicates the normalized 

expression of each gene: red represents high expression and blue represents low expression. The 

identified transition genes are marked in two boxes. The expression of genes either decrease 

during the transition from cC3 to cC2 (blue box, TC #1) or increase (maroon box, TC #2).  Top: 

Histogram of cell plasticity index (CPI) values of each cell along the transition trajectory. 

Dashed horizontal line marks the cutoff of CPI. Other identified transition genes for the 

transition cells (TC #1) are listed on the right. Only one transition gene (Sox17, orange box) was 

detected for the TC #2. 

f, Histogram of cell plasticity indexes (CPI) values of each cell along the transition trajectory, 

colored by collection day (top) and the cell identity published by the Bargaje (bottom). TC #1 

describes the transition from PS (C9) to cardiomyocyte progenitor (C10, see Figure 2a). TC #2 

at the PS state describes possibly gaining endothelial fate. E: epiblast, PS: primitive streak; En: 

endoderm. 
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Figure S5 
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Fig S5. Comparing BioTIP to MuTrans using the hESC dataset, related to Fig 2.   

a, The constructed dynamical manifold of cells collected from day 0-2.5 and day 3-4 along the 

cardiomyocyte lineage using MuTrans. Colored arrow distinguishes the verified tipping point at 

day 2-2.5 (red) or the newly identified one at day 3 (purple). The color of each individual cell 

represents the cell-collection day. The dashed square indicates the transition event (panel b). 

b, Transition cell scores (y-axis) estimated for 227 cells of day 3 and day 4. Purple lines isolate 

24 MuTrans-predicted transition cells, among which 23 are day 3 cells (subset of C10).  

c, Bar plot displaying the log2-scaled expression patterns of four CTS member genes for C9. Red 

arrows point to the highest standard deviation (sd) at C9 for each gene. E: epiblast, PS: primitive 

streak; CM: cardiomyocyte, En: endoderm.  

d, Venn diagrams comparing BioTIP’s precision for C10 with three types of MuTrans-predicted 

transition genes. Transition driver genes vary during transition. Intermediate hybrid genes are 

expressed in both stable and the transition cells; meta-stable genes are expressed in the stable 

states (Zhou et al., 2021). The Fisher’s exact test was performed using 96 measured genes as 

background.  NS: non-significant.    

e,. Same as panel c, except with CP marker MESP1/2 and C10. CP: cardiomyocyte progenitor.  
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Figure S6 

 
Fig S6. Applying QuanTC to the lung dataset, related to Figs 3 and 5.   

a-e, Same as Figure S4, except applied to the lung dataset. The identified transition genes are in 

two boxes – decreasing in E16.5 cells (TC #1) and decreasing in the transition from E14.4 cells 

to E16.5 cells (TC #2). CPI: cell plasticity indexes. 
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Figure S7 
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Fig S7. Analysis of the E8.25, 2019 dataset, related to Figs 4-6. 

a, Lines show the average expression levels of Kdr in each of the 19 cell states. 

b, Distribution of the approximate silhouette width (y-axis) across 19 cell states (x-axis) of the 

dataset. Each point represents a cell and is colored with the identity of its own cluster if its 

silhouette width is positive, or that of the closest other cluster if the width is negative. The higher 

a silhouette score is, the more consistent the cluster.  

c, Trajectory reconstruction of the 19 clusters using the Minimum-spanning-tree algorithm. The 

red dot is the knowledge-based root in the trajectory. Blue points are the BioTIP-predicted CT 

states. 

d, Stability of BioTIP estimated from 1362 cells and 3 k HVGs after down-sampling 95% genes 

and 95% cells (20 runs). Left: Frequency of identifying each cluster as a significant CT state. 

Right: The normalized F1 score for CTS identification at each of the four states serving as proxy 

gold standard (Detailed in Fig S1c). In both subpanels, color encodes the minimal gene-module 

size to be detected. **:P<0.001; ***:P<0.001 in t-test. 

e, Venn-diagram comparing each CTS gene members (filled circle) with their potential 

regulatory TFs (black circle), and the up-regulated biomarkers of the representative critical 

transition state (colored circle). lHEP: later haemato-endothelial progenitor; End: endothelial; 

eHEP: early HEP. 

f, Comparing QuanTC-identified transition genes with BioTIP-identified CTSs. When there is 

common identification, the odds ratio (OR) and p-value of the Fisher’s exact test between the 

two identifications are shown. QuanTC’s results with 4 or 6 stable states are shown (Detailed in 

Figs S9, S10). QuanTC was run on the 1362 cells spanning three BioTIP-predicted transition 

states and their neighboring clusters in the UMAP space but not the muscle mesenchyme state. 

Grey box: the negative control where no common identification was expected.  QuanTC run with 

6 states predicted two transition trajectories with different starting points; each detected four sets 

of transition genes (Detailed in Fig S10). HEP: haemato-endothelial progenitor; HP: 

hematopoietic progenitor; EP: endothelial progenitor; M: muscle mesenchyme. 
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Figure S8 
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Fig S8. Comparing the classic up-regulated markers between two E8.25 datasets, related to 

Fig 4 

a, Heatmap showing the top-5 ranked regulated genes each identified E8.25 bifurcation state over 

other E8.25 states (2019). Euclidean distance was measured, and normalized log counts were 

centered and scaled along the x-axis. Pairwise comparisons between cell states were run using the 

Wilcoxon rank-sum test.  

b, Like panel a but for the top 10 up-regulated markers detected from the E8.25 (2018) dataset. 

Each blue arrow connects clusters of different datasets predicted to be the same bifurcation state 

(See Fig 4g). Pairwise comparisons between cell states were run using a t-test. The up-regulated 

markers were identified as a summary logFC > 1, FDR<0.01, and rank ≤ 10, using the R package 

scran.  

In both panels, classic cell identification markers annotating the cluster are highlighted in red.  
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Figure S9 

 

Fig S9. Applying QuanTC (k=4) to the E8.25 2019 dataset, related to Fig 4.   

a-e, Same as Fig S4, except applied to the E8.25 2019 dataset and with the number of consensus 

clusters (k=4, red arrow) was predicted, where the largest gap along the y-axis is observed. M: 

mesenchyme; HEP: haemato-endothelial progenitor; HP: hematopoietic progenitor; EP: 

endothelial progenitor. CPI: cell plasticity indexes.  
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Figure S10 

 

Fig S10. Applying QuanTC (k=6) to the E8.25 2019 dataset, related to Figs 4-5.   

a-e, Same as Fig S9, except k=6 (panel a, red arrow) was tried, where the 2nd largest gap along 

the y-axis is observed. Panel e has cC6 chosen to be at the start of the transition trajectory.   

f, Histogram of CPI along the trajectory starting from cC3. Each dot is a cell colored with cell 

identity, same colors as in panel b ‘consensus clustering in PRE’. Three predicted transition-cell 

(TC) populations (#1, #2, #3) are the same as in panel e.  
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Figure S11 

 

Fig S11. Comparing Ic.shrink with the existing Ic methods, related to Fig 5 

a-b, Same as Fig 5 a-b, except applied to the EB dataset.  
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Figure S12 

  

Fig S12. Applying BioTIP to the E8.25 2018 dataset, predefined subcell types, related to Fig 

5.   

a-f subpanels are presented in the same way as Fig 3. One exception is that in panel e, purple 

arrows point to where the observed score at the intended cluster (labeled red in axis) failed to be 

the highest score in the system and is rejected. 
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Figure S13 

 

Fig S13. Applying BioTIP to the EB dataset, related to Fig 5.   

a-f subpanels are presented similar to Fig 3. One exception is that in panel e, purple arrows point 

to where the observed score at the intended cluster (labeled red in axis) failed to be the highest. 

FLK1+: FLK1-expressing mesoderm; eMeso: early mesoderm; CP: cardiomyocyte progenitor.  
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Figure S14 

 

Fig S14. Applying QuanTC (k=8) to the simulated EMT dataset, related to Fig 5.  

a-e subpanels are presented the same as Fig S4 except applied to the simulated EMT dataset.   
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Figure S15 

 

Fig S15. Applying BioTIP to the simulated EMT dataset, related to Fig 5.   

a-e subpanels are presented in the same way as Figure 2. In panel e, purple arrows points to 

where the observed score at the intended cluster (labeled red in axis) failed to be the highest 

score in the system and is rejected. Note the observed DNB and Ic.shrink scores fall into the 

range of their ‘random’ controls (c-d). This is because there are only 18 selected genes measured 

in this data, we cannot simulate true random control. Therefore, we simplify call the cluster with 

the highest score as the identification in this system, resulting in one identification of 13 genes at 

the cluster of transition cell (TC).   

f, Stability of BioTIP estimated from 5362 cells of 4 predefined clusters and 18 genes after down-

sampling 95% genes and 95% cells (20 runs). The normalized F1 score for CTS identification at 

two CT clusters (TC and I1) is graphed. F1 compares each run and the identified CTSs from the 

whole dataset. Shown are those positive F1 scores (outputs with commonly identified genes) and 

the t-test statistics. 
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Figure S16 

 

Fig S16. Computational evaluation of Etv2 targets, related to Figs 5, 6 

a, Venn diagram comparing the CTS identification by DNB and the transition markers identified 

by QuanTC from three datasets. Among QuanTC’s many predictions, the transition related to 

haemato-endothelial bifurcation are considered. Also shown is the empirical p-value to observe 

the overlap among three global HVG. 

b, ETS-binding motifs are enriched at the proximal promoters ([-200, 100] around TSS of the 60 

early HEP CTS genes. 

c, Pairwise correlation between Etv2 and its 5 direct targets in the independent E8.25 2018 dataset. 

We observe distinct patterns for each gene pair. Pearson coefficients P<0.05 are shown.  
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Supplementary methods 

1. Predicting upstream regulatory transcription factors 

We exam four pieces of evidence – IPA (Kramer et al., 2014), TF-binding motif, and ChIP-seq, 

and literature – to predict the upstream regulator of identified CTS genes. IPA is a curated 

repository (QIAGEN Inc., https://www.qiagenbioinformatics.com/products/ingenuity-pathway-

analysis) (Kramer et al., 2014). IPA explains the expression changes of CTS genes with 

regulators whose changes in expression are relevant to what is expected from the literature. The 

cutoff settings were FDR<0.005, at least 10% of target genes, and molecular type=’transcription 

regulator’ or ‘growth factor’. Because transcriptional regulation requires the binding of 

transcription factors (TFs), we also search for enriched ‘known’ TF-binding motifs from curated 

repositories which are mostly based on the analysis of public ChIP-Seq data sets, using Homer 

software (Heinz et al., 2010). Significance settings were Benjamini-adjusted p<0.005 and at least 

20% of target promoters ([-200,100] around TSS) with a known motif. We further analyze TF-

promoter interactions derived from ChIP-seq data for knowledge discovery, using Homer 

software. Promoters were directly extracted from the assembled transcripts of RNA-seq but were 

retrieved from the Ensembl (GRCm38_release97) annotations for the mouse gene symbols. 

Promoters overlapping with the blacklist were removed (Amemiya et al., 2019). We considered 

significance at a level of Benjamini-adjusted p<0.005 and at least 20% of target sequences with a 

known motif. 

 

2. Network partition 

We calculate co-expression between all pairs of cluster-specific HVG across cells in that cluster 

and build a cluster-specific network. A parameter FDR < 𝑥 of between-gene correlation impacts 

the node (gene) size of this network, for which we use a value from 0.05 to 0.2 to focus on 

50~200 genes per cell cluster (Table S1). Then, we construct communities in this network via 

random walks. The ideal is that short random walks tend to stay in the same community (Pons 

and Latapy, 2005). This step partitions co-expressed, cluster-specific HVG into modules.  

 

3. Evaluating stability and robustness 

a. Inferring proxy gold standard (GS) 

A GS per dataset is needed for a quantitative comparison. For CT detection, the established 

transition state or the consistently identified state(s) by BioTIP and QuanTC serve as a proxy 

gold standard. For CTS identification per transition state, the consistently identified CTS-

member genes by BioTIP running on variable clusters or by QuanTC serve as a proxy GS (Fig 

S1). An exception is the estimation of the largest E8.25 2018 data (11k cells), for which we 

simply use the BioTIP’s prediction from the whole dataset as a proxy GS. 
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b. Evaluating stability (Figs 2f, 3f, S7d, S12f, S13f, S15f) 

We modify the methodology described in a previous benchmark (Saelens, Cannoodt et al. 2019) 

to evaluate the stability of BioTIP. The stability is evaluated by the similarity between each 

output using down-sampled data and the (proxy) gold standard inferred from the whole dataset. 

We sample 95% of the cells and 95% of the genes iteratively and then apply BioTIP, doing n (20 

or 10) iterations.  

Regarding CT detection, we calculate the frequency to predict each cluster using down-

sampled data. We ask whether among n runs, the CT cluster(s) serving as a GS present the 

highest frequency (or consistency). We first input our original clustering results and parameter 

settings into BioTIP to calculate this frequency. Additionally, we calculate the frequency when 

tuning the parameters: minimum DNB cutoff and minimum gene module size. 

Regarding CTS identification at the best-known transition state in a system, we calculate 

the F1 score that quantifies the similarities of two sets of genes (Saelens, Cannoodt et al. 2019). 

Given two gene sets, one is a CTS predicted in run i and another is the GS genes per dataset, the 

agreement is quantified by counting their shared members based on the Jaccard similarity. Let 

𝑚 ∋ {𝑔} denote a prediction (i.e., the significant module we named CTS), 𝑚′ ∋ {𝑔𝐺𝑆} the set of 

the GS genes (i.e., consistently identified CTS member genes in this dataset), and |.| the 

cardinality operator which counts how many elements are in a set. This gives: 

𝐽𝑎𝑐𝑐𝑎𝑟𝑑𝑔𝑒𝑛𝑒(𝑚, 𝑚′) =
|𝑚 ∩ 𝑚′|

|𝑚 ∪ 𝑚′|
 

For each run with significant CTSs using down-sampled data, there will always be a GS-

best-matched CTS prediction even this run fails to predict the best-known transition. Therefore, 

we introduce a numerical weight to indicate whether the best-matched prediction represents the 

GS transition state. Then, we define the ‘Recovery' as the maximal similarity between all 

predicted CTSs and this GS gene set. We also defined the ‘Relevance’ as the average maximal 

similarity to this GS set for every predicted CTSs. Since BioTIP can predict multiple CTSs, this 

Relevance estimates the precision of CTS identification. A harmonic mean between Recovery 

and Relevance gives an F1 score for the best-known transition per dataset. Let 𝑀𝑖 be the set of 

predicted CTSs in run i from a dataset. This gives the 𝐹1 score:  

𝑥 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑚∈𝑀𝑖
𝐽𝑎𝑐𝑐𝑎𝑟𝑑𝑔𝑒𝑛𝑒(𝑚, 𝑚′) 

𝑤(𝑚, 𝑚′) =  {
1,  𝑥 𝑎𝑛𝑑 𝑚′ 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑠𝑡𝑎𝑡𝑒

−1,  𝑥 𝑎𝑛𝑑 𝑚′ 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 𝑠𝑡𝑎𝑡𝑒𝑠
   

𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦 = 𝑚𝑎𝑥𝑚∈𝑀𝑖
𝐽𝑎𝑐𝑐𝑎𝑟𝑑𝑔𝑒𝑛𝑒(𝑚, 𝑚′) ∗ 𝑤(𝑚, 𝑚′) 

𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒 =
1

|𝑀𝑖|
∑ {𝐽𝑎𝑐𝑐𝑎𝑟𝑑𝑔𝑒𝑛𝑒(𝑚, 𝑚′) ∗ 𝑤(𝑚, 𝑚′)}

𝑚∈𝑀𝑖
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𝐹1 = 2 ∗
𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦 ∗ 𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒

𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦 + 𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒
=

2

1
𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦 +

1
𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒

 

c. Evaluating robustness against clustering methods (Fig S1) 

Similarly, we modify the methodology described in a previous benchmark (Saelens, Cannoodt et 

al. 2019) to evaluate the robustness of BioTIP. The robustness is discussed when iteratively 

applying BioTIP to a dataset, after the same cells have been clustered by different clustering 

methods with variable parameters. Each clustering procedure i generates a new set of clusters, 

and BioTIP subsequently has a new prediction. 

We first map all new cell clusters to every GS cluster to mimic a proxy GS for this new 

set of clusters. This is because the proxy GS for transition states is induced based on a reliable 

clustering method (red x-labels in Fig S1 and presented in Fig 5c which are either predefined or 

our originally chosen clustering method). Given new cell cluster assignments of the same 

dataset, we find the GS-best-matched cluster based on the Jaccard similarity of cells. We 

calculate a 𝐽𝑎𝑐𝑐𝑎𝑟𝑑𝑐𝑒𝑙𝑙(𝐶𝑒𝑙𝑙, 𝐶𝑒𝑙𝑙′) metric, where 𝐶𝑒𝑙𝑙 ∋ {𝑐𝑒𝑙𝑙𝑠} denotes a cell cluster, and 

𝐶𝑒𝑙𝑙′ ∋ {𝑐𝑒𝑙𝑙𝑠𝑜𝑓 𝑎 𝑡𝑟𝑎𝑛𝑠𝑖𝑖𝑡𝑜𝑛 𝑐𝑙𝑢𝑠𝑡𝑒𝑟} denotes the transition cells that served as GS. Among a new 

set of clusters in procedure i, the one having the highest 𝐽𝑎𝑐𝑐𝑎𝑟𝑑𝑐𝑒𝑙𝑙 score will represent the GS 

state for this prediction in this dataset.  

Regarding CT detection per clustering procedure i per dataset, we then compute the 

𝐽𝑎𝑐𝑐𝑎𝑟𝑑𝑐𝑙𝑢𝑠𝑒𝑟 score between the new set of predicted transition clusters {𝐶𝑖} and its mimicked 

proxy GS clusters  {𝐶𝐺𝑆}. This gives: 

𝐽𝑎𝑐𝑐𝑎𝑟𝑑𝑐𝑙𝑢𝑠𝑡𝑒𝑟(𝐶𝑖 , 𝐶𝐺𝑆) =
|𝐶𝑖∩𝐶𝐺𝑆|

|𝐶𝑖∪𝐶𝐺𝑆|
. 

Regarding CTS identification, we calculate the 𝐹1𝑖 score as above described, where i 

indexes cell-clustering procedures. 

d. Quantitative method comparison (Fig 5, d-e) 

For each of the 6 datasets, we apply four methods (DNB, Ic, BioTIP, QuanTC) and get a set of 

CT clusters per method. Each CT prediction is compared to the GS transition states by the 

𝐽𝑎𝑐𝑐𝑎𝑟𝑑𝑐𝑙𝑢𝑠𝑡𝑒𝑟 score. For the three methods (DNB, BioTIP, QuanTC) that also predict transition 

markers, we assess their predicted gene sets by the similarity to the GS markers per dataset, 

using the above-detailed 𝐹1𝑖 score, where i indexes the studied methods. 

e. F1 Normalization  

To ensure that easy and difficult datasets have equal influence on method comparisons, we 

normalize the scores on each dataset as previously described (Saelens, Cannoodt et al. 2019). To 

normalize, we first scale and center the F1 scores to σ = 1 and µ = 0, then applied the unit 

probability function that moved the score values back to the range [0, 1].  
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4. Presentation of the analyses in six independent datasets 

In the main Figures 2-4 and the supplementary Figures S12, S13, and S15, we structure figure 

panels consistently:   

a) Describing the data and the system (lineage differentiation and cell clusters),  

b)  Presenting maker gene expression (for <100 detected genes) or HVG selection (from 

 >10k measured genes),  

c)  Constructing gene modules, 

d) Identifying CTS candidates, 

e) Identifying significant CTSs (each characterizing one CT cluster), 

f) Evaluating the robustness and stability using down-sampled data (or the reproducibility 

using an independent dataset in Fig 4), and  

g) Summarizing the system and pointing the known CT cluster(s), for two benchmark 

datasets (Figs 2g, 3g).  

In each figure, we also specify the number of cells measured and the number of analyzed 

cells. The number of cells measured could be larger than the number of analyzed cells to have a 

better view of the system.  

Identified CTSs are named in the format of its representing cluster ID together with gene 

numbers. This is because one cluster could have multiple CTS identifications. 

BioTIP analysis was conducted using the wrap function in our developed R package. 

QuanTC analysis was conducted using the optimally-selected number of clusters. Ic analysis was 

also conducted using the BioTIP R package but with 10-50 randomly selected HVGs. 

 

5. Analysis of the benchmark hESC dataset of early cardiogenesis (Figs 2, S4, S5)  

Design. To demonstrate the accuracy of CTS predictions, we reanalyzed the single-cell TR-PCR 

data with an experimentally validated lineage bifurcation and its marker gene KIT (Bargaje et al., 

2017). It is a time-course collection of cells when the activin A, BMP4, combined with a Wnt 

pathway activator were added to induce pluripotent stem (iPS) cells differentiating into 

cardiomyocytes. Day 2-2.5 was the verified pitchfork bifurcation when multipotent primitive 

streak (PS)-like progenitor cells branched out into either the mesoderm cardiomyocyte (CM) 

lineage (marked by Hand1) or the competing endoderm (En) lineage (marked by Sox17). Fig 

S2a presents the lineage mark gene expression. The expression levels of DKK1, WNT5B, and 

PDGFRA were highly correlated with the BMP-induced differentiation efficiency towards 

cardiac cell fate (Bargaje et al., 2017). 

Transcriptome. This dataset contains the gene expression profiles of 96 developmental genes 

for 1,934 cells collected from eight timepoints (Bargaje et al., 2017) (Fig 2a). Gene expression 

matrix, cell collection date, and the cells’ consensus cluster IDs were downloaded from the 

original publication.  
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Data analysis. We focused on the temporal gene expression profiles of 929 cells at six time 

points (days 0 - 2.5, and mesoderm-specific day 3) as previously analyzed by Ic (Bargaje et al., 

2017). Data for 96 genes and these 929 cells were transformed into a SingleCellExperiment 

object in R. Data visualization was performed on the reduced dimension of the gene expression 

space, using the package scater.  

BioTIP analysis was conducted on the previously defined consensus clusters (Bargaje et al., 

2017). When analyzing the author-defined consensus clusters, we excluded the cluster 6 (C6) 

which is a small population of endoderm-specific cells collected at day 2.5 (n=15, Fig 2a). This 

allows us to focus on the differentiation path from PS towards mesoderm-specific cells. From 

both analyses, we narrowed down to the top 80% most variable genes of the 96 measured genes, 

allowing 69-76 genes selected (using the ‘optimize.sd_selection’ function with default 

parameters except for cutoff = 0.8). To build gene modules, we used the ‘getNetwork’ function 

while controlling the FDR of PCC (≤ 0.2). Finally, we fed to the DNB-scoring system these gene 

modules and set a minimum model size to be 10 genes for the downstream analyses.  

QuanTC analysis was conducted on the same 929 cells that had been analyzed by BioTIP and Ic, 

using MATLAB version R2020b. The software package was downloaded from 

https://github.com/yutongo/QuanTC (Sha et al., 2020). A cell-cell similarity matrix was 

generated using the R package SC3 version 1.18.0 with default parameters except for that gene 

filter = FALSE. We took the average of the consensus clustering results (k=5:10) to robustly 

estimate cell-cell similarity. Additional inputs for the QuanTC analysis include the normalized 

count matrix, the gene symbols, and the cell collection date. We excluded the gene-preselection 

process, given the small number of measured genes. To identify the transition state and gene 

signatures, we set the two parameters: number of clusters to be 4 where the largest gap is 

observed from the sorted eigenvalues of symmetric normalized graph (Fig S4a), and the 

threshold of cell plasticity index (CPI) to select transition cells = 0.34 by default. The transition 

trajectory from C3 to C2 to C4 (mostly of day 2.5 cells) included 72% of total cells, indicating 

that this path dominates the cell transitions from PS to cardiomyocytes, at least in this dataset 

(Fig S4e). This analysis detected 13 transition genes from C3 to C2, and one (the endothelial 

mark SOX17) transition gene from C2 to C4.    

MuTrans analysis (Fig S5) is conducted using MATLAB version R2020b. The software package 

was downloaded from https://github.com/cliffzhou92/MuTrans-release (Zhou et al., 2021).   

 

6. Analysis of the mouse lung epithelial cells (Figs 3, S6) 

Design. This published data (GSE52583) describes how lung-epithelium progenitor cells 

differentiate into two alveolar types (ATs). Cells were collected from four embryonic days (E): 

E14.5 (early progenitors), E16.5 (around the critical transition), E18.5 (transitioned to AT1 or 

AT2 with distinct expression patterns), and mature AT2 lineage cells (Treutlein et al., 2014). 

Among these four timepoints, a known lineage bifurcation occurs at E18.5, when cells co-

https://github.com/yutongo/QuanTC
https://github.com/cliffzhou92/MuTrans-release
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express certain “bipotent progenitor” markers: either Ager and S100a6 for AT1 or Sftpc for AT2 

(Guo et al., 2019; Treutlein et al., 2014). A previous study using the Ic model found that E16.5 is 

a CT state (Mojtahedi et al., 2016). 

Transcriptome. 198 single-cell transcriptomes from mouse lung epithelium were downloaded 

from GEO (GSE52583). The downloaded transcript levels (mm10) were already quantified as 

fragments per kilobase of transcript per million mapped reads (FPKM) followed by a depth-

matching process. The phenotypic cell annotations were downloaded from publication (Treutlein 

et al., 2014).  

We analyzed 22,854 mouse RNAs (mm10, including 1.5k annotated non-coding RNAs) 

after a three-step data pre-processing method. First, we removed the ERCC controls. Then, we 

annotated these transcripts using the Bioconductor package biomaRt, and finally collapsed the 

FPKM values for multiple transcripts of the same gene symbol by the mean value. Then, the 

gene FPKM values were converted to gene counts using the R package Monocle3.  

Gene and cell filtering. Genes with a count value below 2e-18 (the left tail of the overall count 

distribution) were considered ‘not expressed.’ 10.3k genes that were expressed in at least 10 cells 

were preserved for downstream analysis. After removing the transcripts having no matched gene 

symbols in the MM10 genome (biomaRt_2.42.0 or DBI v1.1.0), 15,897 transcripts were 

preserved for further analysis. 

Often, doublets or triplets have roughly twice the mRNA recovered as true single cells. 

After removing two adult cells with either very low mRNA recovery or far more mRNA than the 

typical cells, 196 single cells were kept for further analysis.   

Data analysis. Cell clustering using with Leiden community detection (k=5), principal 

component analysis, visualization for marker genes, and pseudo-trajectory construction were 

performed using the R package Monocle3 11. To demonstrate the ability of BioTIP to 

characterize the tipping-point state along a linear topological trajectory, we focused on 131 cells 

by excusing the potential AT1-lineage cells. 

BioTIP analysis was conducted with the parameters detailed in Table S1 (Fig 3).  

QuanTC analysis was performed with a high cut of CPI value (0.5 rather than the default 0.35) to 

select the most promising transition cells, and other by default parameters (Fig S6). 

 

7. Analysis of the mouse E8.25 developing mesoderm 2019 cells (Figs 4, 6, S7-S10) 

Design. To demonstrate the application of BioTIP, we analyzed a single-cell map of mouse 

embryogenesis to study ‘tipping points’ in development (Pijuan-Sala et al., 2019). We focused 

on early organogenesis at embryonic day (E) 8.25 when mesodermal layers were connected 

(Pijuan-Sala et al., 2019). There were 15.9k E8.25 cells measured in this dataset. 
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Transcriptome. We extracted the single-cell gene expression counts, size factors, normalized 

values, experimental batches (10x sample IDs), and gene annotations from 

MouseGastrulationData package in R (Pijuan-Sala et al., 2019). This database also provides cell 

metadata, batch-corrected principal components, and manually annotated cell types. We focused 

on 7,240 E8.25 cells after removing cells that were annotated as putative doublets or cytoplasm-

stripped nuclei.  

Data analysis. We focused on 10.9k expressed genes from the total 29k measured genes that met 

two criteria: 1) having positive biological components in each dataset after splitting the overall 

variance of the log-normalized expression into biologically relevant and noise components, and 

2) having positive biological components in all combined E8.25 cells while accounting for batch 

effects and assuming Poisson distribution about the noise.  

PCA was performed using these expressed genes, and the first 10 principal components were 

used for cells clustering. All 7,240 E8.25 cells were clustered into 19 subpopulations (states, Fig 

4a) after constructing a graph that considers the k=10 nearest neighbors (buildSNNGraph). To 

detect coherent and ‘poorly’ separated clusters, we performed silhouette-width analysis on the 

dimension-reduced expression profiles (top 50 principal components) using the ‘approx’ 

function. Silhouette in bluster package in R was used to approximate the average distances for 

faster computation in large datasets. Two clusters (C3 and C10) with mostly negative silhouette-

width were ‘poorly’-separated cell states (Fig S7b). 

Marker genes defining each state were identified using the ‘findMarkers’ function in scran (Lun 

et al., 2016) (Wilcox test, pairwise comparisons, top 5 genes for each comparison) and these 

were used to annotate clusters based on well-known cell-type specific genes.  

C13 and C10 clusters standout, given that they have both common and distinct expression 

patterns -- both are the sub-clusters of HE progenitors which share up-regulated marker genes 

Kdr, Etv2, and Lmo2 (Fig S8a); other commonly up-regulated genes include both the 

hematopoietically expressed homeobox gene Hhex and the endothelial marker Slc25a5, 

suggesting the multipotentiality. States C13 and C10 also have notable differences in gene 

expression. C13 has higher average expression of Kdr than C10 and is marked by Etv2 target 

Tal1. C10 is marked by average expression of Flt1 that can inhibit Kdr expression (Koyano-

Nakagawa et al., 2015). 

Trajectory analysis was performed among all 19 clusters using the minimum spanning tree 

(MST) algorithm. We first summarize the cells into a smaller set of discrete units and compute 

cluster centroids by averaging the coordinates of its member cells. We then form the MST across 

those centroids. 

Using BioTIP, we identified four putative CTSs from 19 cell clusters. To this end, we first pre-

selected 3,073 highly variable genes (HVG) across all populations, using the ‘getTopHVGs’ 

function in scran (Lun et al., 2016). From these genes, we narrowed down to the top 10% 

variable genes within each subpopulation (using the ‘optimize.sd_selection’ function with 
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default parameters except for cutoff = 0.1). This second feature selection defined 1.9k state-

specific HVG (Fig 4b). To build gene modules from these 1.9k genes, we used the ‘getNetwork’ 

function while controlling the FDR of PCC (≤ 0.2). Finally, we fed to the DNB-scoring system 

these gene modules and set a minimum model size to be 60 genes for the downstream analyses 

(Fig 4c). With gene permutation statistics estimated from the 3k HVG, we confirmed the 

significance of these four CTSs using BioTIP’s CTS-scoring plus Ic.shrink-scoring system (Fig 

4, d-e). 

To speed up the computation of the stability, we just ran BioTIP on the same six clusters 

of 1,362 cells that we have applied QuanTC below. 

QuanTC analysis was designed to analyze 13 or fewer cell clusters (Sha et al., 2020). This 

dataset has 10.9k expressed genes with 19 cell clusters (Fig 4a). We focused on six clusters 

covering the early mesenchyme and haemato-endothelial progenitor (HEP) (C3), three HEP 

(C13, C10, C15), the hematopoietic progenitor (C7), and the endothelial progenitor (C6). We 

focus on this subset of clusters to compare QuanTC with BioTIP.  Three CTSs for the involving 

states were used as positive controls and the CTS for excluded state C16 was used as a negative 

control (Fig S7f). There were 1,362 cells in these six clusters. 

The QuanTC package was downloaded from https://github.com/yutongo/QuanTC and 

run with Matlab version R2020b. A cell-cell similarity matrix was generated using the R package 

SC3 version 1.18.0, with default parameters. To robustly estimate cell-cell similarity, we took 

the average of the consensus clustering (cC) results (k=5,6,9,10) that better resembled our six 

clusters in a range between 3 to 10. Additional inputs for the QuanTC analysis include the 

normalized count matrix, the gene symbols, and the cell collection date. To identify the transition 

state and gene signatures, we set the threshold of cell plasticity index (CPI) to select transition 

cells = 0.34 by default and selected 3000 most informative genes in the preprocessing function as 

previously described (Sha et al., 2020). Additionally, we tried two different numbers of clusters 

(k=4 and 6, respectively) where the two largest gaps are observed from the sorted eigenvalues of 

symmetric normalized graph (Figs S9a, S10a). With k=4, the transition trajectory from cC1 to 

cC2 included 65% of analyzed cells, indicating that this path dominates the HEP transitions (Fig 

S9e). This analysis detected one transition trajectory and 42 transition genes, including the 

BioTIP-detected Rhoj, Rasip1, but not Etv2 (Fig S7f, the 1st column). With k=6, two potential 

starting clusters resulted in distinct transition trajectories. One identified trajectory starting from 

cC6 to cC1 via cC2, cC3, and cC4 included 81% of analyzed cells, indicating that this path 

dominates (Fig S10e). The other identified trajectory starting from cC3 to cC2 via cC4, cC1, and 

cC6 included 76% of analyzed cells. Along each trajectory four sets of transition genes were 

predicted (Fig S7f).   

Validated Etv2-target (Fig 6c). Additionally, we downloaded 73 Etv2 targets that were validated 

in 4 populations from an in-vitro differentiation model of ES cells (Zhao and Choi, 2017). This 

model utilized T/Brachyury, Etv2, and Scl (Tal1) expression together with PDGFRα and FLK1+ 

mesodermal markers to track hemangiogenic cell lineage development. By applying a CRISPR 

https://github.com/yutongo/QuanTC
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(clustered regularly interspaced short palindromic repeats) screening to this model, Zhao and 

Choi reported 73 verified Etv2 targets in hemangiogenic cell lineage specification in their 

Supplemental Data 1 (GSE85641) (Zhao and Choi, 2017). 

Etv2 direct targets derived from ChIP-seq binding data (Fig 6c). First, Etv2-binding sites were 

defined by ChIP-seq in in vitro differentiated mouse ES cells (iER71) at day 3.5 (GSE59402) 

(Liu et al., 2015). In these ES cells, Etv2-expression was induced from day 2 to 3.5, a time frame 

when Etv2 is normally expressed (Liu et al., 2015). To extract Etv2-targets, we first selected 

11.2k loci from the reported peaks (GSE59402) that are reproducible in at least two out of three 

experimental conditions (wild-type and cells with induced Etv2 that measured by two 

independent antibodies). We then overlapped these loci to gene promoters ([-2500, 1000] around 

the TSS annotated in the mouse genome NCBIM37) and extracted the unique gene symbols, 

using the ChIPpeakAnno (Zhu et al., 2010) package in R. This step identified 1079 unique gene 

symbols. The authors also published 15 evaluated Etv2 target genes, including nine located far [-

250k, 81k] away from any TSS. Merging these 15 evaluated targets, we got 1087 unique gene 

symbols as Etv2 direct targets.  

 

8. Analysis of the mouse E8.25 developing mesoderm 2018 cells (Figs 4, 5, S8, S12, 

S16c) 

Design. We test the reproducibility of the four CTSs identified from one mouse E8.25 dataset 

(Pijuan-Sala et al., 2019) in this independent dataset of mouse gastrulation at E8.25 (Ibarra-Soria 

et al., 2018).  

Transcriptome. The normalized count matrix of 20,809 genes, cell labeling of 33 previously 

defined subtypes (19.4k cells) were downloaded from ArrayExpress (Access number E-MTAB-

6153). These subtypes span from mesoderm progenitor to blood and endothelium. We log-

transformed the normalized counts (y=log2(x+1)).     

Data analysis. To annotate all gene ids in the data matrix, we queried the AnnotationHub 

package for Mus musculus genes (Ensembl release 103). We removed genes that have been 

annotated to abnormal chromosomes, remaining 20.5k genes. PCA analysis was run based on the 

top 10% HVGs selected with the scran package. And Horn's parallel analysis was performed to 

choose 21 principal components to retain.  UMAP analysis was then conducted on the selected 

principal components. Upregulated marker genes for these subtypes were identified using the t-

test with the function findMarkers in the R package scran and the criterial: logFC>1, FDR<0.01, 

and rank≤ 10 (Fig S8b). 

To validate four identified CTSs, 16 developing mesoderm cells subtypes (11,039 cells) 

were analyzed (Fig 4, f-h). These 16 subtypes were extraembryonicMesoderm, endothelial.a, 

endothelial.b, endothelial.c, endothelial.d,blood, mesodermProgenitors, presomiticMesoderm.b, 

presomiticMesoderm.a, somiticMesoderm, mixedMesoderm.a, pharyngealMesoderm, 

mixedMesoderm.b, cardiac.a,  cardiac.b,  and cardiac.c. Ic.shrink scores were calculated using 
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the log-transformed normalized counts (Fig 4f). Between-gene correlations were calculated on 

the log-transformed normalized counts (Fig S16c). 

Independent BioTIP analysis was conducted with the parameters detailed in Table S1 

(Fig S12). Additionally, Ic scores (Figs 5, S3), and DNB scores (Fig 5) were calculated using the 

BioTIP R package we developed. 

 

9. Analysis of mouse in-vivo embryo body (EB) cells (Figs 5, S13, S14) 

Design. In vitro differentiation model of embryonic stem (ES) cells has been extensively used to 

study lineage development. The ES model overcomes the cell-number limitations for early 

embryonic studies, thus allowing large-scale transcriptomic snapshots. We reanalyzed the 

published scRNA-seq data of day-4 EB cells during differentiation when hemangiogenic cells 

extensively emerge and pluripotent stem cells are still present (Zhao and Choi, 2019).  

Transcriptome. We downloaded the 10x genomics matrixes from GEO (GSE130146).  

Gene and cell filter. We kept genes expressed in at least one cell for analysis. We removed cells 

with more than 5% mitochondria reads or fewer than 2000 unique genes detected. By these 

filtering, we kept 33,456 genes and 1,731 cells for further analysis. 

Data analysis. We normalized the gene expression values by library size factors, using the R 

package scran (v 1.18.0). Based on the 1k HVG, we performed dimension reduction and cell 

clustering. All 1,731 cells were grouped into 17 clusters based on a nearest-neighbor graph 

clustering method, considering 5 nearest neighbors. We then annotated cell identities according 

to the average expressed gene markers per cluster and constructed the developmental trajectory. 

After dropping off 4 clusters of endoderm or primordial germ cells, we kept 1,531 cells along the 

path from naive pluripotent cells to either hemangiogenic or smooth muscle lineages for further 

analysis. 

BioTIP analysis was conducted on 13 reliable clusters of 1531 genes (Fig S13a). We excluded 

cluster 17 which is a small proportion of blood progenitor cells (n=11). We used the master 

function in the BioTIP R package to do the analysis. All parameters are given in Table S1. 

QuanTC analysis was performed with a high cut of CPI value (0.45 rather than the default 0.35) 

to select the most promising transition cells, and other by default parameters (Fig S14). Given 8 

consistent clusters (cC) defined by QuanTC, we had multiple options on choosing a trajectory 

starting point. Fig S14e showed the results of one option that had more cells (57%) involved than 

other options. 

 

10. Analysis of the simulated EMT dataset (Figs 5, S15) 

Design. Reversible epithelial-to-mesenchymal transition (EMT) is a prominent example of 

saddle-node bifurcations in development. During this transition, the balance between EMT-
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promoting and EMT-inhibiting factors is a critical causal of intermediate states. The established 

promoting factors include Zeb1, Snail, and TGFβ, while the inhibiting factors include Ovol2 and 

miR200t (Hong et al., 2015). The QuanTC method has previously described model-free 

simulation dataset of a EMT transition. This is a mimicked single-cell expression profile of four 

states during epithelial-mesenchymal transition. One intermediate state (I1) has the highest 

proportion of mimicked transition cells.  

Transcriptome. We downloaded the simulation dataset in July 2021 

(https://github.com/yutongo/QuanTC). This dataset has 18 genes expressed in 5,363 cells from 

five distinct states (one epithelial state (E), two intermediate cell states (I1 and I2), one 

mesenchymal state (M), and mimicked transition cells (TC)) (Fig S15a). The highest proportion 

of TC were found in both E and the intermediate state closer to the E (I1). QuanTC detected an 

intermediated cell state (ICS) between E and I1 with eight transition signal genes including 

Ovol2 and miR200t (Sha et al., 2020). These genes fluctuate in I1 and highly expressed in 

transition-involving states E or I2 (Fig S15b).  

Data analysis. Downloaded expression counts were inputted into Monocle 3 for normalization 

and then log2-transformation. With the log-transformed normalized counts, cells were classified 

into four clusters using Monocle 3 (considering k=200 nearest neighbors). Pearson correlations 

were calculated between gene pairs in each cluster. 

BioTIP analysis was first performed on the normalized and log-transformed matrix. No 

feature selection was conducted due to the low-dimensionality of the data (18 genes). To build 

gene modules, we used the ‘getNetwork’ function while controlling the FDR of PCC (≤ 0.05). 

We fed these genes into the CTS-scoring system and set a minimum model size to be 6 genes 

(30% of all detected genes) for the downstream analyses. We failed to observe significance in 

either DNB-scoring or Ic.shrink-scoring systems. This is because a successful significance 

assessment required large global HVG, but this data has only 18 genes. Instead, we 

computationally evaluated the top two DNB-scored modules by observed Ic.shrink scores. We 

accepted one module whose Ic.shrink score peaked at the intended cell cluster. This module 

characterized the simulated transition cells which is intended.   

To compare with QuanTC for the robustness to different clustering methods, BioTIP 

analysis was also respectively performed on the six and four consensus clusters that QuanTC had 

analyzed.  

 

11. Analysis of chromatin accessibility (Fig 6e) 

Design. Chromatin accessibility is associated with cell-type-specific transcription factor activity 

that regulates target gene expression. To understand how the expression threshold of Etv2 

functions during HE bifurcation, we asked if the oscillation of Etv2 expression causes epigenetic 

changes that are responsible for CTS genes’ expression changes.    
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ATAC-seq data. We downloaded the published chromatin accessibility data (GSE92537) in two 

types of cells: the Etv2-deficient (Etv2KO) control cell and the endothelial cell mimicking a 

normal HEP state by overexpressing Etv2 in Etv2-deficient cell (Etv2KOiEtv2) (Duan, 2016).  

Data analysis. We visualize the ATAC-seq signal using the R packages profileplyr and Gviz. 60 

CTS genes were split into two groups according to the occurrence of the Etv2-binding sites 

within a window of [-2500, 1000] bp around the TSS (Fig 6c). We assessed the differential 

accessibility between two cell types using the pairwise Wilcox-tested and multiple-testing 

adjusted p-value (Fig 6e, boxes atop). 
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