

В

Disease Models & Mechanisms • Supplementary information

Fig. S1. Generation and validation of the *Rag1^{-/-}* **knock out strains.** (A) Schematic of the method used to generate the *Rag1^{-/-}* knock out on all the strains except for BAR, B6R, and NR, which were commercially available. (B) Flow Cytometry gating strategy of the blood to validate loss of B- and T-lymphocytes. Flow cytometry example of the CD45 population (all white blood cells) from *Rag1^{+/+}* and *Rag1^{-/-}* knock out from different strains gated on TCRb (T-lymphocytes) and CD19 (B- lymphocytes) showing complete nullizygosity of the adaptive immune system in the *Rag1^{-/-}* strains.

Fig. S2. Growth curves of NR, NRG and NSG and collagen staining. (A) Graph showing average growth with standard errors. Data is pooled from 3 experiments. (B) SHG collagen signal (top panels) showing the original, 8-bit signal collected by the 2P-M instrument setup. Center panels show brightfield images generated via pathology slide scanning instrument. The bottom panels show the overlay of SHG images, with a false-color representation (green) for better visibility on top of the corresponding area of the histo-pathology image. Scalebar100µm.

Neoplastic vs Others	B6R (n=5479)	BAR (n=8969)	NRG (n=6777)	NSG (n=6757)
Accuracy	0.847	0.843	0.847	0.777
Precision	0.798	0.852	0.790	0.673
Recall	0.956	0.886	0.910	0.934
F1-score	0.870	0.869	0.846	0.783

Fig. S3. Validation of HoVer-Net classifications using B6R, BAR, NRG and NSG strains. (A) Confusion matrices of prediction of neoplastic nuclei by HoVer-Net based on selected tiles from three samples per strain. (B) Accuracy, precision, recall and F1-score for prediction of neoplastic nuclei for each strain.

Fig. S4. Examples of HoVer-Net segmentation and classification. (A) The nuclei segmentations and classifications are overlaid on 2048 pixel x 2048 pixel regions representative of the H&E images for each strain.(B) Distribution of neoplastic and other nuclei density for each whole slide image.

Fig. S5. H&E image and spatial distribution of neoplastic and other nuclei types for each tumor sample of the 129R, A/JR, BAR, B6R, and NR strains. The nuclei density is defined as the number of nuclei per 1024 pixel x 1024 pixel tile. The heatmaps show only tumor regions with >200 neoplastic nuclei per tile. The other nuclei types include connective, inflammatory, non-neoplastic epithelial, dead, and non-labeled nuclei.

Fig. S6. Fig. S6 Method of Ki67 counting using Fiji Software. Slides were photographed at 40X and opened in Fiji Software. Process of analyzing IHC images based on https://www.ncbi. nlm.nih.gov/pmc/articles/PMC6924920/ and https://www.youtube.com/watch?v=D1qBaFwuF4E

Fig. S7. Gating strategy for tumor composition and statistics for the different types of **myeloid cells within the tumors of different strains.** The yellow highlight shows the significant differences.

Fig. S8. Cytokines and chemokines circulating in the plasma that did not show did not show >2 fold changes or significant differences between xenografted verses non xenografted in any strain mice. Each dot represents a point of measurement, bars show mean. List of cytokines and chemokines that were below detection limit are listed.

	number of pairs	averaae matina	total number of	total number of	averaae litter	pups survived to
strain	mated	time to pups	pups	litters	size	adulthood
	11, 6 still active, 2					
129S1/SvImJ Rag1-/-	new	31.7 days	304	62	4.9	294
		54.9 days, some				
	11, 4 still active, 2	after ~21 days				
A/J Rag1-/-	new	others months	100	27	3.7	94
	13, 7 still active, 3					
BALB/cJ Rag1-/-	new	37.5 days	194	43	4.5	191
		59.5 days, first 22				
	4, 4 active, 1 new,	days other 97				
CAST/EiJ Rag1-/-	1 no litter	days	22	8	2.8	16
	12, 6 still active, 2					
C57BL/6J Rag1-/-	new	35.6 days	342	58	5.9	320
		56.5 days, one				
DBA/J Rag1-/-	3, 0 active	never produced	8	3	1.6	5
	14, 6 still active, 4					
NOD/ShiLtJ Rag1-/-	new	36.2 days	432	49	8.8	369
	9, 7 active, 1 new,					
NZO/HiltJ Rag1-/-	1 no litter	34.2 days	81	18	4.5	76
PWK/PhJ Rag1-/-	1, 1 still active	22 days	7	1	7	7
WSB/EiJ Rag1-/-	0	0	0	0	0	0

Table S1. Fecundity of Rag1 knockouts