

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Changes in prevalence of *Helicobacter pylori* in japan from 2008 to 2018: a retrospective cross-sectional study

Journal:	BMJ Open
Manuscript ID	bmjopen-2021-058774
Article Type:	Original research
Date Submitted by the Author:	27-Oct-2021
Complete List of Authors:	Abiko, Soichiro; Tokyo Medical University, Department of General Medicine and Primary Care Hirayama, Yoji; Tokyo Medical University, Department of General Medicine and Primary Care Otaki, Junji; Tokyo Medical University, Department of Medical Education; Tokyo Medical University, Department of General Medicine and Primary Care Harada, Yoshimi; Tokyo Medical University, Department of Medical Education; Tokyo Medical University, Department of General Medicine and Primary Care Kawakami, Kohei; Tokyo Medical University, Department of General Medicine and Primary Care Toi, Takahiro; Tokyo Medical University, Department of General Medicine and Primary Care Takamiya, Tomoko; Tokyo Medical University, Department of Preventive Medicine and Public Heatlh Kawai, Takashi; Tokyo Medical University, Department of Gastroenterological Endoscopy
Keywords:	Gastrointestinal infections < GASTROENTEROLOGY, Gastrointestinal tumours < GASTROENTEROLOGY, HEALTH ECONOMICS, Health policy < HEALTH SERVICES ADMINISTRATION & MANAGEMENT, Epidemiology < INFECTIOUS DISEASES, PREVENTIVE MEDICINE

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2	
3	
4	
5	
6	
7	
א	
0	
9 10	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
<u>~</u> 」 つつ	
∠∠ วว	
∠⊃ >≁	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
25	
22	
50 72	
3/	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
<u>4</u> 0	
50	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	
60	
~~	

1

1 Changes in prevalence of *Helicobacter pylori* in japan from 2008 to 2018: a retrospective

2 cross-sectional study

- Author names: Soichiro Abiko¹, Yoji Hirayama¹, Junji Otaki², Yoshimi Harada², Kohei 3
- 4 Kawakami¹, Takahiro Toi¹, Tomoko Takamiya³, Takashi Kawai⁴

Author Affiliations: 5

- 6 1. Department of General Medicine and Primary Care, Tokyo Medical University, Tokyo, Japan.
- 7 2. Department of Medical Education, Tokyo Medical University, Tokyo, Japan.
- 8 3. Department of Preventive Medicine and Public Health, Tokyo Medical University, Tokyo, Japan.
- 9 4. Department of Gastroenterological Endoscopy, Tokyo Medical University, Tokyo, Japan.
- Corresponding Author: Soichiro Abiko 10
- Email: s abiko1@tokyo-med.ac.jp 11
- 12 Word count: 2412
- 13

14 ABSTRACT

- f J 15 **Objectives:** To understand the recent prevalence and trends of *H. pylori* infection rates in
- the Japanese population. 16
- 17 **Design:** Retrospective cross-sectional study.
- Setting: Japanese workers. 18
- 19 Participants: We included 22,120 members (age: 35-65 years) of the T company health

BMJ Open

2	
3	
4	
5	
s c	
0	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
10	
17 20	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
37	
22	
ככ ז∡	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
40 47	
-1/ /0	
40	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

20 insurance society who underwent serum H. pylori antibody tests in a health checkup from 21 2008 and 2018. 22 Measures: We analyzed the *H. pylori* infection rate among participants aged 35 years from 23 2008 to 2018 and participants aged 35, 40, 45, and 50-65 years in 2018 based on the results 24 of serum antibody tests during the health checkups. In the 2018 analysis, we considered all 25 participants who had undergone eradication treatment for *H. pylori* as infected, regardless of the antibody test results, to reduce the influence of previous treatment. Trend analyses were 26 27 performed using Joinpoint analysis. 28 **Results:** *H. pylori* was detected in 1,290 out of 9,325 participants aged 35 years. The annual infection rates showed a linear downward trend (slope = -0.65) as follows: 16.6% in 2008 to 29 10.1% in 2018. In the 2018 analysis, 2,863 out of 11,434 participants were positive for H. 30 31 pylori; moreover, there was an upward trend of the infection rate with advanced age (10.8% 32 [35 years] to 47.3% [65 years]). The trend showed a Joinpoint, with the trend changing significantly at the age of 50 years (first trend: 35-50 years [slope = 0.57]; second trend: 50-33 34 65 years [slope = 1.51]). Although both were upward trends, the second trend was steeper (P < 0.05). 35 36 **Conclusions:** Over the last 11 years, there has been a decrease in the infection rate of *H*.

37 *pylori* in Japanese 35–year olds. The infection rate in 2018 was high with advanced age.

38 There is a consistent declining trend of the *H. pylori* infection rate in Japan.

	BMJ Open
39	
40	Strengths and limitations of this study
41	• We included very recent data from the general population (non-patients who underwent
42	medical checkups without special intentions) and applied Joinpoint trend analysis to
43	analyze trends in the <i>H. pylori</i> infection rates in Japan.
44	• We enrolled a large number of participants in a single group over a relatively long period.
45	• This study suggests a trend of the infection rate of <i>H. pylori</i> using data from 35-year-olds.
46	• In the 2018 analysis, the participants' history of eradication treatment for <i>H</i> . pylori was
47	determined through questionnaires.
48	• This study has limitations regarding the possibility of group bias (including occupational,
49	sex ratio, and medical history).
50	
51	INTRODUCTION
52	Helicobacter pylori (H. pylori) is a gram-negative bacterium that is often found in the human
53	stomach. H. pylori is among the causes of chronic gastritis, duodenal ulcers, gastric ulcers,
54	immune thrombocytopenia, gastric mucosa-associated lymphoid tissue lymphoma, and
55	gastric cancer. The International Agency for Research on Cancer Working group, which is a
56	part of the World Health Organization, classified H. pylori as a Group 1 carcinogen for gastric
57	cancer in 1994.1 Moreover, they recognized eradication therapy for <i>H. pylori</i> in
	3
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

asymptomatic populations as efficient for preventing gastric cancer and recommended
 introducing population-based *H. pylori* screening and treatment programs.²

H. pylori test-and-treat strategy for preventing gastric cancer is considered more effective in regions with a high incidence of gastric cancer.³ The incidence and mortality rates of gastric cancer are high; moreover, *H. pylori* could be involved > 90% in Japan.^{4 5} Additionally, the infection rate of *H. pylori* in Japan is higher than that in other developed countries. ⁶ Accordingly, the "test-and-treat" strategy for *H. pylori* could be a good measure for preventing gastric cancer in Japan. In 2013, the national health insurance scheme covered the *H. pylori* eradication therapy for chronic gastritis in Japan. Several groups in Japan, including company health insurance societies and local municipalities, have introduced H. *pylori* screening tests for asymptomatic people during medical check-ups for the prophylactic intervention of gastric cancer.

Decreasing the *H. pylori* infection rate could reduce the incidence rate of gastric cancer⁷ and reduce the positive predictive value of *H. pylori* screening. Therefore, decreasing the *H. pylori* infection rate in the population may negatively affect the cost-effectiveness of the "test-and-treat" strategy for asymptomatic groups. It is important to elucidate the prevalence of *H. pylori* and its trends to predict the infection rate and plan future strategies. There has been a decrease in the worldwide prevalence of *H. pylori*,⁶ with several Japanese

studies reporting similar results.⁸ However, most of these studies had small sample sizes or included specific participants, including hospital visitors, or meta-analyses. To our knowledge, there have been no recent large-scale studies on the annual prevalence and trend of infection rates of *H. pylori* in Japan. ^{9,8,10} Additionally, several studies have reported that the *H. pylori* infection rates become steady at approximately 10% in several low-prevalence regions, including European countries. ^{6 11 12} Watanabe et al. suggested that the declining trend of the *H. pvlori* prevalence in Japan appears to become dull.¹⁰ This study aimed to elucidate the recent trend in the infection rate of *H. pylori* and whether it showed a significant change.

Using data from health checkups in a company health insurance society, this retrospective cross-sectional study aimed to clarify the recent 11-year trend of H. pylori infection rate in 35-year-olds and *H. pylori* infection rates in 2018 according to age.

MATERIALS AND METHODS

Members of the T company health insurance society undergo serum anti-Helicobacter pylori IgG antibody tests. This test was conducted annually on members aged 35 years during their health checkups (approximately 600–1,100 people per year). However, in 2018, the society offered this test to participants aged 35, 40, 45, and > 50 years. We included members who had undergone serum *H. pylori* antibody tests at their annual health checkups from April 1,

BMJ Open

2	
3	
4	
5	
6	
7	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
20	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
20	
20	
39	
40	
41	
42	
43	
44	
45	
46	
47	
/ ∕\Ω	
40	
49	
50	
51	
52	
53	
54	
55	
56	
57	
57	
20	
59	

60

96 2008, to March 31, 2019, at the age of 35–65 years. Participants' data, including medical 97 questionnaires and blood test results, were anonymously obtained from the annual health 98 checkup database of the health insurance society. We excluded data from individuals who 99 refused academic use of their data.

101 Statistical analysis

100

First, we analyzed data obtained from 35-year-old participants between 2008 and 2018 to determine trends in *H. pylori* infection rates ("35-year-old analysis"), with positive results of serum antibody tests for *H. pylori* indicating *H. pylori* infection. We calculated the annual infection rates based on the antibody test results. Subsequently, we analyzed the trend of the rates. Second, we analyzed data from participants aged 35, 40, 45, and 50–65 years old obtained in 2018 according to age to determine generational differences in the infection rates ("2018 analysis").

In the 2018 analysis, participants who tested positive for antibodies were considered as infected. Further, to reduce the influence of eradication treatment on the infection rate, all participants with a history of eradication treatment of *H. pylori* infection were defined as positive regardless of their tests results for *H. pylori* antibody, with the assumption that a history of eradication treatment indicates a previous infection. Similarly, we analyzed sex differences in both analyses.

6

1

2 3		
4 5 6	115	We performed Joinpoint Trend Analysis ¹³ to identify trends in the infection rate and
7 8 9	116	their changes over time using Joinpoint Regression Program 4.9.0.0.14 Statistical significance
10 11 12	117	was set at $P < 0.05$. We measured serum anti- <i>Helicobacter pylori</i> IgG using enzyme-linked
12 13 14	118	immunosorbent assay with E-Plate Eiken H. pylori antibody or E-Plate II Eiken H. pylori
15 16 17	119	antibody (Eiken Chemical Co. Ltd., Tokyo, Japan). The cut-off level was set at 10 U/mL, ¹⁵
18 19	120	with values above this value being classified as positive. Data with missing or ambiguous
20 21 22	121	figures were excluded from the analysis.
23 24 25	122	
26 27	123	Patient and public involvement
28 29 30	124	No patients were involved in this study. T company health insurance society
31 32 33	125	acknowledged the importance of this study concept and allowed the collection of the
34 35	126	participants' data. The results of this study are published as a report.
36 37 38	127	
39 40 41	128	Ethical approval
42 43	129	This study protocol was reviewed and approved by the Institutional Review Board of
44 45 46	130	Tokyo Medical University (T2019-0044). Following the Ethical Guidelines for Medical and
47 48	131	Health Research Involving Human Subjects, ¹⁶ the study information was shown on the
49 50 51	132	websites of the institutions where the researchers or participants belonged. Participants'
52 53 54	133	consent for using data was obtained through an opt-out option.
55 56		
57 58		7
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2		
3 4		
5 6	134	
7 8 9	135	RESULTS
10 11	136	There were 9,793 and 12,327 participants in the 35-year-old and 2018 analyses, respectively,
12 13 14	137	with 592 participants overlapping in both analyses. In the 35-year-old analysis, 468
15 16 17	138	participants were excluded for having missing $(n = 314)$ ambiguous data $(n = 154)$ in the
18 19	139	records, with 9,325 participants (7,586 men; 1,739 women) being included in the final
20 21 22	140	analysis. In the 2018 analysis, 893 participants were excluded for having missing ($n = 875$)
23 24 25	141	ambiguous data (n = 18) in the records, with 11,434 participants (9,580 men; 1,854 women)
26 27	142	being included in the final analysis (Figure 1).
28 29 30	143	
31 32 33	144	
34 35	145	
36 37 38		
39 40		
41 42		
43 44		
45 46		
47		
48 49		
50		
51		
52 53		
54		
55		
56 57		
58		8
59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

י ר	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
10	
10	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
20	
2/	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
55	
50	
5/	
58	
59	
60	

The 35-year-old analysis

In the 35-year-old analysis, 1,290 (1,100 male; 190 female) participants were *H*. *pylori-infected*. In Joinpoint analysis, infection rates showed a linear downward trend with advanced years (16.6% in 2008 to 10.1% in 2018, with a slope of -0.65 [P < 0.05]). This trend lacked a Joinpoint at which the trend significantly changed (Figure 2).

152

147

153

154 The 2018 analysis

155 In the 2018 analysis, 2,863 (2,432 male; 431 female) participants were infected with *H. pylori*. The infection rates showed a trend of increasing positive rates with advanced age 156 (10.8% in 35 years to 47.3% in 65 years). This trend had a Joinpoint at the age of 50 years 157 (95% CI: 45–57), with two different trends in the slope before and after the point. Specifically, 158 the first and second trends were 35-50 years (slope = 0.57) and 50-65 years (slope = 1.51). 159 Both trends showed linear upward trends with age, with the second trend being significantly 160 161 steeper than the first trend (P < 0.05) (Figure 3). 162 163 Sex difference in the trends of *H.pylori* infection rate 164 165 In the 35-year-old analysis, there were no significant sex differences in terms of the

trend in the infection rate. In the 2018 analysis, the infection rates in both sexes showed an

1 2 3		
4 5	167	upward trend with advanced age, moreover, analysis of men, but not women, showed a
7 8	168	Joinpoint at the age of 54 years (95% CI: 45–58 years) (Supplementary Figure 1).
9 10 11	169	
12 13 14	170	
15 16	171	DISCUSSION
17 18 19	172	This study investigated the trend in the prevalence of <i>H. pylori</i> infection in Japan based on
20 21 22	173	large-scale health checkup data. In the 35-year-old analysis, the infection rate showed a linear
23 24 25	174	declining trend from 2008 to 2018. This demonstrates a declining trend of the H. pylori
25 26 27	175	infection rate in this large Japanese general population.
28 29 30	176	
31 32	177	In the 35-year-old analysis, the infection rate straightforwardly reached
34 35	178	approximately 10%; further, this downward trend did not significantly change during the
36 37 38	179	observation period. In the 35-year-old analysis, the infection rates were significantly less
39 40 41	180	affected by eradication treatment; therefore, this finding could well describe the trend of the
42 43	181	incidence rate of <i>H. pylori</i> infections in Japan. If the downward trend (slope = 0.65) observed
44 45 46	182	in the 35-year-old analysis continues, the infection rate will reach nearly zero around 2035.
47 48 49	183	Contrastingly, recent studies on junior high school students (age: 12-15 years) in Japan have
50 51	184	demonstrated that the infection rate of this generation when they reach 35 years at around
52 53 54	185	2035 will be approximately 3-5%, ¹⁷⁻²⁰ which is higher than our prediction. This
55 56 57		
58		10

inconsistency suggests that the decrease in the infection rate may have slowed down.

In the 2018 analysis, the infection rate increased with advanced age; moreover, there was a declining trend in the prevalence rate of *H. pylori* in the Japanese general population. Further, there was a Joinpoint at the age of 50 years, which indicates a change affecting the H. pylori infection near this age (Figure 3). Chronic H. pylori infection is mostly established in the human stomach during childhood.^{21 22} Drinking water and family members are among the sources of *H. pylori* infection.²³ From the late 1960s to the 1970s, which is when people aged 50 years in 2018 spent their childhood, Japan experienced rapid economic growth and urbanization. Accordingly, there was a rapid increase in water supply penetration and a decrease in the average number of households.²⁴ ²⁵ This rapid environmental change may have influenced the establishment of *H. pylori* infection; consequently, there was a rapid decrease in the prevalence of this bacterium during this era. Watanabe et al. revealed changes in the declining trend of *H.pylori* infection rate and indicated an effect of environmental changes on the infection rate,¹⁰ which is consistent with our findings.

Participants in the 35-year-old analysis were born after 1973; therefore, they may have not undergone rapid environmental changes as those in 1955–1972. The 35-year-old analysis revealed a recent gradual decrease in the *H. pylori* infection rate. This suggests that

BMJ Open

2	
3	
4	
5	
6	
7	
/ 0	
0	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
22	
27	
25	
20	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
75 76	
40	
47	
40	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

205 factors other than hygiene and family structure may influence infection establishment. As 206 aforementioned, *H. pylori* infections are likely to be established during childhood through parent-to-child transmission.²² In addition to hygienic and environmental improvements, the 207 208 spread of ready-made baby food after around 1970 may have contributed to the decreased H. *pylori* infection rate.²⁶ With the recently increasing recognition of *H. pylori* in the general 209 210 population and coverage of eradication treatment through national insurance, there has been an increase in the number of *H. pylori* eradication treatments in Japan.²⁷ If treatment 211 212 decreases the infection rate in child-rearing generation, it could accelerate the declining speed 213 of the infection rates in the next generations.

214

In the 2018 analysis, men, but not women, showed a Joinpoint trend. This suggests sex differences in the trend of *H. pylori* infection; however, given the sex bias in the number of participants (9580 men and 1854 women), we cannot conclude about the sex difference. This should be investigated in future studies.

219

When conducting *H. pylori* screening tests for prophylactic purposes, the prevalence in a target group should be considered to evaluate the effectiveness of the strategy. We observed a decreasing infection rate of *H. pylori* in Japan. In the future, the infection rate may reach zero; accordingly, there would be a decreased importance of screening tests for

2	
3	
4	
5	
6	
7	
, 0	
8	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
18	
10	
19	
20	
21	
22	
23	
24	
24	
25	
26	
27	
28	
29	
30	
31	
21	
32	
33	
34	
35	
36	
37	
20	
38	
39	
40	
41	
42	
43	
11	
44	
45	
46	
47	
48	
49	
50	
50	
51	
52	
53	
54	
55	
56	
57	
50	
20	
29	
60	

1

this bacterium in asymptomatic people. A study on the cost-effectiveness of the test-andtreatment strategy for *H. pylori* revealed that it remained effective even with a low infection
rate of approximately 5%.²⁸ Our findings could inform future public health strategies.
Moreover, considering the decrease in *H. pylori* prevalence, *H. pylori* infection-negative
gastric cancer has lately been receiving attention.^{29 30 31} Research for risk factors of gastric
cancer other than *H. pylori* is also needed.

231 Limitations

232 This study has several limitations. First, there might have been selective bias, including age, sex, occupation, region, and nationality (possibly including several workers 233 who were born and raised in countries other than Japan). Several studies have analyzed 234 differences in the infection rates according to sex, occupation, and region, with a study 235 reporting a higher infection rate in men; however, there remains no consensus regarding these 236 biases.³²⁻³⁴ A recent study showed that employees in a large company are in better health than 237 238 those in a small one.³⁵ The size of the target group could have yielded a bias. However, this 239 study could have insignificant healthy candidate bias since we targeted all health society 240 members. We could not determine the number structure of all society members, which could 241 limit the generalization of our findings to the general population. Heterogeneity of age gaps 242 between age groups and limitation of the target ages may have weakened analyses, especially

BMJ Open

in younger age groups. Additionally, the history of *H. pylori* eradication may have influenced our findings. In 2008, T company insurance society performed serum H. pylori antibody screening tests for all its members. Therefore, there may have been a higher proportion of post-eradication cases in our study than in the general population. We attempted to reduce the influence of eradication treatment by classifying patients who underwent eradication treatment as infected. However, history information acquired through a self-reported questionnaire could have contained inaccuracies, including recall bias.³⁶ In the 35-year-old analysis, we could not obtain information regarding previous eradication treatment. Moreover, we performed analysis based on the assumption that the rate of eradication treatment among participants in the 35-year-old analysis was low due to their younger age and that treatment has an insignificant influence on the infection rate. A follow-up survey of the same society between 2018 and 2020 showed that the rate of eradication treatment was 0.9%, 2.1%, and 1.4% in 2018, 2019, and 2020, respectively. Although this supports our assumption, it indicates the possibility of errors of 1%-2 % in the infection rates of the 35-year-old analysis. Additionally, previous medical history; medications; and measurement biases, including test characteristics and threshold application in the test (including highnegative issues), could have influenced our results.^{37 38} **CONCLUSION**

2	
3	
4	
5	
6	
7	
, Q	
0	
9	
10	
11	
12	
13	
14	
15	
16	
17	
10	
18	
19	
20	
21	
22	
23	
24	
25	
26	
20	
27	
20	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
30	
10	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

1

262 Our findings demonstrated a decrease in the infection rate of H. pylori among 35-year-olds 263 in Japan from 2008 to 2018. The infection rate of *H. pylori* may continue to decrease in the 264 future. We expect the infection rate of *H. pylori* to continue decreasing, and it would be 265 difficult to rely solely on the *H. pylori* test and treatment strategy to achieve gastric cancer 266 prevention. Other risk factors of gastric cancer other than *H. pylori* should be considered.

268 Acknowledgment

We would like to acknowledge the T company health insurance society. We would like to 269 270 thank Editage (www.editage.com) for the English language editing.

ė. įeziez

272

271

267

Footnotes 273

274 **Contributors:** SA designed the study, analyzed the data, and drafted the manuscript. Y Hirayama contributed to the study design and performed general supervision of a whole study. 275 276 JO, Y Harada, and T Toi assisted in conducting the study, interpreting the results, and 277 revising the manuscript. KK and TK contributed to data collection and provided advice and 278 opinions from an expert perspective. TT contributed to data analysis and revising the 279 manuscript from statistical and public health perspectives. All authors read and approved the 280 final manuscript.

2		
4		
5 6	281	
7 8 9	282	Funding: This research received no specific grant from any funding agency in the public,
10 11	283	commercial, or not-for-profit sectors.
12 13 14	284	
15 16 17	285	Competing interests: None declared.
18 19 20	286	
21 22	287	Patient consent for publication: Not required.
23 24 25	288	
26 27 28	289	Ethics approval: The institutional review boards of Tokyo Medical University (T2019-
29 30	290	0044)
31 32 33	291	
34 35	292	Provenance and peer review: Not commissioned; externally peer-reviewed.
37 38	293	
39 40 41	294	Data sharing statement: Data is available in a public, open access repository.
42 43	295	Figshare, https://figshare.com/s/e94123c7270ca1e09084,
45 46	296	DOI: 10.6084/m9.figshare.14594571, CC BY
47 48 49	297	
50 51	298	
52 53 54 55 56	299	REFERENCES
57 58		16
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

3		
4 5 6	300	1. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Schistosomes,
7 8 9	301	Liver Flukes and Helicobacter pylori. Lyon (FR): International Agency for Research
10 11	302	on Cancer 1994.
12 13 14	303	2. IARC Helicobacter pylori Working Group. Helicobacter pylori Eradication as a Strategy for
15 16	304	Preventing Gastric Cancer: International Agency for Research on Cancer 2014.
17 18 19	305	3. Ford AC, Forman D, Hunt RH, et al. Helicobacter pylori eradication therapy to prevent
20 21	306	gastric cancer in healthy asymptomatic infected individuals: systematic review and
22 23 24	307	meta-analysis of randomised controlled trials. <i>BMJ</i> 2014;348:g3174. doi:
25 26 27	308	10.1136/bmj.g3174
28 29	309	4. Center for Cancer Control and Information Services, National Cancer Center. CANCER
30 31 32	310	STATISTICS IN JAPAN '19 [updated 17 April 2020. Available from:
33 34 35	311	https://ganjoho.jp/en/professional/statistics/brochure/2019_en.html accessed 22
36 37 38	312	Dec 2020.
39 40	313	5. Matsuo T, Ito M, Takata S, et al. Low prevalence of Helicobacter pylori-negative gastric
41 42 43	314	cancer among Japanese. Helicobacter 2011;16(6):415-9. doi: 10.1111/j.1523-
44 45	315	5378.2011.00889.x [published Online First: 2011/11/09]
46 47 48	316	6. Peleteiro B, Bastos A, Ferro A, et al. Prevalence of Helicobacter pylori infection worldwide:
49 50 51	317	a systematic review of studies with national coverage. Dig Dis Sci 2014;59(8):1698-
52 53 54	318	709. doi: 10.1007/s10620-014-3063-0 [published Online First: 2014/02/25]
55 56 57		
58		17
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2 3		
4 5 6	319	7. Tsuda M, Asaka M, Kato M, et al. Effect on Helicobacter pylori eradication therapy against
7 8 9	320	gastric cancer in Japan. Helicobacter 2017;22(5) doi: 10.1111/hel.12415 [published
10 11	321	Online First: 2017/08/05]
12 13 14	322	8. Wang C, Nishiyama T, Kikuchi S, et al. Changing trends in the prevalence of H. pylori
15 16 17	323	infection in Japan (1908-2003): a systematic review and meta-regression analysis
17 18 19	324	of 170,752 individuals. Sci Rep 2017;7(1):15491. doi: 10.1038/s41598-017-
20 21 22	325	15490-7 [published Online First: 2017/11/16]
23 24 25	326	9. Inoue M. Changing epidemiology of Helicobacter pylori in Japan. Gastric Cancer
25 26 27 28 29 30 31 32 33 34 35 36 37 38	327	2017;20(Suppl 1):3-7. doi: 10.1007/s10120-016-0658-5 [published Online First:
	328	2016/10/21]
	329	10. Watanabe M, Ito H, Hosono S, et al. Declining trends in prevalence of Helicobacter
	330	pylori infection by birth-year in a Japanese population. Cancer Sci
	331	2015;106(12):1738-43. doi: 10.1111/cas.12821 [published Online First:
39 40 41	332	2015/09/24]
42 43	333	11. Carmack SW, Genta RM. Helicobacter pylori seroprevalence in symptomatic veterans:
44 45 46	334	a study of 7310 patients over 11 years. Helicobacter 2009;14(4):298-302. doi:
47 48	335	10.1111/j.1523-5378.2009.00693.x
49 50 51	336	12. den Hoed CM, Vila AJ, Holster IL, et al. Helicobacter pylori and the birth cohort effect:
52 53 54 55	337	evidence for stabilized colonization rates in childhood. Helicobacter
56 57		18
58 59		For peer review only - http://bmiopen.bmi.com/site/about/quidelines.xhtml
00		

1

2		
4		
5 6	338	2011;16(5):405-9. doi: 10.1111/j.1523-5378.2011.00854.x [published Online
/ 8 9	339	First: 2011/09/20]
10 11 12	340	13. Kim HJ, Fay MP, Feuer EJ, et al. Permutation tests for joinpoint regression with
13 14	341	applications to cancer rates. <i>Stat Med</i> 2000;19(3):335-51. doi: 10.1002/(sici)1097-
15 16 17	342	0258(20000215)19:3<335::aid-sim336>3.0.co;2-z [published Online First:
18 19	343	2000/01/29]
20 21 22	344	14. Joinpoint Regression Program [program]. Version 4.9.0.0 version: Statistical
23 24 25	345	Methodology and Applications Branch, Surveillance Research Program, National
26 27	346	Cancer Institute., March 2021.
28 29 30	347	15. Komatsu Y, Sugiyama T, Asaka M. Helicobacter pylori kansenshindan ni okeru
31 32 33	348	nihonjinkabu wo siyou sita ELISA kit " E-plate eiken H.pylori koutai" no yuyousei no
34 35	349	kentou [Study of effectiveness of E-plate eiken which is ELAISA kit using Japanese
36 37 38	350	strain in diagnose of Helicobacter pylori infection]. The Journal of Clinical Laboratory
39 40 41	351	Instruments and Reagents 2001;24(5):331-35.
42 43	352	16. Ministry of Health, Labour and Welfare. Ethical Guidelines for Medical and Health
44 45 46	353	Research Involving Human Subjects 2015 [Available from:
47 48 49	354	https://www.mhlw.go.jp/file/06-Seisakujouhou-10600000-
50 51	355	Daijinkanboukouseikagakuka/0000080278.pdf accessed 6 Dec 2020.
52 53 54 55	356	17. Kusano C, Gotoda T, Ishikawa H, et al. The administrative project of Helicobacter pylori
50 57 58		19
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2							
3 4							
5 6	357	infection screening among junior high school students in an area of Japan with a					
7 8 9	358	high incidence of gastric cancer. Gastric Cancer 2017;20(Suppl 1):16-19. doi:					
10 11 12 13 14	359	10.1007/s10120-017-0688-7 [published Online First: 2017/01/18]					
	360	18. Honma H, Nakayama Y, Kato S, et al. Clinical features of Helicobacter pylori antibody-					
15 16 17	361	positive junior high school students in Nagano Prefecture, Japan. Helicobacter					
18 19	362	2018:e12559. doi: 10.1111/hel.12559 [published Online First: 2018/12/06]					
20 21 22	363	19. Nakayama Y, Lin Y, Hongo M, et al. Helicobacter pylori infection and its related factors					
23 24 25	364	in junior high school students in Nagano Prefecture, Japan. Helicobacter 2017;22(2)					
26 27	365	doi: 10.1111/hel.12363 [published Online First: 2016/10/28]					
28 29 30 31 32 33 34 35 36 37 38	366	20. Kakiuchi T, Matsuo M, Endo H, et al. A Helicobacter pylori screening and treatment					
	367	program to eliminate gastric cancer among junior high school students in Saga					
	368	Prefecture: a preliminary report. J Gastroenterol 2019 doi: 10.1007/s00535-019-					
	369	01559-9 [published Online First: 2019/02/17]					
39 40	370	21. Banatvala N, Mayo K, Megraud F, et al. The cohort effect and Helicobacter pylori. J					
41 42 43	371	Infect Dis 1993;168(1):219-21. doi: 10.1093/infdis/168.1.219					
44 45 46	372	22. O'Ryan ML, Lucero Y, Rabello M, et al. Persistent and transient Helicobacter pylori					
47 48	373	infections in early childhood. <i>Clin Infect Dis</i> 2015;61(2):211-8. doi:					
49 50 51	374	10.1093/cid/civ256					
52 53 54 55 56	375	23. Ueda M, Kikuchi S, Kasugai T, et al. Helicobacter pylori risk associated with childhood					
57 58		20					
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml					

Page 22 of 34

1 2 3		
4 5 6	376	home environment. <i>Cancer Sci</i> 2003;94(10):914-8. doi: 10.1111/j.1349-
7 8	377	7006.2003.tb01375.x [published Online First: 2003/10/15]
9 10 11 12 13 14	378	24. JAPAN WATER WORKS ASSOCIATION. Water Supply in Japan 2017 [Available from:
	379	http://www.jwwa.or.jp/jigyou/kaigai_file/2017WaterSupplyInJapan.pdf accessed
15 16	380	Dec 22 2020.
17 18 19	381	25. Ministry of Health, Labour and Welfare. General Welfare and Labour Japan [Available
20 21 22	382	from: https://www.mhlw.go.jp/english/wp/wp-hw9/dl/01e.pdf accessed 1st Oct
23 24	383	2020.
25 26 27	384	26. Council JBF. Seisan Tokei [Production statistics] Japan [Available from:
28 29 30 31 32 33 34 35 36 37 38	385	https://www.baby-food.jp/link/ayumi-jikei.html accessed 11 Dec 2020.
	386	27. Hiroi S, Sugano K, Tanaka S, et al. Impact of health insurance coverage for Helicobacter
	387	pylori gastritis on the trends in eradication therapy in Japan: retrospective
	388	observational study and simulation study based on real-world data. BMJ Open
39 40	389	2017;7(7):e015855. doi: 10.1136/bmjopen-2017-015855 [published Online First:
41 42 43	390	2017/08/02]
44 45 46	391	28. Kowada A. Cost-effectiveness of Helicobacter pylori screening followed by eradication
40 47 48	392	treatment for employees in Japan. Epidemiol Infect 2018;146(14):1834-40. doi:
49 50 51	393	10.1017/S095026881800208X [published Online First: 2018/07/31]
52 53	394	29. Kato S, Matsukura N, Tsukada K, et al. Helicobacter pylori infection-negative gastric
55 56		
57 58 59		21
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2		
3 4 5	395	cancer in Jananese bosnital nationts. Incidence and nathological characteristics
6 7	555	cancer in sapanese nospital patients. Incluence and pathological characteristics.
7 8 9	396	Cancer Sci 2007;98(6):790-94. doi: https://doi.org/10.1111/j.1349-
10 11	397	7006.2007.00478.x
12 13 14	398	30. Yamamoto Y, Fujisaki J, Omae M, et al. Helicobacter pylori-negative gastric cancer:
15 16 17	399	characteristics and endoscopic findings. Digestive endoscopy : official journal of the
18 19	400	Japan Gastroenterological Endoscopy Society 2015;27(5):551-61. doi:
20 21 22	401	10.1111/den.12471 [published Online First: 2015/03/27]
23 24 25	402	31. Takita M, Ohata K, Inamoto R, et al. Endoscopic and histological features of Helicobacter
25 26 27 28 29 30 31 32 22	403	pylori-negative differentiated gastric adenocarcinoma arising in the antrum. JGH
	404	open : an open access journal of gastroenterology and hepatology 2021;5(4):470-
	405	77. doi: 10.1002/jgh3.12518 [published Online First: 2021/04/17]
33 34 35	406	32. Kheyre H, Morais S, Ferro A, et al. The occupational risk of Helicobacter pylori infection:
36 37 38	407	a systematic review. Int Arch Occup Environ Health 2018;91(6):657-74. doi:
39 40	408	10.1007/s00420-018-1315-6
41 42 43	409	33. Ueda J, Gosho M, Inui Y, et al. Prevalence of Helicobacter pylori infection by birth year
44 45 46	410	and geographic area in Japan. Helicobacter 2014;19(2):105-10. doi:
40 47 48	411	10.1111/hel.12110 [published Online First: 2014/02/11]
49 50 51	412	34. Ferro A, Morais S, Pelucchi C, et al. Sex differences in the prevalence of Helicobacter
52 53 54	413	pylori infection: an individual participant data pooled analysis (StoP Project). Eur J
55 56		
57 58		22
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1

2 3		
4 5 6	414	Gastroenterol Hepatol 2019;31(5):593-98. doi: 10.1097/MEG.000000000001389
7 8 9	415	[published Online First: 2019/03/07]
10 11 12	416	35. Kanamori S, Tsuji T, Takamiya T, et al. Size of company of the longest-held job and
12 13 14	417	mortality in older Japanese adults: A 6-year follow-up study from the Japan
15 16 17	418	Gerontological Evaluation Study. J Occup Health 2020;62(1):e12115. doi:
18 19	419	10.1002/1348-9585.12115 [published Online First: 2020/06/10]
20 21 22	420	36. Coughlin SS. Recall bias in epidemiologic studies. <i>J Clin Epidemiol</i> 1990;43(1):87-91.
23 24 25	421	doi: 10.1016/0895-4356(90)90060-3
26 27	422	37. Miftahussurur M, Yamaoka Y. Diagnostic Methods of Helicobacter pylori Infection for
28 29 30	423	Epidemiological Studies: Critical Importance of Indirect Test Validation. BioMed
31 32 33	424	research international 2016;2016:4819423. doi: 10.1155/2016/4819423
34 35	425	[published Online First: 2016/02/24]
36 37 38	426	38. Inoue M, Sawada N, Goto A, et al. High-Negative Anti-Helicobacter pylori IgG Antibody
39 40 41	427	Titers and Long-Term Risk of Gastric Cancer: Results from a Large-Scale Population-
42 43	428	Based Cohort Study in Japan. Cancer Epidemiol Biomarkers Prev 2020;29(2):420-
44 45 46	429	26. doi: 10.1158/1055-9965.EPI-19-0993 [published Online First: 2019/12/13]
47 48	430	
49 50 51	431	
52 53	432	FIGURE LEGENDS
54 55 56	433	Figure 1
57 58		23
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2		
3 4		
5 6	434	Numbers of participants
7 8 9	435	
10 11 12	436	Note. (a) The 35-year-old analysis: participants aged 35 years from 2008 to 2018. (b) The
13 14	437	2018 analysis: participants aged 35-65 years in 2018.
15 16	438	
17 18	439	Figure 2
19 20 21	440	Infection rates of Helicobacter pylori at 35 years old from 2008 to 2018 ($n = 9,325$)
22 23 24	441	
24 25 26	442	Note. Infection rates at 35 years linearly decreased from 16.6% in 2008 to 10.1% in 2018,
27 28 29	443	with a slope of -0.65. There was no Joinpoint. "*" in the graph legend indicates a
30 31	444	significant difference in the slope from zero at the $alpha = 0.05$ level.
32 33 34	445	
35	446	Figure 3
36	447	Infection rates of Helicobacter pylori according to age in 2018 ($n = 11,434$)
37 38	448	
39 40 41	449	Note. Infection rates increased in two trends: 10.8% at 35 years to 18.2% at 50 years with a
42 43	450	slope of 0.57; 18.2% at 50 years to 47.3% at 65 years old with a slope of 1.51. There was a
44 45 46	451	Joinpoint at the age of 50 years. "*" in the graph legend indicates a significant difference in
47 48 49	452	the slope from zero at the alpha = 0.05 level.
50 51	453	
52	454	Supplementary Figure 1
53 54	455	Sex difference in the trends of Helicobacter pylori infection rate in 2018
55 56	456	
57 58		24
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Note. The two graphs show trends of the H. pylori positive rate according to age in 2018 in men and women. There were two trends and Joinpoint in men aged 54 years but not in women. "*" in the graph legend indicates a significant difference in the slope from zero at the alpha = 0.05 level. for occurrence with any

Note. Infection rates at 35 years linearly decreased from 16.6% in 2008 to 10.1% in 2018, with a slope of - 0.65. There was no Joinpoint. "*" in the graph legend indicates a significant difference in the slope from zero at the alpha = 0.05 level.

141x122mm (600 x 600 DPI)

2 3 4 5	Reporting checklist for cross sectional study.						
6 7 8 9	Based on the STROBE cross sectional guidelines.						
10 11 12	Instructions to	auth	ors				
13 14	Complete this che	cklist by	entering the page numbers from your manuscript where readers	will find			
15 16 17	each of the items	isted be	elow.				
18 19 20	Your article may n	ot curre	ently address all the items on the checklist. Please modify your tex	t to			
21 22	include the missin	g inforn	nation. If you are certain that an item does not apply, please write	"n/a" and			
23 24 25	provide a short ex	planatic	m.				
26 27 28	Upload your comp	Upload your completed checklist as an extra file when you submit to a journal.					
29 30 31	In your methods s	ection,	say that you used the STROBE cross sectionalreporting guideline	s, and cite			
32 33	them as:						
35 36	von Elm E, Altman DG, Egger M, Pocock SJ, Gotzsche PC, Vandenbroucke JP. The Strengthening						
37 38	the Reporting of Observational Studies in Epidemiology (STROBE) Statement: guidelines for						
39 40 41	reporting observat	ional st	udies.				
42 43				Page			
44 45 46			Reporting Item	Number			
47 48 49	Title and abstract						
50 51 52	Title	<u>#1a</u>	Indicate the study's design with a commonly used term in the	1			
53 54 55			title or the abstract				
56 57 58	Abstract	<u>#1b</u>	Provide in the abstract an informative and balanced summary	1-2			
59 60	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml						

1 ว			of what was done and what was found	
2 3 4 5	Introduction			
6 7	Background /	<u>#2</u>	Explain the scientific background and rationale for the	3-5
8 9 10 11	rationale		investigation being reported	
12 13	Objectives	<u>#3</u>	State specific objectives, including any prespecified	5
14 15			hypotheses	
16 17	Methods			
18 19	Methods			
20 21 22	Study design	<u>#4</u>	Present key elements of study design early in the paper	5-7
23 24 25	Setting	<u>#5</u>	Describe the setting, locations, and relevant dates, including	5-6
25 26 27 28			periods of recruitment, exposure, follow-up, and data collection	
29 30	Eligibility criteria	<u>#6a</u>	Give the eligibility criteria, and the sources and methods of	5-6
31 32 33			selection of participants.	
34 35		<u>#7</u>	Clearly define all outcomes, exposures, predictors, potential	6-7
36 37			confounders, and effect modifiers. Give diagnostic criteria, if	
38 39 40			applicable	
41 42 43	Data sources /	<u>#8</u>	For each variable of interest give sources of data and details of	6-7
44 45	measurement		methods of assessment (measurement). Describe	
46 47			comparability of assessment methods if there is more than one	
48 49			group. Give information separately for for exposed and	
50 51 52			unexposed groups if applicable.	
53 54 55 56	Bias	<u>#9</u>	Describe any efforts to address potential sources of bias	13-14
57 58	Study size	<u>#10</u>	Explain how the study size was arrived at	n/a
59 60		For p	eer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

1 2	Quantitative	<u>#11</u>	Explain how quantitative variables were handled in the	n/a
3 4	variables		analyses. If applicable, describe which groupings were chosen,	
5 6 7			and why	
8 9 10	Statistical	<u>#12a</u>	Describe all statistical methods, including those used to control	6-7
11 12 13	methods		for confounding	
14 15	Statistical	<u>#12b</u>	Describe any methods used to examine subgroups and	6-7
16 17 18	methods		interactions	
19 20 21	Statistical	<u>#12c</u>	Explain how missing data were addressed	7
22 23 24	methods			
25 26	Statistical	<u>#12d</u>	If applicable, describe analytical methods taking account of	n/a
27 28 29	methods		sampling strategy	
30 31	Statistical	<u>#12e</u>	Describe any sensitivity analyses	n/a
32 33 34	methods			
35 36 37 38	Results			
39 40	Participants	<u>#13a</u>	Report numbers of individuals at each stage of study—eg	8-9
41 42			numbers potentially eligible, examined for eligibility, confirmed	
43 44			eligible, included in the study, completing follow-up, and	
45 46			analysed. Give information separately for for exposed and	
47 48 49			unexposed groups if applicable.	
50 51 52 53	Participants	<u>#13b</u>	Give reasons for non-participation at each stage	8
54 55 56	Participants	<u>#13c</u>	Consider use of a flow diagram	8
57 58 59	Descriptive data	<u>#14a</u>	Give characteristics of study participants (eg demographic,	5-6, 13-
60		For pe	er review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

		BMJ Open	Page 3
		clinical, social) and information on exposures and potential	14
		confounders. Give information separately for exposed and	
		unexposed groups if applicable.	
Descriptive data	<u>#14b</u>	Indicate number of participants with missing data for each	8-9
		variable of interest	
Outcome data	<u>#15</u>	Report numbers of outcome events or summary measures.	8-9
		Give information separately for exposed and unexposed	
		groups if applicable.	
Main results	<u>#16a</u>	Give unadjusted estimates and, if applicable, confounder-	8-9
		adjusted estimates and their precision (eg, 95% confidence	
		interval). Make clear which confounders were adjusted for and	
		why they were included	
Main results	#16b	Report category boundaries when continuous variables were	n/a
		categorized	
Main results	#16c	If relevant, consider translating estimates of relative risk into	n/a
Main results	<u>#100</u>	absolute risk for a meaningful time period	n/a
		absolute fisk for a meaningful time period	
Other analyses	<u>#17</u>	Report other analyses done—e.g., analyses of subgroups and	9-10
		interactions, and sensitivity analyses	
Discussion			
Key results	<u>#18</u>	Summarise key results with reference to study objectives	10
Limitations	<u>#19</u>	Discuss limitations of the study, taking into account sources of	13-14
		potential bias or imprecision. Discuss both direction and	
		magnitude of any potential bias.	

34 of 34

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
1 2	Interpretation	<u>#20</u>	Give a cautious overall interpretation considering objectives,	10-14
3 4			limitations, multiplicity of analyses, results from similar studies,	
5 6 7			and other relevant evidence.	
8 9 10	Generalisability	<u>#21</u>	Discuss the generalisability (external validity) of the study	13
11 12 12			results	
14 15	Other Information			
16				
17 18 10	Funding	<u>#22</u>	Give the source of funding and the role of the funders for the	16
20 21			present study and, if applicable, for the original study on which	
22			the present article is based	
23				
24 25	The STRORE cha	ekliet ie	distributed under the terms of the Creative Commons Attribution Lie	
26	THE STRUDE CHE	CRIIST IS	distributed under the terms of the creative commons Attribution Lic	ense
27 28	CC-BY. This check	klist was	s completed on 20. September 2021 using <u>https://www.goodreports.</u>	<u>org/</u> , a
29 30	tool made by the		<u>OR Network</u> in collaboration with <u>Penelope.ai</u>	
31 22				
32 33				
34				
35				
30 37				
38				
39				
40 41				
42				
43				
44 45				
45 46				
47				
48				
49 50				
51				
52				
53 54				
55				
56				
57 58				
58 59				
60		For pe	eer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

BMJ Open

Changes in prevalence of *Helicobacter pylori* in Japan from 2008 to 2018: a repeated cross-sectional study

Journal:	BMJ Open	
Manuscript ID	bmjopen-2021-058774.R1	
Article Type:	Original research	
Date Submitted by the Author:	14-Jul-2022	
Complete List of Authors:	Abiko, Soichiro; Tokyo Medical University, Department of General Medicine and Primary Care Hirayama, Yoji; Tokyo Medical University, Department of General Medicine and Primary Care Otaki, Junji; Tokyo Medical University, Department of Medical Education; Tokyo Medical University, Department of General Medicine and Primary Care Harada, Yoshimi; Tokyo Medical University, Department of Medical Education; Tokyo Medical University, Department of General Medicine and Primary Care Kawakami, Kohei; Tokyo Medical University, Department of General Medicine and Primary Care Toi, Takahiro; Tokyo Medical University, Department of General Medicine and Primary Care Takamiya, Tomoko; Tokyo Medical University, Department of Preventive Medicine and Public Heatlh Kawai, Takashi; Tokyo Medical University, Department of Gastroenterological Endoscopy	
Primary Subject Heading :	Epidemiology	
Secondary Subject Heading:	Infectious diseases, Gastroenterology and hepatology, Health policy	
Keywords:	Gastrointestinal infections < GASTROENTEROLOGY, Gastrointestinal tumours < GASTROENTEROLOGY, HEALTH ECONOMICS, Health policy < HEALTH SERVICES ADMINISTRATION & MANAGEMENT, Epidemiology < INFECTIOUS DISEASES, PREVENTIVE MEDICINE	

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2	
3	
4	
5	
2	
6	
7	
8	
0	
9	
10	
11	
12	
12	
13	
14	
15	
15	
16	
17	
18	
10	
19	
20	
21	
22	
22	
23	
24	
25	
25	
26	
27	
28	
20	
29	
30	
31	
27	
32	
33	
34	
25	
35	
36	
37	
20	
50	
39	
40	
⊿1	
+1	
42	
43	
44	
-1-1 A.C	
45	
46	
47	
40	
48	
49	
50	
50 E 1	
21	
52	
53	
55	
54	
55	
56	
50	
5/	
58	
59	
60	

1

1 Changes in prevalence of *Helicobacter pylori* in Japan from 2008 to 2018: a repeated

2 cross-sectional study

- 3 Author names: Soichiro Abiko¹, Yoji Hirayama¹, Junji Otaki², Yoshimi Harada², Kohei
- 4 Kawakami¹, Takahiro Toi¹, Tomoko Takamiya³, Takashi Kawai⁴

5 Author Affiliations:

6 1. Department of General Medicine and Primary Care, Tokyo Medical University, Tokyo,

7 Japan.

- 8 2. Department of Medical Education, Tokyo Medical University, Tokyo, Japan.
- 9 3. Department of Preventive Medicine and Public Health, Tokyo Medical University, Tokyo,

10 Japan.

11 4. Department of Gastroenterological Endoscopy, Tokyo Medical University, Tokyo, Japan.

12 Corresponding Author: Soichiro Abiko

13 Email: s_abiko1@tokyo-med.ac.jp

14 **Word count:** 2,919

16 ABSTRACT

15

- 17 Objectives: To understand the recent prevalence and time-trends of Helicobacter pylori
- 18 infection rates in the Japanese population.
- 19 **Design:** Repeated cross-sectional study

BMJ Open

20	Participants: A total of 22,120 workers (age: 35-65 years) from one Japanese company,
21	who underwent serum <i>H. pylori</i> antibody tests in a health checkup between 2008 and 2018.
22	Measures: H. pylori infection rates among participants aged 35 years from 2008 to 2018,
23	and participants aged 35, 40, 45, and 50-65 years in 2018, based on the results of serum
24	antibody tests were analyzed. In the 2018 analysis, in addition to the antibody test results, all
25	participants who had undergone eradication treatment for H. pylori were considered as
26	infected. Trends were examined using Joinpoint analysis.
27	Results: H. pylori were detected in 1,100 of 7,586 male, and 190 of 1,739 female participants
28	aged 35 years. Annual infection rates among those aged 35 years showed linear downward
29	trends as follows: men, 17.5% in 2008 to 10.1% in 2018 (slope: -0.66); women, 12.3% in
30	2008 to 9.2% in 2018 (slope: -0.51) without joinpoints. In the 2018 analysis, 2,432 of 9,580
31	men and 431 of 1,854 women were <i>H. pylori</i> positive. Infection rates tended to increase with
32	older age (men: 11.0% [35 years] to 47.7% [65 years], women: 10.0% [35 years] to 40.0%
33	[65 years]), and showed joinpoints in both sexes (men: 54 years, women: 45 years). Although
34	both the first and second trends were upward, the second trends for both men and women
35	were steeper than the first trends ($P < 0.05$).
36	Conclusions: Our study demonstrated that in the previous 11 years, infection rates of H.

38 furthermore, analysis of various age groups showed joinpoints around 50 years, suggesting a

pylori in Japanese 35-year-old male and female workers have constantly decreased, and

consistent declining trend in *H. pylori* infection rates in Japan. Strengths and limitations of this study • This study presents a recent 11-year time trend of *H. pylori* infection rates based on *H. pylori* serum antibody test results of 35-year-old workers from one large company with many branches around Japan, using Joinpoint trend analysis, suggesting a consistent declining trend in *H. pylori* infection rates in both men and women in Japan. • The 2018 data compared infection rates by age group (35, 40, 45, and 50–65 years), taking into account the history of *H. pylori* eradication treatment obtained by a questionnaire, in addition to antibody testing, demonstrating a joinpoint at around 50 years for both men and women, and a substantially lower infection rate in younger participants. • The main limitation of this study is the generalizability of the results to the general Japanese population because the study subjects were company employees. **INTRODUCTION** Helicobacter pylori (H. pylori) is a gram-negative bacterium that is often found in the human For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

58	stomach. H. pylori infection is known to be closely associated with chronic gastritis,
59	duodenal ulcers, gastric ulcers, gastric mucosa-associated lymphoid tissue lymphoma, and
60	gastric cancer. ^{1 2 3 4} The International Agency for Research on Cancer Working group, which
61	is a part of the World Health Organization (WHO), classified H. pylori as a Group 1
62	carcinogen for gastric cancer in 1994.5 Moreover, the WHO has stated that "H. pylori
63	screening and treatment strategies would be cost-effective" for asymptomatic populations to
64	prevent gastric cancer, and has recommended that "countries explore the possibility of
65	introducing population-based <i>H. pylori</i> screening and treatment programmes". ⁶
66	
67	H. pylori test-and-treat strategy for preventing gastric cancer is considered more effective in
68	regions with a high incidence of gastric cancer. ⁷ The incidence and mortality rates of gastric
69	cancer are relatively high in Japan compared with other countries. Moreover, H. pylori
70	infection is thought to be involved in more than 90% of gastric cancer cases in Japan. ⁸⁹ In
71	addition, the infection rate of <i>H. pylori</i> in Japan is higher than that in other developed
72	countries. ¹⁰ Accordingly, the "test-and-treat" strategy for <i>H. pylori</i> could be a good measure
73	for preventing gastric cancer in Japan. In 2013, the national health insurance scheme covered
74	the H. pylori eradication therapy for chronic gastritis in Japan. Several groups in Japan,
75	including company health insurance societies and local municipalities, have introduced H.
76	pylori screening tests for asymptomatic people during medical check-ups for the prophylactic

77 intervention of gastric cancer.

Decreasing the *H. pylori* infection rate could reduce the incidence rate of gastric cancer¹¹ and reduce the positive predictive value of *H. pylori* screening. Therefore, decreasing the *H. pylori* infection rate in the population may negatively affect the cost-effectiveness of the "test-and-treat" strategy for asymptomatic groups. It is important to elucidate the current prevalence of *H. pylori* infection and its trends over time, to predict future infection rates and plan test strategies for the future. There has been a decrease in the worldwide prevalence of *H. pylori*,¹⁰ with several Japanese studies reporting similar results.¹² However, most of these studies had small sample sizes or included specific participants, including hospital visitors. To our knowledge, there have been no recent large-scale studies on the prevalence and timetrend of infection rates of *H. pylori* in Japan.^{12 13 14} In addition, several studies have reported that the *H. pylori* infection rates become steady at approximately 10% in several lowprevalence regions, including European countries.^{10 15 16} Watanabe et al. analyzed the prevalence of *H. pylori* infection by birth-year among first-visit outpatients between 2005 to 2013 in Nagoya, Japan. The results showed three trends: the birth-year percent change (BPC) = -1.15% in patients born between 1927 and 1949, BPC = -4.59% in patients born between 1949 and 1961, and BPC = -2.04% in patients born between 1961 and 1988, indicating that after a rapid decrease in infection rates in those born between 1949 and 1961, the rate of

1 2 3		
4 5 6	96	decrease has slowed down. ¹⁴ Our present study aimed to elucidate the recent trends in the
7 8 0	97	infection rates of <i>H. pylori</i> , including the rates after 2013, which is the year that the health
9 10 11	98	insurance system in Japan began to cover <i>H. pylori</i> eradication therapy for chronic gastritis,
12 13 14	99	and whether they showed significant changes with time.
15 16 17	100	
18 19	101	Using data from health checkups in a company health insurance society, this repeated cross-
20 21 22	102	sectional study aimed to clarify the recent 11-year trend of <i>H. pylori</i> infection rate in 35-year-
23 24 25	103	olds and <i>H. pylori</i> infection rates in 2018 according to age, stratified by sex.
26 27	104	
28 29 30	105	MATERIALS AND METHODS
31 32 33	106	Japanese law requires all citizens to have some type of health insurance. T company is one
34 35	107	of the largest companies in Japan, with many branches. All workers of this company, which
36 37 38	108	includes a wide variety of people, such as office workers, manual laborers, and people with
39 40 41	109	disabilities, belong to the company's health insurance society. Members of the T company
42 43	110	health insurance society undergo serum anti-Helicobacter pylori IgG antibody tests. This test
44 45 46	111	was conducted annually on members aged 35 years during their health checkups
47 48 49	112	(approximately 600–1,100 people per year). However, in 2018, the health insurance society
50 51	113	offered this test to participants aged 35, 40, 45, and > 50 years. We included members who
52 53 54	114	had undergone serum <i>H. pylori</i> antibody tests at their annual health checkups from April 1,
55 56 57		
58 50		6
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1	
2	
2	
⊿	
5	
0	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
20	
27	
20	
29	
50 21	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
50	
51	
52 52	
22	
54	
55	
56	
57	
58	
59	
60	

115	2008, to March 31, 2019, at the age of 35-65 years. Participants' blood samples were taken
116	at their health checkups. Serum was isolated from the samples, and stored at -80 °C until
117	use. Serum anti-H. pylori IgG was measured using an enzyme-linked immunosorbent assay
118	with "E-Plate Eiken H. pylori antibody" or "E-Plate II Eiken H. pylori antibody" (Eiken
119	Chemical Co. Ltd., Tokyo, Japan). The cut-off level was set at 10 U/mL, ¹⁷ with values above
120	this being classified as positive. Anonymized participants' data, including medical
121	questionnaires and blood test results, were obtained from the annual health checkup database
122	of the health insurance society. We excluded data from individuals who refused academic
123	use of their data.
124	
125	Statistical analysis
126	First, data obtained from 35-year-old participants between 2008 and 2018 were analyzed to
127	determine time-trends in <i>H. pylori</i> infection rates ("35-year-old analysis") stratified by sex.
128	Positive results of serum antibody tests for <i>H. pylori</i> were defined as <i>H. pylori</i> infection.
129	Annual infection rates were calculated based on the antibody test results. Subsequently, we
130	analyzed the time-trend of the rates.
131	
132	Second, we analyzed data from participants aged 35, 40, 45, and 50-65 years old obtained in
133	2018 according to age stratified by sex to determine generational differences in the infection
	7

BMJ Open

rates ("2018 analysis"). In the 2018 analysis, participants who tested positive for antibodies were considered as infected. Further, to reduce the influence of eradication treatment on the infection rate, all participants with a history of eradication treatment of *H. pylori* infection were defined as positive regardless of their tests results for *H. pylori* antibody, with the assumption that a history of eradication treatment indicates a previous infection. We performed Joinpoint Trend Analysis¹⁸ to identify trends in the infection rate and their changes over time using Joinpoint Regression Program 4.9.0.0.¹⁹ We used the permutation test to select the optimal number of joinpoints in the 35-year-old analysis, whereas we used the Bayesian Information Criterion (BIC) in the 2018 analysis. Linear Model was selected in the analyses. Statistical significance was set at P < 0.05. Data with missing or ambiguous figures were excluded from the analysis. Patient and public involvement After discussions with representatives of the health insurance society about this study, the health insurance society acknowledged the importance of the concept of our study, and permitted us to collect and use participant data from its database. The results of this study are

151 published as a report.

Ethical approval
This study protocol was reviewed and approved by the Institutional Review Board of Tokyo
Medical University (T2019-0044). Following the Ethical Guidelines for Medical and Health
Research Involving Human Subjects,²⁰ the study information was shown on the websites of
the institutions where the researchers or participants belonged. Participants' consent for using
data was obtained through an opt-out option.

RESULTS

There were 9,793 and 12,327 participants in the 35-year-old and 2018 analyses, respectively, with 592 participants overlapping in both analyses. In the 35-year-old analysis, 468 participants were excluded for having missing (n = 314) or ambiguous data (n = 154) in the records, with 9,325 participants (7,586 men; 1,739 women) being included in the final analysis. In the 2018 analysis, 893 participants were excluded for having missing (n = 875) or ambiguous data (n = 18) in the records, with 11,434 participants (9,580 men; 1,854 women) being included in the final analysis (Figure 1).

169 The 35-year-old analysis

In the 35-year-old analysis, 1,100 out of 7,586 male participants and 190 out of 1,739 female
participants were *H. pylori*-infected. In Joinpoint analysis, infection rates showed linear

BMJ Open

172downward trends in both men and women with advanced years (men: 17.5% in 2008 to17310.1% in 2018 (slope -0.66), women: 12.3% in 2008 to 9.2% in 2018 (slope -0.51) [P <1740.05]). These trends lacked joinpoints at which the trend significantly changed (Figure 2).

176 The 2018 analysis

In the 2018 analysis, 2,432 out of 9,580 male participants and 431 out of 1,854 female participants were infected with *H. pylori*. The infection rates showed trends of increasing positive rates with advanced age in both men and women (men: 11.0% at 35 years to 47.7% at 65 years, women: 10.0% at 35 years to 40.0% at 65 years). These trends had joinpoints at the age of 54 years in men (95% CI: 45–58) and at the age of 45 in women (95% CI: 45–51), with two different trends in the slope before and after the point. Specifically, the first and second trends were 35-54 years (slope = 0.67) and 54-65 years (slope = 1.83) in men, and 35-45 years (slope = 0.30) and 45-65 years (slope = 1.49) in women. Both first and second trends showed a linear increase with age, with the second trends being significantly steeper than the first trends (P < 0.05) (Figure 3).

188 DISCUSSION

This study investigated the 11-year time-trend from 2008 to 2018, and the trend by age in
2018 regarding the prevalence of *H. pylori* infection in Japanese workers stratified by sex

191 based on large-scale health checkup data. In the 35-year-old analysis, the infection rate 192 showed a linear declining trend from 2008 to 2018 both in men and women. This provided a 193 good estimate of the *H. pylori* infection trends in Japan, as this study was conducted among 194 workers in a large company with branch offices throughout Japan, and its workers, including 195 workers in the branch offices, were the subjects of this study.

In the 35-year-old analysis, the infection rate decreased linearly to approximately 10% both in men and women; further, this downward trend did not significantly change during the observation period. We assumed that the participants in this analysis, who were all 35 years old were less affected by eradication treatment than older participants; and therefore, the results may closely reflect the actual trend of the incidence rate of *H. pylori* infections in Japan. If the downward trends (slope = -0.65 in men or slope = -0.51 in women) observed in the 35-year-old analysis continues, the infection rate is expected to reach nearly zero by about 2035. In contrast, recent studies on junior high school students (aged: 12–15 years) in Japan have demonstrated that the infection rate of this generation when they reach 35 years at about 2035 will be approximately 3% to 5%,^{21 22 23 24} which is higher than our prediction. This inconsistency suggests that the decrease in the infection rate may have slowed down. In the 2018 analysis, the infection rates in both sexes increased with advanced age. This also

BMJ Open

indicated declining trends in the prevalence rate of *H. pylori* over the years. Furthermore, there were joinpoints around the age of 50 years (54 years in men [95% CI: 45-58] and 45 years in women [95% CI: 45–51]), which implies the existence of some type of change affecting the *H. pylori* infection rate in people of this generations (Figure 3). Chronic *H. pylori* infection is mostly established in the human stomach during childhood.^{25 26} Drinking water and family members are among the sources of *H. pylori* infection.²⁷ From the late 1960s to the 1970s, which is when people aged 50 years in 2018 spent their childhood, Japan experienced rapid economic growth and urbanization. Accordingly, there was a rapid increase in water supply penetration and a decrease in the average number of households.²⁸ ²⁹ These rapid environmental changes may have influenced the establishment of *H. pylori* infection; consequently, there was a rapid decrease in the prevalence of this bacterium during this era. Watanabe et al. revealed changes in the declining trend of *H. pylori* infection rate and indicated an effect of environmental changes on the infection rate,¹⁴ which is consistent with our findings.

Participants in the 35-year-old analysis were born after 1973; therefore, they may have not experienced the rapid environmental changes that those who were born during the period of high economic growth (1955–1972) had experienced. The 35-year-old analysis revealed a recent gradual decrease in the *H. pylori* infection rate. This suggests that factors other than

2	
3	
1	
-	
С	
6	
7	
8	
a	
9	
10	
11	
12	
13	
11	
14	
15	
16	
17	
18	
19	
20	
20	
21	
22	
23	
24	
25	
25	
26	
27	
28	
29	
30	
20	
31	
32	
33	
34	
35	
26	
30	
37	
38	
39	
40	
⊿1	
41	
42	
43	
44	
45	
46	
47	
4/	
48	
49	
50	
51	
52	
52	
22	
54	
55	
56	
57	
50	
50	
59	
60	

1

229	hygiene and family structure may influence infection establishment. As aforementioned, H.
230	pylori infections are likely to be established during childhood through parent-to-child
231	transmission. ²⁶ In addition to hygienic and environmental improvements, the spread of ready-
232	made baby food after around 1970 may have contributed to the decreased H. pylori infection
233	rate. ³⁰ With the recently increasing recognition of <i>H. pylori</i> in the general population and
234	coverage of eradication treatment through national insurance, there has been an increase in
235	the number of <i>H. pylori</i> eradication treatments in Japan. ³¹ If treatment decreases the infection
236	rate in child-rearing generation, it could accelerate the declining speed of the infection rates
237	in the next generations.
238	
239	When conducting H. pylori screening tests for prophylactic purposes, the prevalence in a
240	target group should be considered to evaluate the effectiveness of the strategy. We observed

target group should be considered to evaluate the effectiveness of the strategy. We observed a decreasing infection rate of *H. pylori* in Japan. In the future, the infection rate may reach zero; accordingly, there would be a decreased importance of screening tests for this bacterium in asymptomatic people. A study on the cost-effectiveness of the test-and-treatment strategy for *H. pylori* revealed that it remained effective even with a low infection rate of approximately 5%.³² Our findings could inform future public health strategies. Moreover, considering the decrease in *H. pylori* prevalence, *H. pylori* infection-negative gastric cancer has lately been receiving attention.³³ ³⁴ ³⁵ Research for risk factors of gastric cancer other

1 2 3		
4 5 6	248	than <i>H. pylori</i> is also needed.
7 8	249	
9 10 11	250	Limitations
12 13 14	251	This study has several limitations. First, there might have been selection bias, including age,
15 16 17	252	sex, occupation, region, and nationality (possibly including several workers who were born
18 19	253	and raised in countries other than Japan). Several studies have analyzed differences in the
20 21 22	254	infection rates according to sex, occupation, and region, with a study reporting a higher
23 24 25	255	infection rate in men; however, there remains no consensus regarding these biases. ^{36 37 38} Our
26 27	256	present study included participants of an unequal number of each sex. This was one reason
28 29 30	257	why we conducted separate analyses for each sex. A recent study showed that employees in
31 32 33	258	a large company are in better health than those in a small one. ³⁹ As the target group of this
34 35	259	study were employees of a large company, there is the possibility of such bias. Heterogeneity
36 37 38	260	of age gaps between age groups and limitation of the target ages may have weakened analyses,
39 40 41	261	especially in younger age groups. However, the present study targeted all health insurance
42 43	262	society members working in a large company operating throughout Japan, and therefore, we
44 45 46	263	were able to include subjects from various age groups and regions throughout Japan. Second,
47 48 49	264	the history of <i>H. pylori</i> eradication may have influenced our findings. In 2008, T company
50 51	265	health insurance society performed serum H. pylori antibody screening tests for all its
52 53 54	266	members. Therefore, there may have been a higher proportion of post-eradication cases in
55 56 57		
58		14
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2	
3	
4	
5	
6	
0	
/	
8	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
18	
10	
17	
20	
21	
22	
23	
24	
25	
25	
20	
27	
28	
29	
30	
31	
32	
22	
27	
34	
35	
36	
37	
38	
39	
10	
40	
41	
42	
43	
44	
45	
46	
47	
10	
40	
49	
50	
51	
52	
53	
54	
55	
22	
56	
57	
58	
59	
60	

1

267 our study than in the general population. We attempted to reduce the influence of eradication 268 treatment by classifying patients who underwent eradication treatment as infected. However, history information acquired through a self-reported questionnaire could have contained 269 inaccuracies, including recall bias.⁴⁰ In the 35-year-old analysis, we could not obtain 270 271 information regarding previous eradication treatment of the participants. We hence analyzed 272 the data based on the assumption that the rate of eradication treatment among participants in the 35-year-old analysis was low, due to their younger age, and therefore would not 273 274 significantly affect the influence rate. The health insurance society collected and reported, as 275 part of their health services, that the rate of 35-year-old participants who had previously 276 undergone eradication treatment (both men and women) was 0.9%, 2.1%, and 1.4% in 2018, 277 2019, and 2020, respectively. Although this supports our assumption, it indicates the possibility of errors of 1%-2 % from eradication treatment in the infection rates of the 35-278 279 year-old analysis. In addition, previous medical history; medications; and measurement biases, including test characteristics and threshold application in the test (including high-280 negative issues), could have influenced our results.^{41 42} The limitations mentioned above may 281 282 hinder the generalization of our findings to the Japanese general population.

283

However, the present study collected data of 35-year-olds from 2009 to 2018, and data alsoof various age groups from 2018, and this information was analyzed using a robust statistical

3		
4 5 6	286	method called joinpoint analysis, demonstrating important findings for considering future <i>H</i> .
7 8 9	287	pylori eradication therapy targets.
10 11	288	
12 13 14	289	CONCLUSION
15 16 17	290	Our study showed a constant decreasing time-trend in the infection rate of <i>H. pylori</i> among
17 18 19	291	35-year-old workers in Japan from 2008 to 2018. This time-trend indicates that the infection
20 21 22	292	rate of <i>H. pylori</i> may continue to decrease in the future. Trends in the infection rate by age
23 24	293	in 2018 indicated the possibility of a slowing down of the rate of decrease in the prevalence
25 26 27	294	of <i>H. pylori</i> in Japan. In populations with few <i>H. pylori</i> -positive individuals, the efficiency
28 29 30	295	of measures to routinely test for antibodies is low, and therefore, it would be difficult to rely
31 32	296	solely on the <i>H. pylori</i> test and treatment strategy to achieve gastric cancer prevention. We
33 34 35	297	believe that the data regarding changes in the prevalence of <i>H. pylori</i> over the years observed
36 37 38	298	in Japan could be useful for other countries with a high incidence of <i>H. pylori</i> infection, in
39 40	299	planning future eradication strategies.
41 42 43	300	
44 45 46	301	Acknowledgments
47 48	302	We would like to acknowledge the T company health insurance society. We would like to
49 50 51	303	thank the Center for International Education and Research of Tokyo Medical University for
52 53 54	304	English language editing.
55 56		
57 58 59		16

3		
4 5 6	305	
7 8	306	Footnotes
9 10 11	307	Contributors: SA designed the study, analyzed the data, and drafted the manuscript. Y
12 13 14	308	Hirayama contributed to the study design and performed general supervision of the whole
15 16 17	309	study. JO, Y Harada, and T Toi assisted in conducting the study, interpreting the results, and
18 19	310	revising the manuscript. KK and TK contributed to data collection and provided advice and
20 21 22	311	opinions from an expert perspective. TT contributed to data analysis and revising the
23 24 25	312	manuscript from statistical and public health perspectives. All authors read and approved the
26 27	313	final manuscript.
28 29 30	314	
31 32 33	315	Funding: This research received no specific grant from any funding agency in the public,
34 35	316	commercial, or not-for-profit sectors.
36 37 38	317	
39 40 41	318	Competing interests: None declared.
42 43	319	
44 45 46	320	Patient consent for publication: Not required.
47 48 49	321	
50 51	322	Ethics approval: The institutional review boards of Tokyo Medical University (T2019-
52 53 54	323	0044)
55 56 57		
58		17
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2		
3 4		
5 6 7	324	
7 8 9	325	Provenance and peer review: Not commissioned; externally peer-reviewed.
10 11 12	326	
12 13 14	327	Data sharing statement: Data is available in a public, open access repository. ⁴³
15 16	328	
17 18 19	329	
20 21 22	330	REFERENCES
23 24	331	1. Wang F, Meng W, Wang B, et al. Helicobacter pylori-induced gastric inflammation and
25 26 27 28 29 30 31 32 33 34 35 36 37 38	332	gastric cancer. Cancer Lett 2014;345(2):196-202. doi: 10.1016/j.canlet.2013.08.016
	333	[published Online First: 2013/08/29]
	334	2. Huang JQ, Sridhar S, Hunt RH. Role of Helicobacter pylori infection and non-steroidal
	335	anti-inflammatory drugs in peptic-ulcer disease: a meta-analysis. Lancet
	336	2002;359(9300):14-22. doi: 10.1016/s0140-6736(02)07273-2 [published Online
39 40	337	First: 2002/01/26]
41 42 43	338	3. Eck M, Schmausser B, Haas R, et al. MALT-type lymphoma of the stomach is associated
44 45 46	339	with Helicobacter pylori strains expressing the CagA protein. Gastroenterology
47 48	340	1997;112(5):1482-6. doi: 10.1016/s0016-5085(97)70028-3 [published Online First:
49 50 51	341	1997/05/01]
52 53 54 55	342	4. Sasazuki S, Inoue M, Iwasaki M, et al. Effect of Helicobacter pylori infection combined
56 57 58		18
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2		
3 ⊿		
5 6	343	with CagA and pepsinogen status on gastric cancer development among Japanese
7 8 9 10 11 12 13 14	344	men and women: a nested case-control study. Cancer Epidemiol Biomarkers Prev
	345	2006;15(7):1341-7. doi: 10.1158/1055-9965.EPI-05-0901 [published Online First:
	346	2006/07/13]
15 16 17	347	5. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Schistosomes,
17 18 19	348	Liver Flukes and Helicobacter pylori. Lyon (FR): International Agency for Research
20 21 22	349	on Cancer 1994.
23 24 25	350	6. IARC Helicobacter pylori Working Group. Helicobacter pylori Eradication as a Strategy
25 26 27	351	for Preventing Gastric Cancer: International Agency for Research on Cancer 2014.
28 29 30 31 32 33 34 35 36 37 38	352	7. Ford AC, Forman D, Hunt RH, et al. Helicobacter pylori eradication therapy to prevent
	353	gastric cancer in healthy asymptomatic infected individuals: systematic review and
	354	meta-analysis of randomised controlled trials. BMJ 2014;348:g3174. doi:
	355	10.1136/bmj.g3174
39 40	356	8. Center for Cancer Control and Information Services, National Cancer Center. CANCER
41 42 43	357	STATISTICS IN JAPAN '19 [updated 17 April 2020. Available from:
44 45 46	358	https://ganjoho.jp/en/professional/statistics/brochure/2019_en.html accessed 22 Dec
47 48	359	2020.
49 50 51	360	9. Matsuo T, Ito M, Takata S, et al. Low prevalence of Helicobacter pylori-negative gastric
52 53 54	361	cancer among Japanese. Helicobacter 2011;16(6):415-9. doi: 10.1111/j.1523-
55 56 57		
58		19
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2 3		
4 5 6	362	5378.2011.00889.x [published Online First: 2011/11/09]
7 8	363	10. Peleteiro B, Bastos A, Ferro A, et al. Prevalence of Helicobacter pylori infection
9 10 11	364	worldwide: a systematic review of studies with national coverage. Dig Dis Sci
12 13 14	365	2014;59(8):1698-709. doi: 10.1007/s10620-014-3063-0 [published Online First:
15 16 17	366	2014/02/25]
17 18 19	367	11. Tsuda M, Asaka M, Kato M, et al. Effect on Helicobacter pylori eradication therapy
20 21 22	368	against gastric cancer in Japan. Helicobacter 2017;22(5) doi: 10.1111/hel.12415
23 24	369	[published Online First: 2017/08/05]
25 26 27	370	12. Wang C, Nishiyama T, Kikuchi S, et al. Changing trends in the prevalence of H. pylori
28 29 30	371	infection in Japan (1908-2003): a systematic review and meta-regression analysis of
31 32	372	170,752 individuals. Sci Rep 2017;7(1):15491. doi: 10.1038/s41598-017-15490-7
33 34 35	373	[published Online First: 2017/11/16]
36 37 38	374	13. Inoue M. Changing epidemiology of Helicobacter pylori in Japan. Gastric Cancer
39 40	375	2017;20(Suppl 1):3-7. doi: 10.1007/s10120-016-0658-5 [published Online First:
41 42 43	376	2016/10/21]
44 45 46	377	14. Watanabe M, Ito H, Hosono S, et al. Declining trends in prevalence of Helicobacter pylori
47 48	378	infection by birth-year in a Japanese population. Cancer Sci 2015;106(12):1738-43.
49 50 51	379	doi: 10.1111/cas.12821 [published Online First: 2015/09/24]
52 53 54	380	15. Carmack SW, Genta RM. Helicobacter pylori seroprevalence in symptomatic veterans: a
55 56		
57 58 59		20
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1

Page 22 of 35

2 3		
4 5 6	381	study of 7310 patients over 11 years. Helicobacter 2009;14(4):298-302. doi:
7 8 9	382	10.1111/j.1523-5378.2009.00693.x
10 11 12	383	16. den Hoed CM, Vila AJ, Holster IL, et al. Helicobacter pylori and the birth cohort effect:
13 14	384	evidence for stabilized colonization rates in childhood. <i>Helicobacter</i> 2011;16(5):405-
15 16 17	385	9. doi: 10.1111/j.1523-5378.2011.00854.x [published Online First: 2011/09/20]
18 19 20	386	17. Komatsu Y, Sugiyama T, Asaka M. Helicobacter pylori kansenshindan ni okeru
20 21 22	387	nihonjinkabu wo siyou sita ELISA kit " E-plate eiken H.pylori koutai" no yuyousei
23 24 25	388	no kentou [Study of effectiveness of E-plate eiken which is ELAISA kit using
26 27	389	Japanese strain in diagnose of Helicobacter pylori infection]. The Journal of Clinical
28 29 30 31 32 33 34 35 36 37 38	390	Laboratory Instruments and Reagents 2001;24(5):331-35.
	391	18. Kim HJ, Fay MP, Feuer EJ, et al. Permutation tests for joinpoint regression with
	392	applications to cancer rates. Stat Med 2000;19(3):335-51. doi: 10.1002/(sici)1097-
	393	0258(20000215)19:3<335::aid-sim336>3.0.co;2-z [published Online First:
39 40 41	394	2000/01/29]
42 43	395	19. Joinpoint Regression Program [program]. Version 4.9.0.0 version: Statistical
44 45 46	396	Methodology and Applications Branch, Surveillance Research Program, National
47 48 49	397	Cancer Institute., March 2021.
50 51	398	20. Ministry of Health, Labour and Welfare. Ethical Guidelines for Medical and Health
52 53 54	399	Research Involving Human Subjects 2015 [Available from:
55 56 57		
58 59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 ว		
2 3		
4 5 6	400	https://www.mhlw.go.jp/file/06-Seisakujouhou-10600000-
7 8 9	401	Daijinkanboukouseikagakuka/0000080278.pdf accessed 6 Dec 2020.
10 11 12	402	21. Kusano C, Gotoda T, Ishikawa H, et al. The administrative project of Helicobacter pylori
12 13 14	403	infection screening among junior high school students in an area of Japan with a high
15 16 17	404	incidence of gastric cancer. Gastric Cancer 2017;20(Suppl 1):16-19. doi:
18 19	405	10.1007/s10120-017-0688-7 [published Online First: 2017/01/18]
20 21 22	406	22. Honma H, Nakayama Y, Kato S, et al. Clinical features of Helicobacter pylori antibody-
23 24 25	407	positive junior high school students in Nagano Prefecture, Japan. Helicobacter
26 27 28 29 30	408	2018:e12559. doi: 10.1111/hel.12559 [published Online First: 2018/12/06]
	409	23. Nakayama Y, Lin Y, Hongo M, et al. Helicobacter pylori infection and its related factors
31 32 33	410	in junior high school students in Nagano Prefecture, Japan. Helicobacter 2017;22(2)
34 35	411	doi: 10.1111/hel.12363 [published Online First: 2016/10/28]
36 37 38	412	24. Kakiuchi T, Matsuo M, Endo H, et al. A Helicobacter pylori screening and treatment
39 40 41	413	program to eliminate gastric cancer among junior high school students in Saga
42 43	414	Prefecture: a preliminary report. J Gastroenterol 2019 doi: 10.1007/s00535-019-
44 45 46	415	01559-9 [published Online First: 2019/02/17]
47 48 40	416	25. Banatvala N, Mayo K, Megraud F, et al. The cohort effect and Helicobacter pylori. J
50 51	417	Infect Dis 1993;168(1):219-21. doi: 10.1093/infdis/168.1.219
52 53 54 55	418	26. O'Ryan ML, Lucero Y, Rabello M, et al. Persistent and transient Helicobacter pylori
56 57		22
58 59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1

2 3		
4 5 6	419	infections in early childhood. Clin Infect Dis 2015;61(2):211-8. doi:
7 8 9	420	10.1093/cid/civ256
10 11 12	421	27. Ueda M, Kikuchi S, Kasugai T, et al. Helicobacter pylori risk associated with childhood
13 14	422	home environment. Cancer Sci 2003;94(10):914-8. doi: 10.1111/j.1349-
15 16 17	423	7006.2003.tb01375.x [published Online First: 2003/10/15]
18 19 20	424	28. JAPAN WATER WORKS ASSOCIATION. Water Supply in Japan 2017 [Available
21 22	425	from: http://www.jwwa.or.jp/jigyou/kaigai_file/2017WaterSupplyInJapan.pdf
23 24 25	426	accessed Dec 22 2020.
26 27 28	427	29. Ministry of Health, Labour and Welfare. General Welfare and Labour Japan [Available
29 30 31 32 33	428	from: https://www.mhlw.go.jp/english/wp/wp-hw9/dl/01e.pdf accessed 1st Oct 2020.
	429	30. Council JBF. Seisan Tokei [Production statistics] Japan [Available from:
34 35 36	430	https://www.baby-food.jp/link/ayumi-jikei.html accessed 11 Dec 2020.
37 38	431	31. Hiroi S, Sugano K, Tanaka S, et al. Impact of health insurance coverage for Helicobacter
40 41	432	pylori gastritis on the trends in eradication therapy in Japan: retrospective
42 43 44	433	observational study and simulation study based on real-world data. BMJ Open
45 46 47	434	2017;7(7):e015855. doi: 10.1136/bmjopen-2017-015855 [published Online First:
48 49	435	2017/08/02]
50 51 52	436	32. Kowada A. Cost-effectiveness of Helicobacter pylori screening followed by eradication
53 54 55	437	treatment for employees in Japan. Epidemiol Infect 2018;146(14):1834-40. doi:
56 57		23
58 59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2		
3 4		
5 6	438	10.1017/S095026881800208X [published Online First: 2018/07/31]
7 8 9	439	33. Kato S, Matsukura N, Tsukada K, et al. Helicobacter pylori infection-negative gastric
10 11	440	cancer in Japanese hospital patients: Incidence and pathological characteristics.
12 13 14	441	Cancer Sci 2007;98(6):790-94. doi: https://doi.org/10.1111/j.1349-
15 16	442	7006.2007.00478.x
17 18 19	443	34. Yamamoto Y, Fujisaki J, Omae M, et al. Helicobacter pylori-negative gastric cancer:
20 21 22	444	characteristics and endoscopic findings. Digestive endoscopy : official journal of the
22 23 24	445	Japan Gastroenterological Endoscopy Society 2015;27(5):551-61. doi:
25 26 27	446	10.1111/den.12471 [published Online First: 2015/03/27]
28 29	447	35. Takita M, Ohata K, Inamoto R, et al. Endoscopic and histological features of Helicobacter
30 31 32	448	pylori-negative differentiated gastric adenocarcinoma arising in the antrum. JGH
33 34 25	449	open : an open access journal of gastroenterology and hepatology 2021;5(4):470-77.
36 37	450	doi: 10.1002/jgh3.12518 [published Online First: 2021/04/17]
38 39 40	451	36. Kheyre H, Morais S, Ferro A, et al. The occupational risk of Helicobacter pylori infection:
41 42	452	a systematic review. Int Arch Occup Environ Health 2018;91(6):657-74. doi:
43 44 45	453	10 1007/s00420-018-1315-6
46 47	155	27 Lleda L Gosho M Inui V et al Prevalence of Helicobacter pulori infection by birth year
48 49 50	454	57. Oeda J, Gosho M, hur F, et al. Prevalence of Helicobacter pytori infection by birth year
51 52	455	and geographic area in Japan. <i>Helicobacter</i> 2014;19(2):105-10. doi:
53 54 55	456	10.1111/hel.12110 [published Online First: 2014/02/11]
56 57		24
58 59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2
2
3
4
5
6
7
,
8
9
10
11
12
12
13
14
15
16
17
17
١ð
19
20
21
))
22
23
24
25
26
27
27
28
29
30
31
27
52
33
34
35
36
27
3/
38
39
40
11
40 1
42
43
44
45
46
40
4/
48
49
50
51
51
52
53
54
55
56
50
57
58
59
60
00

457	38. Ferro A, Morais S, Pelucchi C, et al. Sex differences in the prevalence of Helicobacter
458	pylori infection: an individual participant data pooled analysis (StoP Project). Eur J
459	Gastroenterol Hepatol 2019;31(5):593-98. doi: 10.1097/MEG.00000000001389
460	[published Online First: 2019/03/07]
461	39. Kanamori S, Tsuji T, Takamiya T, et al. Size of company of the longest-held job and
462	mortality in older Japanese adults: A 6-year follow-up study from the Japan
463	Gerontological Evaluation Study. J Occup Health 2020;62(1):e12115. doi:
464	10.1002/1348-9585.12115 [published Online First: 2020/06/10]
465	40. Coughlin SS. Recall bias in epidemiologic studies. <i>J Clin Epidemiol</i> 1990;43(1):87-91.
466	doi: 10.1016/0895-4356(90)90060-3
467	41. Miftahussurur M, Yamaoka Y. Diagnostic Methods of Helicobacter pylori Infection for
468	Epidemiological Studies: Critical Importance of Indirect Test Validation. BioMed
469	research international 2016;2016:4819423. doi: 10.1155/2016/4819423 [published
470	Online First: 2016/02/24]
471	42. Inoue M, Sawada N, Goto A, et al. High-Negative Anti-Helicobacter pylori IgG Antibody
472	Titers and Long-Term Risk of Gastric Cancer: Results from a Large-Scale
473	Population-Based Cohort Study in Japan. Cancer Epidemiol Biomarkers Prev
474	2020;29(2):420-26. doi: 10.1158/1055-9965.EPI-19-0993 [published Online First:
475	2019/12/13]
	25

1 2		
3 4		
5 6	476	[dataset] 43. Soichiro A. Data from: Changes in prevalence of Helicobacter pylori in Japan
7 8 9	477	from 2008 to 2018: a repeated cross-sectional study, figshare, July 13, 2022
10 11	478	https://doi.org/10.6084/m9.figshare.14594571.v2
12 13 14	479	
15 16	480	
17 18 19	481	FIGURE LEGENDS
20 21 22	482	Figure 1
23 24	483	Numbers of participants
25 26 27	484	
28 29 30	485	Figure 1
31 32	486	Note. (a) The 35-year-old analysis: participants aged 35 years from 2008 to 2018. (b) The
33 34 35	487	2018 analysis: participants aged 35–65 years in 2018.
36 37 38	488	
39 40	489	
41 42	100	Figure 2:
43 44	490	rigule 2.
44 45 46	491	Infection rates of Helicobacter pylori at 35 years old from 2008 to 2018 (men: $n = 7,586$,
47 48 49	492	<i>women:</i> $n = 1,739$)
50 51	493	
52 53 54	494	Figure 2
55 56		
57 58		26
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2 3		
4 5 6	495	Note. Infection rates at 35 years linearly decreased by years. (A) men: 17.5% in 2008 to
7 8 9	496	10.1% in 2018 (slope: -0.65). (B) women: 12.3% in 2008 to 9.2% in 2018 (slope: -0.51).
10 11 12	497	There were no joinpoints. "*" in the graph legend indicates a significant difference in the
12 13 14	498	slope from zero at the alpha = 0.05 level.
15 16 17	499	
18 19 20	500	
20 21 22	501	Figure 3
23 24 25	502	Infection rates of Helicobacter pylori according to age in 2018 (men: $n = 9,580$, women:
26 27 28	503	n=1,854)
29 30	504	
31 32 33	505	Figure 3
34 35 36	506	<i>Note.</i> Infection rates increased in two trends. (A) men: first trend: 35–54 years [slope = 0.67];
37 38	507	second trend: 54–65 years [slope = 1.83]. (B) female: first trend: 35–45 years [slope = 0.30];
39 40 41	508	second trend: 45–65 years [slope = 1.49]). "*" in the graph legend indicates a significant
42 43 44	509	difference in the slope from zero at the alpha = 0.05 level.
45 46	510	
47 48 49	511	
50 51 52		
53 54		
55 56 57		27
58 59		27
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Figure 2: Note. Infection rates at 35 years linearly decreased by years. (A) men: 17.5% in 2008 to 10.1% in 2018 (slope: -0.65). (B) women: 12.3% in 2008 to 9.2% in 2018 (slope: -0.51). There were no joinpoints. "*" in the graph legend indicates a significant difference in the slope from zero at the alpha = 0.05 level.

32x14mm (600 x 600 DPI)

Figure 3: Note. Infection rates increased in two trends. (A) men: first trend: 35–54 years [slope = 0.67]; second trend: 54–65 years [slope = 1.83]. (B) female: first trend: 35–45 years [slope = 0.30]; second trend: 45–65 years [slope = 1.49]). "*" in the graph legend indicates a significant difference in the slope from zero at the alpha = 0.05 level.

35x15mm (600 x 600 DPI)

Reporting checklist for cross sectional study.

Based on the STROBE cross sectional guidelines.

Instructions to authors

Complete this checklist by entering the page numbers from your manuscript where readers will find each of the items listed below. Your article may not currently address all the items on the checklist. Please modify your text to include the missing information. If you are certain that an item does not apply, please write "n/a" and provide a short explanation. Upload your completed checklist as an extra file when you submit to a journal. In your methods section, say that you used the STROBE cross sectional reporting guidelines, and cite them as: von Elm E, Altman DG, Egger M, Pocock SJ, Gotzsche PC, Vandenbroucke JP. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: guidelines for reporting observational studies. Page Reporting Item Number Title and abstract Title #1a Indicate the study's design with a commonly used term in the title or the abstract Abstract #1b Provide in the abstract an informative and balanced summary 1-3

1			of what was done and what was found	
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	Introduction			
	Background /	<u>#2</u>	Explain the scientific background and rationale for the	3-6
	rationale		investigation being reported	
	Objectives	<u>#3</u>	State specific objectives, including any prespecified	6
			hypotheses	
	Methods			
	Study design	<u>#4</u>	Present key elements of study design early in the paper	6
	Setting	<u>#5</u>	Describe the setting, locations, and relevant dates, including	6-7
25 26 27			periods of recruitment, exposure, follow-up, and data collection	
28 29 30 31 32 33 34 35 36	Eligibility criteria	#6a	Give the eligibility criteria, and the sources and methods of	6-7
	0		selection of participants.	
		<u>#7</u>	Clearly define all outcomes, exposures, predictors, potential	6-8
30 37 38			confounders, and effect modifiers. Give diagnostic criteria, if	
39 40 41 42 43 44 45 46 47			applicable	
	Data sources /	<u>#8</u>	For each variable of interest give sources of data and details of	6-8
	measurement		methods of assessment (measurement). Describe	
			comparability of assessment methods if there is more than one	
48 49			group. Give information separately for for exposed and	
50 51 52			unexposed groups if applicable.	
52 53 54 55 56 57 58	Bias	<u>#9</u>	Describe any efforts to address potential sources of bias	14-15
	Study size	<u>#10</u>	Explain how the study size was arrived at	n/a
59 60		For pe	eer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

1 2	Quantitative	<u>#11</u>	Explain how quantitative variables were handled in the	n/a
3 4	variables		analyses. If applicable, describe which groupings were chosen,	
5 6 7			and why	
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 22	Statistical	<u>#12a</u>	Describe all statistical methods, including those used to control	7-8
	methods		for confounding	
	Statistical	<u>#12b</u>	Describe any methods used to examine subgroups and	7-8
	methods		interactions	
	Statistical	<u>#12c</u>	Explain how missing data were addressed	7
	methods			
	Statistical	<u>#12d</u>	If applicable, describe analytical methods taking account of	n/a
	methods		sampling strategy	
	Statistical	<u>#12e</u>	Describe any sensitivity analyses	n/a
32 33 34	methods			
35 36	Results			
37 38				
39 40	Participants	<u>#13a</u>	Report numbers of individuals at each stage of study—eg	9-10
41 42			numbers potentially eligible, examined for eligibility, confirmed	
43 44			eligible, included in the study, completing follow-up, and	
45 46			analysed. Give information separately for for exposed and	
47 48 49			unexposed groups if applicable.	
50 51 52	Participants	<u>#13b</u>	Give reasons for non-participation at each stage	9
54 55 56	Participants	<u>#13c</u>	Consider use of a flow diagram	9
57 58	Descriptive data	<u>#14a</u>	Give characteristics of study participants (eg demographic,	6-7, 14-
59 60		For pe	er review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	
Page 35	of 35			
---------	-------			
---------	-------			

		clinical, social) and information on exposures and potential	15
		confounders. Give information separately for exposed and	
		unexposed groups if applicable.	
Descriptive data	<u>#14b</u>	Indicate number of participants with missing data for each	9-10
		variable of interest	
Outcome data	<u>#15</u>	Report numbers of outcome events or summary measures.	9-10
		Give information separately for exposed and unexposed	
		groups if applicable.	
Main results	<u>#16a</u>	Give unadjusted estimates and, if applicable, confounder-	9-10
		adjusted estimates and their precision (eg, 95% confidence	
		interval). Make clear which confounders were adjusted for and	
		why they were included	
Main results	<u>#16b</u>	Report category boundaries when continuous variables were	n/a
		categorized	
Main results	<u>#16c</u>	If relevant, consider translating estimates of relative risk into	n/a
		absolute risk for a meaningful time period	
Other analyses	<u>#17</u>	Report other analyses done—e.g., analyses of subgroups and	n/a
		interactions, and sensitivity analyses	
Discussion			
Key results	<u>#18</u>	Summarise key results with reference to study objectives	11-12
Limitations	<u>#19</u>	Discuss limitations of the study, taking into account sources of	14-15
		potential bias or imprecision. Discuss both direction and	
		magnitude of any potential bias.	
	For pe	er review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

1 2	Interpretation	<u>#20</u>	Give a cautious overall interpretation considering objectives,	10-15
3 4			limitations, multiplicity of analyses, results from similar studies,	
5 6 7			and other relevant evidence.	
8 9 10	Generalisability	<u>#21</u>	Discuss the generalisability (external validity) of the study	15
11 12 12			results	
13 14 15	Other Information			
16				
17 18	Funding	<u>#22</u>	Give the source of funding and the role of the funders for the	n/a
19 20 21			present study and, if applicable, for the original study on which	
22 23			the present article is based	
24				
25 26	The STROBE chee	cklist is	distributed under the terms of the Creative Commons Attribution Lice	ense
27 28	CC-BY. This checklist was completed on 20. September 2021 using https://www.goodreports.org/, a			
29 30	tool made by the		<u>OR Network</u> in collaboration with <u>Penelope.ai</u>	
31 22				
33				
34				
35 36				
37				
38 39				
40				
41				
42 43				
44				
45				
46 47				
48				
49				
50 51				
52				
53				
54 55				
56				
57				
58 59				
60		For pe	eer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

BMJ Open

Changes in prevalence of *Helicobacter pylori* in Japan from 2008 to 2018: a repeated cross-sectional study

Journal:	BMJ Open
Manuscript ID	bmjopen-2021-058774.R2
Article Type:	Original research
Date Submitted by the Author:	05-Aug-2022
Complete List of Authors:	Abiko, Soichiro; Tokyo Medical University, Department of General Medicine and Primary Care Hirayama, Yoji; Tokyo Medical University, Department of General Medicine and Primary Care Otaki, Junji; Tokyo Medical University, Department of Medical Education; Tokyo Medical University, Department of General Medicine and Primary Care Harada, Yoshimi; Tokyo Medical University, Department of Medical Education; Tokyo Medical University, Department of General Medicine and Primary Care Kawakami, Kohei; Tokyo Medical University, Department of General Medicine and Primary Care Toi, Takahiro; Tokyo Medical University, Department of General Medicine and Primary Care Takamiya, Tomoko; Tokyo Medical University, Department of Preventive Medicine and Public Heatlh Kawai, Takashi; Tokyo Medical University, Department of Gastroenterological Endoscopy
Primary Subject Heading :	Epidemiology
Secondary Subject Heading:	Infectious diseases, Gastroenterology and hepatology, Health policy
Keywords:	Gastrointestinal infections < GASTROENTEROLOGY, Gastrointestinal tumours < GASTROENTEROLOGY, HEALTH ECONOMICS, Health policy < HEALTH SERVICES ADMINISTRATION & MANAGEMENT, Epidemiology < INFECTIOUS DISEASES, PREVENTIVE MEDICINE
	·

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

3	
4 5 6	1
7 8	2
10 11	3
12 13 14	4
15 16 17	5
18 19	6
20 21 22	7
23 24 25	8
26 27	9
28 29 30	10
31 32 33	11
34 35	12
36 37 38	13
39 40 41	14
42 43	15
44 45 46	16
47 48 49	17
50 51	18
52 53 54	19
55 56 57	
58	
59 60	

1

Changes in prevalence of *Helicobacter pylori* in Japan from 2008 to 2018: a repeated

cross-sectional study

- Author names: Soichiro Abiko¹, Yoji Hirayama¹, Junji Otaki², Yoshimi Harada², Kohei
- 4 Kawakami¹, Takahiro Toi¹, Tomoko Takamiya³, Takashi Kawai⁴

Author Affiliations:

1. Department of General Medicine and Primary Care, Tokyo Medical University, Tokyo,

Japan.

- 2. Department of Medical Education, Tokyo Medical University, Tokyo, Japan.
- 9 3. Department of Preventive Medicine and Public Health, Tokyo Medical University, Tokyo,

10 Japan.

4. Department of Gastroenterological Endoscopy, Tokyo Medical University, Tokyo, Japan.

12 Corresponding Author: Soichiro Abiko

13 Email: s_abiko1@tokyo-med.ac.jp

14 **Word count:** 2,903

16 ABSTRACT

- 17 **Objectives:** To understand the recent prevalence and time-trends of *Helicobacter pylori*
- 18 infection rates in the Japanese population.
- 19 **Design:** Repeated cross-sectional study

BMJ Open

20	Participants: A total of 22,120 workers (age: 35-65 years) from one Japanese company,
21	who underwent serum <i>H. pylori</i> antibody tests in a health checkup between 2008 and 2018.
22	Measures: H. pylori infection rates among participants aged 35 years from 2008 to 2018,
23	and participants aged 35, 40, 45, and 50-65 years in 2018, based on the results of serum
24	antibody tests were analyzed. In the 2018 analysis, in addition to the antibody test results, all
25	participants who had undergone eradication treatment for H. pylori were considered as
26	infected. Trends were examined using Joinpoint analysis.
27	Results: H. pylori were detected in 1,100 of 7,586 male, and 190 of 1,739 female participants
28	aged 35 years. Annual infection rates among those aged 35 years showed linear downward
29	trends as follows: men, 17.5% in 2008 to 10.1% in 2018 (slope: -0.66); women, 12.3% in
30	2008 to 9.2% in 2018 (slope: -0.51) without joinpoints. In the 2018 analysis, 2,432 of 9,580
31	men and 431 of 1,854 women were <i>H. pylori</i> positive. Infection rates tended to increase with
32	older age (men: 11.0% [35 years] to 47.7% [65 years], women: 10.0% [35 years] to 40.0%
33	[65 years]), and showed joinpoints in both sexes (men: 54 years, women: 45 years). Although
34	both the first and second trends were upward, the second trends for both men and women
35	were steeper than the first trends ($P < 0.05$).
36	Conclusions: Our study demonstrated that in the previous 11 years, infection rates of H.

furthermore, analysis of various age groups showed joinpoints around 50 years, suggesting a

pylori in Japanese 35-year-old male and female workers have constantly decreased, and

consistent declining trend in *H. pylori* infection rates in Japan.

1	
2	
3	
4 5	
6	
7	
8	
9	
10	
11	
13	
14	
15	
16	
1/	
19	
20	
21	
22	
23	
24 25	
26	
27	
28	
29	
30 31	
32	
33	
34	
35	
36	
37 38	
39	
40	
41	
42	
43 44	
44	
46	
47	
48	
49 50	
50	
52	
53	
54	
55	
56 57	
58	
59	
60	

40	
41	Strengths and limitations of this study
42	• This study presents a recent 11-year time trend of <i>H. pylori</i> infection rates based on <i>H</i> .
43	pylori serum antibody test results of 35-year-old workers from one large company with many
44	branches around Japan, using Joinpoint trend analysis.
45	
46	• The 2018 data compared infection rates by age group (35, 40, 45, and 50–65 years), taking
47	into account the history of <i>H. pylori</i> eradication treatment obtained by a questionnaire, in
48	addition to antibody testing.
49	
50	• The main limitation of this study is the generalizability of the results to the general
51	Japanese population because the study subjects were company employees.
52	
53	
54	INTRODUCTION
55	Helicobacter pylori (H. pylori) is a gram-negative bacterium that is often found in the human
56	stomach. H. pylori infection is known to be closely associated with chronic gastritis,
57	duodenal ulcers, gastric ulcers, gastric mucosa-associated lymphoid tissue lymphoma, and

BMJ Open

gastric cancer.¹²³⁴ The International Agency for Research on Cancer Working group, which is a part of the World Health Organization (WHO), classified *H. pylori* as a Group 1 carcinogen for gastric cancer in 1994.5 Moreover, the WHO has stated that "H. pylori screening and treatment strategies would be cost-effective" for asymptomatic populations to prevent gastric cancer, and has recommended that "countries explore the possibility of introducing population-based H. pylori screening and treatment programmes".⁶ H. pylori test-and-treat strategy for preventing gastric cancer is considered more effective in regions with a high incidence of gastric cancer.⁷ The incidence and mortality rates of gastric cancer are relatively high in Japan compared with other countries. Moreover, H. pylori infection is thought to be involved in more than 90% of gastric cancer cases in Japan.⁸⁹ In addition, the infection rate of H. pylori in Japan is higher than that in other developed countries.¹⁰ Accordingly, the "test-and-treat" strategy for *H. pylori* could be a good measure for preventing gastric cancer in Japan. In 2013, the national health insurance scheme covered the *H. pylori* eradication therapy for chronic gastritis in Japan. Several groups in Japan, including company health insurance societies and local municipalities, have introduced H. *pylori* screening tests for asymptomatic people during medical check-ups for the prophylactic intervention of gastric cancer.

77	Decreasing the <i>H. pylori</i> infection rate could reduce the incidence rate of gastric cancer ¹¹ and
78	reduce the positive predictive value of <i>H. pylori</i> screening. Therefore, decreasing the <i>H</i> .
79	pylori infection rate in the population may negatively affect the cost-effectiveness of the
80	"test-and-treat" strategy for asymptomatic groups. It is important to elucidate the current
81	prevalence of <i>H. pylori</i> infection and its trends over time, to predict future infection rates and
82	plan test strategies for the future. There has been a decrease in the worldwide prevalence of
83	<i>H. pylori</i> , ¹⁰ with several Japanese studies reporting similar results. ¹² However, most of these
84	studies had small sample sizes or included specific participants, including hospital visitors.
85	To our knowledge, there have been no recent large-scale studies on the prevalence and time-
86	trend of infection rates of <i>H. pylori</i> in Japan. ^{12 13 14} In addition, several studies have reported
87	that the H. pylori infection rates become steady at approximately 10% in several low-
88	prevalence regions, including European countries. ¹⁰ ¹⁵ ¹⁶ Watanabe et al. analyzed the
89	prevalence of <i>H. pylori</i> infection by birth-year among first-visit outpatients between 2005 to
90	2013 in Nagoya, Japan. The results showed three trends: the birth-year percent change (BPC)
91	= -1.15% in patients born between 1927 and 1949, BPC = -4.59% in patients born between
92	1949 and 1961, and BPC = -2.04% in patients born between 1961 and 1988, indicating that
93	after a rapid decrease in infection rates in those born between 1949 and 1961, the rate of
94	decrease has slowed down. ¹⁴ Our present study aimed to elucidate the recent trends in the
95	infection rates of <i>H. pylori</i> , including the rates after 2013, which is the year that the health

96	insurance system in Japan began to cover <i>H. pylori</i> eradication therapy for chronic gastritis,
97	and whether they showed significant changes with time.
98	
99	Using data from health checkups in a company health insurance society, this repeated cross-
100	sectional study aimed to clarify the recent 11-year trend of <i>H. pylori</i> infection rate in 35-year-
101	olds and <i>H. pylori</i> infection rates in 2018 according to age, stratified by sex.
102	
103	MATERIALS AND METHODS
104	Japanese law requires all citizens to have some type of health insurance. T company is one
105	of the largest companies in Japan, with many branches. All workers of this company, which
106	includes a wide variety of people, such as office workers, manual laborers, and people with
107	disabilities, belong to the company's health insurance society. Members of the T company
108	health insurance society undergo serum anti-Helicobacter pylori IgG antibody tests. This test
109	was conducted annually on members aged 35 years during their health checkups
110	(approximately 600–1,100 people per year). However, in 2018, the health insurance society
111	offered this test to participants aged 35, 40, 45, and > 50 years. We included members who
112	had undergone serum <i>H. pylori</i> antibody tests at their annual health checkups from April 1,
113	2008, to March 31, 2019, at the age of 35-65 years. Participants' blood samples were taken
114	at their health checkups. Serum was isolated from the samples, and stored at -80 °C until

2	
3	
4	
5	
6	
7	
8	
a	
10	
10	
11	
12	
13	
14	
15	
16	
17	
17	
10	
19	
20	
21	
22	
23	
24	
25	
25	
20	
27	
28	
29	
30	
31	
32	
22	
22	
34	
35	
36	
37	
38	
39	
40	
<u>⊿</u> 1	
יד ⊿ר	
42	
43	
44	
45	
46	
47	
48	
49	
50	
50	
51	
52	
53	
54	
55	
56	
57	
52	
20	
59	
60	

1

use. Serum anti-*H. pylori* IgG was measured using an enzyme-linked immunosorbent assay with "E-Plate Eiken *H. pylori* antibody" or "E-Plate II Eiken *H. pylori* antibody" (Eiken Chemical Co. Ltd., Tokyo, Japan). The cut-off level was set at 10 U/mL,¹⁷ with values above this being classified as positive. Anonymized participants' data, including medical questionnaires and blood test results, were obtained from the annual health checkup database of the health insurance society. We excluded data from individuals who refused academic use of their data.

122

123 Statistical analysis

First, data obtained from 35-year-old participants between 2008 and 2018 were analyzed to determine time-trends in *H. pylori* infection rates ("35-year-old analysis") stratified by sex. Positive results of serum antibody tests for *H. pylori* were defined as *H. pylori* infection. Annual infection rates were calculated based on the antibody test results. Subsequently, we analyzed the time-trend of the rates.

129

Second, we analyzed data from participants aged 35, 40, 45, and 50–65 years old obtained in 2018 according to age stratified by sex to determine generational differences in the infection rates ("2018 analysis"). In the 2018 analysis, participants who tested positive for antibodies were considered as infected. Further, to reduce the influence of eradication treatment on the

BMJ Open

2	
3	
4	
5	
6	
0	
/	
8	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
18	
19	
20	
20	
21	
22	
23	
24	
25	
26	
20	
27	
28	
29	
30	
31	
32	
22	
21	
24	
35	
36	
37	
38	
39	
40	
/1	
41	
42	
43	
44	
45	
46	
47	
<u>18</u>	
10	
49	
50	
51	
52	
53	
54	
55	
55	
20	
57	
58	
59	
60	

134 infection rate, all participants with a history of eradication treatment of *H. pylori* infection were defined as positive regardless of their tests results for *H. pylori* antibody, with the 135 assumption that a history of eradication treatment indicates a previous infection. 136

137

We performed Joinpoint Trend Analysis¹⁸ to identify trends in the infection rate and their 138 changes over time using Joinpoint Regression Program 4.9.0.0.¹⁹ We used the permutation 139 140 test to select the optimal number of joinpoints in the 35-year-old analysis, whereas we used the Bayesian Information Criterion (BIC) in the 2018 analysis. Linear Model was selected in 141 142 the analyses. Statistical significance was set at P < 0.05. Data with missing or ambiguous figures were excluded from the analysis. 143 1.04

144

Patient and public involvement 145

146 After discussions with representatives of the health insurance society about this study, the health insurance society acknowledged the importance of our study, and permitted us to 147 collect and use participant data from its database. The results of this study are published as a 148 149 report.

150

Ethical approval 151

152 This study protocol was reviewed and approved by the Institutional Review Board of Tokyo

Medical University (T2019-0044). Following the Ethical Guidelines for Medical and Health Research Involving Human Subjects,²⁰ the study information was shown on the websites of the institutions where the researchers or participants belonged. Participants' consent for using data was obtained through an opt-out option.

RESULTS

There were 9,793 and 12,327 participants in the 35-year-old and 2018 analyses, respectively, with 592 participants overlapping in both analyses. In the 35-year-old analysis, 468 participants were excluded for having missing (n = 314) or ambiguous data (n = 154) in the records, with 9,325 participants (7,586 men; 1,739 women) being included in the final analysis. In the 2018 analysis, 893 participants were excluded for having missing (n = 875) or ambiguous data (n = 18) in the records, with 11,434 participants (9,580 men; 1,854 women) being included in the final analysis (Figure 1).

167 The 35-year-old analysis

In the 35-year-old analysis, 1,100 out of 7,586 male participants and 190 out of 1,739 female participants were *H. pylori*-infected. In Joinpoint analysis, infection rates showed linear downward trends in both men and women with increasing years (men: 17.5% in 2008 to 10.1% in 2018 (slope -0.66), women: 12.3% in 2008 to 9.2% in 2018 (slope -0.51) [*P* <

BMJ Open

2
2
1
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
∠∪)1
∠ I วว
22
∠3 24
24
25
26
27
28
29
30
31
32
33
34
35
36
37
20
20
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
55
50
5/
20 20
59
60

0.05]). These trends lacked joinpoints at which the trend significantly changed (Figure 2).

174 **The 2018 analysis**

175 In the 2018 analysis, 2,432 out of 9,580 male participants and 431 out of 1,854 female 176 participants were infected with *H. pylori*. The infection rates showed trends of increasing positive rates with advanced age in both men and women (men: 11.0% at 35 years to 47.7% 177 at 65 years, women: 10.0% at 35 years to 40.0% at 65 years). These trends had joinpoints at 178 the age of 54 years in men (95% CI: 45–58) and at the age of 45 in women (95% CI: 45–51), 179 180 with two different trends in the slope before and after the point. Specifically, the first and second trends were 35-54 years (slope = 0.67) and 54-65 years (slope = 1.83) in men, and 181 35-45 years (slope = 0.30) and 45-65 years (slope = 1.49) in women. Both first and second 182 trends showed a linear increase with age, with the second trends being significantly steeper 183 184 than the first trends (P < 0.05) (Figure 3).

185

186 **DISCUSSION**

This study investigated the 11-year time-trend from 2008 to 2018, and the trend by age in 2018 regarding the prevalence of *H. pylori* infection in Japanese workers stratified by sex based on large-scale health checkup data. In the 35-year-old analysis, the infection rate showed a linear declining trend from 2008 to 2018 both in men and women. This provided a

good estimate of the *H. pylori* infection trends in Japan, as the subjects of this study were
workers in a large company, including workers in the branch offices.

In the 35-year-old analysis, the infection rate decreased linearly to approximately 10% both in men and women; further, this downward trend did not significantly change during the observation period. We assumed that the participants in this analysis, who were all 35 years old were less affected by eradication treatment than older participants; and therefore, the results may closely reflect the actual trend of the incidence rate of H. pylori infections in Japan. If the downward trends (slope = -0.65 in men and slope = -0.51 in women) observed in the 35-year-old analysis continues, the infection rate is expected to reach nearly zero by about 2035. In contrast, recent studies on junior high school students (aged: 12–15 years) in Japan have demonstrated that the infection rate of this generation when they reach 35 years at about 2035 will be approximately 3% to 5%,^{21 22 23 24} which is higher than our prediction. This inconsistency suggests that the decrease in the infection rate may have slowed down.

In the 2018 analysis, the infection rates in both sexes increased with advanced age. This also indicated declining trends in the prevalence rate of *H. pylori* over the years. Furthermore, there were joinpoints around the age of 50 years (54 years in men [95% CI: 45–58] and 45 years in women [95% CI: 45–51]), which implies the existence of some type of change

BMJ Open

affecting the *H. pylori* infection rate in people of this generations (Figure 3). Chronic *H. pylori* infection is mostly established in the human stomach during childhood.^{25 26} Drinking water and family members are among the sources of *H. pylori* infection.²⁷ From the late 1960s to the 1970s, which is when people aged 50 years in 2018 spent their childhood, Japan experienced rapid economic growth and urbanization. Accordingly, there was an accelerated increase in water supply and a decrease in the average number of households.²⁸²⁹ These fast environmental changes may have influenced the establishment of *H. pylori* infection; consequently, there was a sharp decrease in the prevalence of this bacterial infection during this era. Watanabe et al. revealed changes in the declining trend of *H. pylori* infection rate and indicated an effect of environmental changes on the infection rate,¹⁴ which is consistent with our findings.

Participants in the 35-year-old analysis were born after 1973; therefore, they may have not experienced the rapid environmental changes that those who were born during the period of high economic growth (1955–1972) had experienced. The 35-year-old analysis revealed a recent gradual decrease in the *H. pylori* infection rate. This suggests that factors other than hygiene and family structure may influence infection establishment. As aforementioned, *H. pylori* infections are likely to be established during childhood through parent-to-child transmission.²⁶ In addition to hygienic and environmental improvements, the spread of ready-

made baby food after around 1970 may have contributed to the decreased H. pylori infection rate.³⁰ With the recently increasing recognition of *H. pylori* in the general population and coverage of eradication treatment through national insurance, there has been an increase in the number of *H. pylori* eradication treatments in Japan.³¹ If treatment decreases the infection rate in child-rearing generation, it could accelerate the declining speed of the infection rates in the next generations. When conducting *H. pylori* screening tests for prophylactic purposes, the prevalence in a target group should be considered to evaluate the effectiveness of the strategy. We observed a decreasing infection rate of *H. pylori* in Japan. In the future, the infection rate may reach zero; accordingly, there would be a decreased importance of screening tests for this bacterium in asymptomatic people. A study on the cost-effectiveness of the test-and-treatment strategy for *H. pylori* revealed that it remained effective even with a low infection rate of approximately 5%.³² Our findings could inform future public health strategies. Moreover, considering the decrease in H. pylori prevalence, H. pylori infection-negative gastric cancer has lately been receiving attention.^{33 34 35} Research for risk factors of gastric cancer other than *H. pylori* is also needed. Limitations

BMJ Open

This study has several limitations. First, there might have been selection bias, including age, sex, occupation, region, and nationality (possibly including several workers who were born and raised in countries other than Japan). Several studies have analyzed differences in the infection rates according to sex, occupation, and region, with a study reporting a higher infection rate in men; however, there remains no consensus regarding these biases.^{36 37 38} Our present study included participants of an unequal number of each sex. This was one reason why we conducted separate analyses for each sex. A recent study showed that employees in a large company are in better health than those in a small one.³⁹ As the target group of this study were employees of a large company, there is the possibility of such bias. Heterogeneity of age gaps between age groups and limitation of the target ages may have weakened analyses, especially in younger age groups. However, the present study targeted all health insurance society members working in a large company operating throughout Japan, and therefore, we were able to include subjects from various age groups and regions throughout Japan. Second, the history of *H. pylori* eradication may have influenced our findings. In 2008, T company health insurance society performed serum H. pylori antibody screening tests for all its members. Therefore, there may have been a higher proportion of post-eradication cases in our study than in the general population. We attempted to reduce the influence of eradication treatment by classifying patients who underwent eradication treatment as infected. However, history information acquired through a self-reported questionnaire could have contained

2	
3	
4	
5	
6	
0 7	
/	
8	
9	
10	
11	
12	
12	
15	
14	
15	
16	
17	
18	
19	
20	
20	
21	
22	
23	
24	
25	
26	
27	
∠/ ว∩	
28	
29	
30	
31	
32	
33	
31	
25	
30	
36	
37	
38	
39	
40	
41	
יד גע	
4Z	
43	
44	
45	
46	
47	
<u>4</u> 8	
-0 /0	
49	
50	
51	
52	
53	
54	
55	
55	
20	
5/	
58	
59	
60	

280

285

1

267	inaccuracies, including recall bias. ⁴⁰ In the 35-year-old analysis, we could not obtain
268	information regarding previous eradication treatment of the participants. We hence analyzed
269	the data based on the assumption that the rate of eradication treatment among participants in
270	the 35-year-old analysis was low, due to their younger age, and therefore would not
271	significantly affect the infection rate. The health insurance society collected and reported, as
272	part of their health services, that the rate of 35-year-old participants who had previously
273	undergone eradication treatment (both men and women) was 0.9%, 2.1%, and 1.4% in 2018,
274	2019, and 2020, respectively. Although this supports our assumption, it indicates the
275	possibility of errors of 1%-2 % from eradication treatment in the infection rates of the 35-
276	year-old analysis. In addition, previous medical history; medications; and measurement
277	biases, including test characteristics and threshold application in the test (including high-
278	negative issues), could have influenced our results. ^{41 42} The limitations mentioned above may
279	hinder the generalization of our findings to the Japanese general population.

However, the present study collected data of 35-year-olds from 2009 to 2018, and data also of various age groups from 2018, and this information was analyzed using a robust statistical

of various age groups from 2018, and this information was analyzed using a robust statistical method called joinpoint analysis, demonstrating important findings for considering future *H*. *pylori* eradication therapy targets.

286 CONCLUSION

Our study showed a constant decreasing time-trend in the infection rate of *H. pylori* among 35-year-old workers in Japan from 2008 to 2018⁴³. This time-trend indicates that the infection rate of *H. pylori* may continue to decrease in the future. Trends in the infection rate by age in 2018 indicated the possibility of a slowing down of the rate of decrease in the prevalence of *H. pylori* in Japan. In populations with few *H. pylori*-positive individuals, the efficiency of measures to routinely test for antibodies is low, and therefore, it would be difficult to rely solely on the *H. pylori* test and treatment strategy to achieve gastric cancer prevention. We believe that the data regarding changes in the prevalence of *H. pylori* over the years observed in Japan could be useful for other countries with a high incidence of H. *pylori* infection, in planning future eradication strategies.

298 Acknowledgments

We would like to acknowledge the T company health insurance society. We would like to thank the Center for International Education and Research of Tokyo Medical University for English language editing.

Footnotes

Contributors: SA designed the study, analyzed the data, and drafted the manuscript. Y

5 4		
5	305	Hirayama contributed to the study design and performed general supervision of the whole
6	500	Thing and conditioned to the standy design and performed general supervision of the whole
7 o	306	study IO Y Harada and T Toi assisted in conducting the study interpreting the results and
9	500	study. vo, 1 Hurudu, and 1 Torussisted in conducting the study, interpreting the results, and
10	307	revising the manuscript KK and TK contributed to data collection and provided advice and
11	307	revising the manuscript. KK and TK contributed to data concerton and provided advice and
12 13	200	oninions from an avaart normaative. TT contributed to date analyzis and ravising the
14	308	opinions from an expert perspective. IT contributed to data analysis and revising the
15	• • • •	
16	309	manuscript from statistical and public health perspectives. All authors read and approved the
1/ 18		
19	310	final manuscript.
20		
21	311	
22		
23	312	Funding: This research received no specific grant from any funding agency in the public,
25		
26	313	commercial, or not-for-profit sectors.
27 28		
29	314	
30	011	
31	315	Competing interests: None declared
32 33	515	
34	216	
35	310	
36 27	217	Detient concert for multication. Not required
38	317	Patient consent for publication: Not required.
39	210	
40	318	
41 42		
43	319	Ethics approval: The institutional review boards of Tokyo Medical University (12019-
44		
45	320	0044)
46 47		
48	321	
49		
50	322	Provenance and peer review: Not commissioned; externally peer-reviewed.
51 52		
53	323	
54		
55 56		
50 57		
58		17
59		For poor roviow only, http://hmignon.hmi.com/cite/shout/quidalines.yhtml
60		For peer review only - http://binjopen.binj.com/site/about/guideimes.xittmi

1 2		
3 4 5		
5 6 7	324	Data sharing statement: Data is available in a public, open access repository. ⁴⁵
7 8 0	325	
9 10 11	326	
12 13 14	327	REFERENCES
15 16 17	328	1. Wang F, Meng W, Wang B, et al. Helicobacter pylori-induced gastric inflammation and
18 19	329	gastric cancer. Cancer Lett 2014;345(2):196-202. doi: 10.1016/j.canlet.2013.08.016
20 21 22	330	[published Online First: 2013/08/29]
23 24 25	331	2. Huang JQ, Sridhar S, Hunt RH. Role of Helicobacter pylori infection and non-steroidal
26 27	332	anti-inflammatory drugs in peptic-ulcer disease: a meta-analysis. Lancet
28 29 30	333	2002;359(9300):14-22. doi: 10.1016/s0140-6736(02)07273-2 [published Online
31 32 33	334	First: 2002/01/26]
34 35	335	3. Eck M, Schmausser B, Haas R, et al. MALT-type lymphoma of the stomach is associated
36 37 38	336	with Helicobacter pylori strains expressing the CagA protein. Gastroenterology
39 40 41	337	1997;112(5):1482-6. doi: 10.1016/s0016-5085(97)70028-3 [published Online First:
42 43	338	1997/05/01]
44 45 46	339	4. Sasazuki S, Inoue M, Iwasaki M, et al. Effect of Helicobacter pylori infection combined
47 48 49	340	with CagA and pepsinogen status on gastric cancer development among Japanese
50 51	341	men and women: a nested case-control study. Cancer Epidemiol Biomarkers Prev
52 53 54 55 56	342	2006;15(7):1341-7. doi: 10.1158/1055-9965.EPI-05-0901 [published Online First:
57 58		18
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2 3	
4 5	343
7 8	344
9 10 11	345
12 13	346
14 15 16	347
17 18	348
19 20 21	3/10
22 23	250
24 25 26	350
27 28	351
29 30 31	352
32 33	353
34 35 36	354
37 38 20	355
40 41	356
42 43 44	357
45 46	358
47 48 49	359
50 51	360
52 53 54	361
55 56 57	
58 59	
60	

5. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Schistosomes, Liver Flukes and Helicobacter pylori. Lyon (FR): International Agency for Research on Cancer 1994. 6. IARC Helicobacter pylori Working Group. Helicobacter pylori Eradication as a Strategy for Preventing Gastric Cancer: International Agency for Research on Cancer 2014. 7. Ford AC, Forman D, Hunt RH, et al. Helicobacter pylori eradication therapy to prevent gastric cancer in healthy asymptomatic infected individuals: systematic review and meta-analysis of randomised controlled trials. BMJ 2014;348:g3174. doi: 10.1136/bmj.g3174 8. Center for Cancer Control and Information Services, National Cancer Center. CANCER STATISTICS IN JAPAN '19 [updated 17 April 2020. Available from: https://ganjoho.jp/en/professional/statistics/brochure/2019 en.html accessed 22 Dec 2020. 9. Matsuo T, Ito M, Takata S, et al. Low prevalence of Helicobacter pylori-negative gastric cancer among Japanese. Helicobacter 2011;16(6):415-9. doi: 10.1111/j.1523-5378.2011.00889.x [published Online First: 2011/11/09] 10. Peleteiro B, Bastos A, Ferro A, et al. Prevalence of Helicobacter pylori infection worldwide: a systematic review of studies with national coverage. Dig Dis Sci

2 3		
4 5 6	362	2014;59(8):1698-709. doi: 10.1007/s10620-014-3063-0 [published Online First:
7 8 9	363	2014/02/25]
10 11 12	364	11. Tsuda M, Asaka M, Kato M, et al. Effect on Helicobacter pylori eradication therapy
12 13 14	365	against gastric cancer in Japan. Helicobacter 2017;22(5) doi: 10.1111/hel.12415
15 16 17	366	[published Online First: 2017/08/05]
18 19 20	367	12. Wang C, Nishiyama T, Kikuchi S, et al. Changing trends in the prevalence of H. pylori
20 21 22	368	infection in Japan (1908-2003): a systematic review and meta-regression analysis of
23 24 25	369	170,752 individuals. Sci Rep 2017;7(1):15491. doi: 10.1038/s41598-017-15490-7
26 27	370	[published Online First: 2017/11/16]
28 29 30	371	13. Inoue M. Changing epidemiology of Helicobacter pylori in Japan. Gastric Cancer
31 32 33	372	2017;20(Suppl 1):3-7. doi: 10.1007/s10120-016-0658-5 [published Online First:
34 35	373	2016/10/21]
36 37 38	374	14. Watanabe M, Ito H, Hosono S, et al. Declining trends in prevalence of Helicobacter pylori
39 40 41	375	infection by birth-year in a Japanese population. Cancer Sci 2015;106(12):1738-43.
42 43	376	doi: 10.1111/cas.12821 [published Online First: 2015/09/24]
44 45 46	377	15. Carmack SW, Genta RM. Helicobacter pylori seroprevalence in symptomatic veterans: a
47 48 49	378	study of 7310 patients over 11 years. Helicobacter 2009;14(4):298-302. doi:
50 51	379	10.1111/j.1523-5378.2009.00693.x
52 53 54 55 56	380	16. den Hoed CM, Vila AJ, Holster IL, et al. Helicobacter pylori and the birth cohort effect:
57 58		20
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1

2		
4		
5 6	381	evidence for stabilized colonization rates in childhood. <i>Helicobacter</i> 2011;16(5):405-
7 8 9	382	9. doi: 10.1111/j.1523-5378.2011.00854.x [published Online First: 2011/09/20]
10 11 12	383	17. Komatsu Y, Sugiyama T, Asaka M. Helicobacter pylori kansenshindan ni okeru
13 14	384	nihonjinkabu wo siyou sita ELISA kit " E-plate eiken H.pylori koutai" no yuyousei
15 16 17	385	no kentou [Study of effectiveness of E-plate eiken which is ELAISA kit using
18 19	386	Japanese strain in diagnose of Helicobacter pylori infection]. The Journal of Clinical
20 21 22	387	Laboratory Instruments and Reagents 2001;24(5):331-35.
23 24 25	388	18. Kim HJ, Fay MP, Feuer EJ, et al. Permutation tests for joinpoint regression with
26 27	389	applications to cancer rates. Stat Med 2000;19(3):335-51. doi: 10.1002/(sici)1097-
28 29 30	390	0258(20000215)19:3<335::aid-sim336>3.0.co;2-z [published Online First:
31 32 33	391	2000/01/29]
34 35	392	19. Joinpoint Regression Program [program]. Version 4.9.0.0 version: Statistical
36 37 38	393	Methodology and Applications Branch, Surveillance Research Program, National
39 40	394	Cancer Institute., March 2021.
41 42 43	395	20. Ministry of Health, Labour and Welfare. Ethical Guidelines for Medical and Health
44 45 46	396	Research Involving Human Subjects 2015 [Available from:
47 48	397	https://www.mhlw.go.jp/file/06-Seisakujouhou-10600000-
49 50 51	398	Daijinkanboukouseikagakuka/0000080278.pdf accessed 6 Dec 2020.
52 53 54 55	399	21. Kusano C, Gotoda T, Ishikawa H, et al. The administrative project of Helicobacter pylori
56 57		
58 59		21
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 23 of 35

1 2		
3		
4 5 6	400	infection screening among junior high school students in an area of Japan with a high
7 8 9	401	incidence of gastric cancer. Gastric Cancer 2017;20(Suppl 1):16-19. doi:
10 11	402	10.1007/s10120-017-0688-7 [published Online First: 2017/01/18]
12 13 14	403	22. Honma H, Nakayama Y, Kato S, et al. Clinical features of Helicobacter pylori antibody-
15 16 17	404	positive junior high school students in Nagano Prefecture, Japan. Helicobacter
18 19	405	2018:e12559. doi: 10.1111/hel.12559 [published Online First: 2018/12/06]
20 21 22	406	23. Nakayama Y, Lin Y, Hongo M, et al. Helicobacter pylori infection and its related factors
23 24 25	407	in junior high school students in Nagano Prefecture, Japan. Helicobacter 2017;22(2)
26 27	408	doi: 10.1111/hel.12363 [published Online First: 2016/10/28]
28 29 30	409	24. Kakiuchi T, Matsuo M, Endo H, et al. A Helicobacter pylori screening and treatment
31 32 33	410	program to eliminate gastric cancer among junior high school students in Saga
34 35	411	Prefecture: a preliminary report. J Gastroenterol 2019 doi: 10.1007/s00535-019-
36 37 38	412	01559-9 [published Online First: 2019/02/17]
39 40 41	413	25. Banatvala N, Mayo K, Megraud F, et al. The cohort effect and Helicobacter pylori. J
42 43	414	Infect Dis 1993;168(1):219-21. doi: 10.1093/infdis/168.1.219
44 45 46	415	26. O'Ryan ML, Lucero Y, Rabello M, et al. Persistent and transient Helicobacter pylori
47 48 49	416	infections in early childhood. Clin Infect Dis 2015;61(2):211-8. doi:
50 51	417	10.1093/cid/civ256
52 53 54 55 56	418	27. Ueda M, Kikuchi S, Kasugai T, et al. Helicobacter pylori risk associated with childhood
57 58		22
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1

2 3		
4		
5 6	419	home environment. Cancer Sci 2003;94(10):914-8. doi: 10.1111/j.1349-
7 8 9	420	7006.2003.tb01375.x [published Online First: 2003/10/15]
10 11 12	421	28. JAPAN WATER WORKS ASSOCIATION. Water Supply in Japan 2017 [Available
12 13 14	422	from: http://www.jwwa.or.jp/jigyou/kaigai_file/2017WaterSupplyInJapan.pdf
15 16 17	423	accessed Dec 22 2020.
18 19 20	424	29. Ministry of Health, Labour and Welfare. General Welfare and Labour Japan [Available
20 21 22	425	from: https://www.mhlw.go.jp/english/wp/wp-hw9/dl/01e.pdf accessed 1st Oct 2020.
23 24 25	426	30. Council JBF. Seisan Tokei [Production statistics] Japan [Available from:
26 27	427	https://www.baby-food.jp/link/ayumi-jikei.html accessed 11 Dec 2020.
28 29 30	428	31. Hiroi S, Sugano K, Tanaka S, et al. Impact of health insurance coverage for Helicobacter
31 32 33	429	pylori gastritis on the trends in eradication therapy in Japan: retrospective
34 35	430	observational study and simulation study based on real-world data. BMJ Open
30 37 38	431	2017;7(7):e015855. doi: 10.1136/bmjopen-2017-015855 [published Online First:
39 40 41	432	2017/08/02]
42 43	433	32. Kowada A. Cost-effectiveness of Helicobacter pylori screening followed by eradication
44 45 46	434	treatment for employees in Japan. Epidemiol Infect 2018;146(14):1834-40. doi:
47 48 49	435	10.1017/S095026881800208X [published Online First: 2018/07/31]
50 51	436	33. Kato S, Matsukura N, Tsukada K, et al. Helicobacter pylori infection-negative gastric
52 53 54 55 56	437	cancer in Japanese hospital patients: Incidence and pathological characteristics.
57 58		23
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

3 1		
4 5 6	438	Cancer Sci 2007;98(6):790-94. doi: https://doi.org/10.1111/j.1349-
7 8	439	7006.2007.00478.x
9 10 11	440	34. Yamamoto Y, Fujisaki J, Omae M, et al. Helicobacter pylori-negative gastric cancer:
12 13 14	441	characteristics and endoscopic findings. Digestive endoscopy : official journal of the
15 16	442	Japan Gastroenterological Endoscopy Society 2015;27(5):551-61. doi:
17 18 19	443	10.1111/den.12471 [published Online First: 2015/03/27]
20 21 22	444	35. Takita M, Ohata K, Inamoto R, et al. Endoscopic and histological features of Helicobacter
23 24	445	pylori-negative differentiated gastric adenocarcinoma arising in the antrum. JGH
25 26 27	446	open : an open access journal of gastroenterology and hepatology 2021;5(4):470-77.
28 29 30	447	doi: 10.1002/jgh3.12518 [published Online First: 2021/04/17]
31 32	448	36. Kheyre H, Morais S, Ferro A, et al. The occupational risk of Helicobacter pylori infection:
33 34 35	449	a systematic review. Int Arch Occup Environ Health 2018;91(6):657-74. doi:
36 37 38	450	10.1007/s00420-018-1315-6
39 40	451	37. Ueda J, Gosho M, Inui Y, et al. Prevalence of Helicobacter pylori infection by birth year
41 42 43	452	and geographic area in Japan. Helicobacter 2014;19(2):105-10. doi:
44 45 46	453	10.1111/hel.12110 [published Online First: 2014/02/11]
40 47 48	454	38. Ferro A, Morais S, Pelucchi C, et al. Sex differences in the prevalence of Helicobacter
49 50 51	455	pylori infection: an individual participant data pooled analysis (StoP Project). Eur J
52 53	456	Gastroenterol Hepatol 2019;31(5):593-98. doi: 10.1097/MEG.00000000001389
55 56		
57 58 59		24
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2						
3						
4 5 6	457	[published Online First: 2019/03/07]				
7 8 9	458	39. Kanamori S, Tsuji T, Takamiya T, et al. Size of company of the longest-held job				
10 11	459	mortality in older Japanese adults: A 6-year follow-up study from the Japan				
12 13 14 15 16 17	460	Gerontological Evaluation Study. J Occup Health 2020;62(1):e12115. doi:				
	461	10.1002/1348-9585.12115 [published Online First: 2020/06/10]				
18 19	462	40. Coughlin SS. Recall bias in epidemiologic studies. J Clin Epidemiol 1990;43(1):87-91.				
20 21 22	463	doi: 10.1016/0895-4356(90)90060-3				
23 24 25	464	41. Miftahussurur M, Yamaoka Y. Diagnostic Methods of Helicobacter pylori Infection for				
26 27	465	Epidemiological Studies: Critical Importance of Indirect Test Validation. BioMed				
28 29 30	466	research international 2016;2016:4819423. doi: 10.1155/2016/4819423 [published				
31 32	467	Online First: 2016/02/24]				
33 34 35 36 37	468	42. Inoue M, Sawada N, Goto A, et al. High-Negative Anti-Helicobacter pylori IgG Antibody				
	469	Titers and Long-Term Risk of Gastric Cancer: Results from a Large-Scale				
39 40	470	Population-Based Cohort Study in Japan. Cancer Epidemiol Biomarkers Prev				
41 42 43	471	2020;29(2):420-26. doi: 10.1158/1055-9965.EPI-19-0993 [published Online First:				
44 45	472	2019/12/13]				
47 48	473	[dataset] 43. Soichiro A. Data from: Changes in prevalence of Helicobacter pylori in Japan				
49 50 51	474	from 2008 to 2018: a repeated cross-sectional study, figshare, July 13, 2022				
52 53 54	475	https://doi.org/10.6084/m9.figshare.14594571.v2				
55 56						
57 58		25				
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml				

1		
2		
4		
5	476	
6	470	
7		
8	477	
9		
10	478	FIGURE LEGENDS
11		
12	170	
13	4/9	Figure 1
15		
16	480	Numbers of participants
17		
18	401	
19	481	
20		
21	482	Figure 1
22		
23	402	Note (a) The 25 year and analyzing norticing and 25 years from 2009 to 2019 (b) The
24	483	Note. (a) The 55-year-old analysis: participants aged 55 years from 2008 to 2018. (b) The
25		
26	484	2018 analysis: participants aged 35–65 years in 2018.
27		
28	405	
29	485	
31		
32	486	
33		
34	107	Figure 2.
35	48/	rigure 2.
36		
37	488	Infection rates of Helicobacter pylori at 35 years old from 2008 to 2018 (men: $n = 7,586$,
38		
39	490	1000000000000000000000000000000000000
40	409	women. $n = 1, 739$
41		
42	490	
43		
44 15	401	Eigura 2
45 46	491	riguie 2
40 47		
48	492	Note. Infection rates at 35 years linearly decreased by years. (A) men: 17.5% in 2008 to
49		
50	402	10.10 in 2018 (slape: 0.65) (D) we may 12.20 in 2008 to 0.20 in 2018 (slape: 0.51)
51	493	10.1% III 2018 (slope0.05). (B) women. 12.5% III 2008 to 9.2% III 2018 (slope0.51).
52		
53	494	There were no joinpoints. "*" in the graph legend indicates a significant difference in the
54		
55		
56		
57		
58		26
59 60		For peer review only - http://bmiopen.bmi.com/site/about/quidelines.xhtml
00		

1 2		
3		
4 5 6	495	slope from zero at the alpha = 0.05 level.
7 8	496	
9 10 11	497	
12 13 14	498	Figure 3
15 16 17	499	Infection rates of Helicobacter pylori according to age in 2018 (men: $n = 9,580$, women:
18 19	500	n=1,854)
20 21 22	501	
23 24 25	502	Figure 3
26 27	503	<i>Note</i> . Infection rates increased in two trends. (A) men: first trend: 35–54 years [slope = 0.67];
28 29 30	504	second trend: 54–65 years [slope = 1.83]. (B) female: first trend: 35–45 years [slope = 0.30];
31 32 33	505	second trend: 45–65 years [slope = 1.49]). "*" in the graph legend indicates a significant
34 35	506	difference in the slope from zero at the alpha = 0.05 level.
36 37 38	507	
39 40 41	508	
42		
43 44		
45		
46 47		
48		
49		
50 51		
52		
53		
54		
55		
56 57		
57		27
59		27
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Figure 2: Note. Infection rates at 35 years linearly decreased by years. (A) men: 17.5% in 2008 to 10.1% in 2018 (slope: -0.65). (B) women: 12.3% in 2008 to 9.2% in 2018 (slope: -0.51). There were no joinpoints. "*" in the graph legend indicates a significant difference in the slope from zero at the alpha = 0.05 level.

32x14mm (1200 x 1200 DPI)

60

Figure 3: Note. Infection rates increased in two trends. (A) men: first trend: 35–54 years [slope = 0.67]; second trend: 54–65 years [slope = 1.83]. (B) female: first trend: 35–45 years [slope = 0.30]; second trend: 45–65 years [slope = 1.49]). "*" in the graph legend indicates a significant difference in the slope from zero at the alpha = 0.05 level.

35x15mm (1200 x 1200 DPI)

Reporting checklist for cross sectional study.

Based on the STROBE cross sectional guidelines.

Instructions to authors

Complete this checklist by entering the page numbers from your manuscript where readers will find each of the items listed below. Your article may not currently address all the items on the checklist. Please modify your text to include the missing information. If you are certain that an item does not apply, please write "n/a" and provide a short explanation. Upload your completed checklist as an extra file when you submit to a journal. In your methods section, say that you used the STROBE cross sectional reporting guidelines, and cite them as: von Elm E, Altman DG, Egger M, Pocock SJ, Gotzsche PC, Vandenbroucke JP. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: guidelines for reporting observational studies. Page Reporting Item Number Title and abstract Title #1a Indicate the study's design with a commonly used term in the title or the abstract Abstract #1b Provide in the abstract an informative and balanced summary 1-3

1			of what was done and what was found	
2 3 4 5	Introduction			
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34	Background /	<u>#2</u>	Explain the scientific background and rationale for the	3-6
	rationale		investigation being reported	
	Objectives	<u>#3</u>	State specific objectives, including any prespecified	6
			hypotheses	
	Methods			
	Study design	<u>#4</u>	Present key elements of study design early in the paper	6
	Setting	<u>#5</u>	Describe the setting, locations, and relevant dates, including	6-7
			periods of recruitment, exposure, follow-up, and data collection	
	Eligibility criteria	<u>#6a</u>	Give the eligibility criteria, and the sources and methods of	6-7
			selection of participants.	
		#7		6-8
35 36		<u>#1</u>	confounders, and effect medifiers. Cive disgnastic criteria, if	0-0
37 38				
39 40			applicable	
41 42 43	Data sources /	<u>#8</u>	For each variable of interest give sources of data and details of	6-8
44 45	measurement		methods of assessment (measurement). Describe	
46 47			comparability of assessment methods if there is more than one	
48 49			group. Give information separately for for exposed and	
50 51 52			unexposed groups if applicable.	
53 54 55	Bias	<u>#9</u>	Describe any efforts to address potential sources of bias	13-15
57 58	Study size	<u>#10</u>	Explain how the study size was arrived at	n/a
59 60		For pe	eer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	
1 2	Quantitative	<u>#11</u>	Explain how quantitative variables were handled in the	n/a
----------------------------------	------------------	-------------	---	----------
3 4	variables		analyses. If applicable, describe which groupings were chosen,	
5 6 7			and why	
8 9 10	Statistical	<u>#12a</u>	Describe all statistical methods, including those used to control	7-8
11 12 12	methods		for confounding	
13 14 15	Statistical	<u>#12b</u>	Describe any methods used to examine subgroups and	7-8
16 17 18	methods		interactions	
19 20	Statistical	<u>#12c</u>	Explain how missing data were addressed	8
21 22 23 24	methods			
24 25 26 27 28 29	Statistical	<u>#12d</u>	If applicable, describe analytical methods taking account of	n/a
	methods		sampling strategy	
30 31	Statistical	<u>#12e</u>	Describe any sensitivity analyses	n/a
32 33 34	methods			
35 36	Results			
37 38		#40-		0.40
39 40	Participants	<u>#13a</u>	Report numbers of individuals at each stage of study—eg	9-10
41 42			numbers potentially eligible, examined for eligibility, confirmed	
43 44			eligible, included in the study, completing follow-up, and	
45 46 47			analysed. Give information separately for for exposed and	
47 48 49 50 51 52			unexposed groups if applicable.	
	Participants	<u>#13b</u>	Give reasons for non-participation at each stage	9
53 54 55 56	Participants	<u>#13c</u>	Consider use of a flow diagram	9
57 58	Descriptive data	<u>#14a</u>	Give characteristics of study participants (eg demographic,	6, 14-15
59 60		For pe	er review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

Page 35	of 35
---------	-------

BMJ Open

l			clinical, social) and information on exposures and potential	
2 3			confounders. Give information separately for exposed and	
+ 5 5			unexposed groups if applicable.	
7 3 9	Descriptive data	<u>#14b</u>	Indicate number of participants with missing data for each	9-10
10 11			variable of interest	
13	Outcome data	<u>#15</u>	Report numbers of outcome events or summary measures.	9-10
15 16			Give information separately for exposed and unexposed	
17 18 19			groups if applicable.	
20 21 22	Main results	<u>#16a</u>	Give unadjusted estimates and, if applicable, confounder-	9-10
23 24			adjusted estimates and their precision (eg, 95% confidence	
25 26			interval). Make clear which confounders were adjusted for and	
27 28 29			why they were included	
30 31 32	Main results	<u>#16b</u>	Report category boundaries when continuous variables were	n/a
33 34 35			categorized	
35 36 37	Main results	<u>#16c</u>	If relevant, consider translating estimates of relative risk into	n/a
38 39 10			absolute risk for a meaningful time period	
41 42 13	Other analyses	<u>#17</u>	Report other analyses done—e.g., analyses of subgroups and	n/a
+3 14 15			interactions, and sensitivity analyses	
46 47 48	Discussion			
49 50 51	Key results	<u>#18</u>	Summarise key results with reference to study objectives	10-12
52 53 54	Limitations	<u>#19</u>	Discuss limitations of the study, taking into account sources of	13-15
55 56 57			potential bias or imprecision. Discuss both direction and	
58 50			magnitude of any potential bias.	
59 50		For pe	er review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

BMJ Open

1 2	Interpretation	<u>#20</u>	Give a cautious overall interpretation considering objectives,	10-15			
3 4			limitations, multiplicity of analyses, results from similar studies,				
5 6 7			and other relevant evidence.				
8 9 10	Generalisability	<u>#21</u>	Discuss the generalisability (external validity) of the study	15			
11 12 12			results				
13 14 15	Other Information						
16							
17 18	Funding	<u>#22</u>	Give the source of funding and the role of the funders for the	n/a			
19 20 21			present study and, if applicable, for the original study on which				
22 23			the present article is based				
24							
25 26	The STROBE che	cklist is	distributed under the terms of the Creative Commons Attribution Lic	ense			
27 28	CC-BY. This checklist was completed on 20. September 2021 using <u>https://www.goodreports.org/</u> , a						
29 30	tool made by the		OR Network in collaboration with Penelope.ai				
31 22							
33							
34							
35 36							
37							
38 39							
40							
41 42							
42 43							
44							
45 46							
40 47							
48							
49 50							
51							
52							
53 54							
55							
56							
57 58							
58 59							
60		For pe	eer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml				