Gu et al. Supplemental Figures

Supplemental Figure S1
A
S  1.5-
2 Bl BAC-CAG
o Bl BACHD
Q.
X
(-]
E
=
£
>
2
k)
[
2

Western Blot Probed MAB2166

—mHTT

1.0

" Bl BAC-CAG
E 0.8 Bl BACHD
S  0.6-
[
T 044
L o
k)
- 0.2
14
0.0-




Figure S1 (Related to Figure 1). Quantitation of mHTT expression in BAC-CAG mice. (A)
Quantification of mHTT bands in BAC-CAG and BACHD probed with 1C2 antibody. BAC-CAG
expressed about half of mHTT proteins compared with BACHD. (B) The same membrane used
for 1C2 antibody was striped and re-probed with MAB2166 antibody which able to detects both
mutant human huntingtin and mouse endogenous huntingtin proteins on epitope outside of polyQ
region. Quantification of mHTT bands indicated BAC-CAG expressed about 20% of mHTT
proteins compared to BACHD. Results are shown as mean + SEM
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Figure S2 (Related to Figure 1). Characterization of BAC-CAG human HTT transcript reads,
rotarod performance at 2m of age, and brain weights. (A, B). Reads corresponding to HTT
exons and introns from RNA-seq datasets were added for BAC-CAG and BACHD and their WT
controls, respectively. (A) BACHD showed significantly higher human H7T reads compared to
BAC-CAG in the striatum at 12m of age. (B) BAC-CAG showed a modest but significant increase
in human HTT transcript reads at 12m compared to 6m. Wildtype controls do not show any human
HTTreads. Bars show means, error bars: std. error of the mean and dots the individual observations
(n = 6 per genotype except n = 4 for BACHD genotype). ANOVA followed by Tukey HSD test
was used to test differences among the transgenic samples only. * p < 0.05, **: p <0.01). (C).
Normal rotarod performance in 2m BAC-CAG mice compared to their WT littermates. Two-way
ANOVA, no interaction between genotypes and times [F(30, 36)=0.3188, p=0.9990; BAC-
CAG=16, WT=12]. Results are shown as mean + SEM. (D, E). Forebrain and cerebellum were
weighted and no significant difference were detected at both 12 month (A) and 22 month (B) old
of ages (12 month: BAC-CAG n=12, WT n=14; 22 month: BAC-CAG n=8, WT n=7). Results are
shown as mean + SEM.
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Figure S3 (Related to Figure 2). Microgliosis in BAC-CAG mice. (A) BAC-CAG mice
displayed more and flamed-like Ibal(+) microglia, especially at globus pallidus. (B and C) BAC-
CAG mice exhibited higher number of reactive microglia marker galactin 3(+) cells than those
cells in WT controls. Results are shown as mean = SEM. Unpaired ¢ test. *** p<(0.005. Scale Bar.
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Supplemental Figure S4 (Related to Figure 3). Absence of Mutant HTT aggregation in WT
and in the cortices of BAC-CAG mice (Related to Figure 3). No detections of S830(+) mHTT
aggregates or nuclear inclusions in 18m WT brains (A). They were also absent in 6m old BAC-
CAG mice (B,C). There were lack of positive signals in the deeper cortical layers (layers 5-6) (D)
of 12m old, nor in the upper cortical layers (layers 2-3) of the 18m old (E) BAC-CAG mouse
brains.
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Supplemental Figure S5. (Related to Figure 4). Transcriptomic analysis of BACHD mice at
12-month of age. BAC-CAG mice RNA-seq analysis of cortex and striatum of BACHD and WT
littermate controls at 12 months of age (N=4 per genotype, sex balanced). (A). The number of
downregulated (Blue) and upregulated DE genes at different statistical thresholds between
BACHD and WT controls. (B-D). Enrichment analysis of genes DE between BACHD and WT at
P<0.01 in 12-month striatum. Calculations were carried out using the anRichment R package. The
top significantly enriched terms from transcriptomic signatures of HD mice (B), WGCNA modules
from analysis of Htt CAG repeat knock-in Allelic Series (Langfelder et al., 2016) (C), and cell
type and brain region markers (D) are shown.
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Supplemental Figure S6 (Related to Figure 4). Striatal transcriptomic dysregulation in
BAC-CAG mice at 12m compared to wildtype littermate controls All heatmaps show DE Z
statistics (log fold changes divided by their standard errors). (A). The pan-neuronal marker genes
based on Allen Brain Atlas (ABA) are not consistently downregulated in BAC-CAG striata at 12m,
a finding that is similar to the allelic series KI mice (Langfelder et al., 2016). (B). Upregulated
clustered protocadherin genes are mainly significantly upregulated at 12m but not at 2m and 6m
in BAC-CAG striata, a finding that is reminiscent of that in the allelic series KI mice (Langfelder
et al., 2016). (C), (D) Transcription factors, chromatin factors and RNA binding proteins
downregulated (C) and upregulated (D) in both BAC-CAG and Q140 KI mice.
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Supplemental Figure S7 (Related to Figure 4). Overlaps of genes DE at p<0.01 in BAC-CAG
and BACHD models with genes DE in studies of HD patients. The heatmap color indicates -
logio of the enrichment p-value (hypergeometric test) and numbers give overlap sizes for pairs
with p<10-%. The human studies are (Hodges et al., 2006) and (Durrenberger et al., 2014) and both

used the FDR<0.05 threshold.
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Figure S8 (Related to Figure 4). RT-qPCR confirmed some dysregulated gene expressions in
12m BAC-CAG brains.
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Supplemental Figure S9 (Related to Figure 5). Comparison of cortical transcriptionopathy
between BAC-CAG and other full-length HD mouse models (A) Heatmap representation of
genome-wide correlations of DE Z statistics of BAC-CAG mice (12m) and allelic series KI mice
(6m). Correlations larger than 0.2 are also shown as numbers in the heatmap. The clustering tree
on the left represents average-linkage hierarchical clustering based on the correlations. (B), (C)
Scatterplots of uninterrupted CAG length (B) and Q-length (C) vs. mean concordance for each HD
model (the mean concordance is the column-wise mean of the non-diagonal elements in the
heatmap (A)). The plot in (B) includes the cortical DE gene concordance data from BAC-CAG,

BACHD and the allelic series KI mice.

0.00 0.05 0.10 0.15 020 0.25 0.30

mean DE Z concordance



Supplemental Figure S10

AS human Htt intron 1 expression

Human Htt intron 1 expression

i

L HREE

*%
P

f T T T T T
90 G0 ¥0 €0 <¢0 L0 00
wnjeus ul idxe | uojul §H uBwny Sy

*%
.

- HE

f T T T
0¢c Sl oL G0 00
wneuss ul idxe | uodjul H uewnH

O
%

%

AS human Htt intron 1 expression

Human Htt intron 1 expression

*%
.

90 S0 #0 €0 <20 Lo 00
Xe1100 Ul "idxe | uosul BH uewny gy

KKk
P

..fm

f T T T T
Ge 0¢ Gl o't G0 00
X81100 Ul "IdxXe | uoJul 4 uewnH




Supplemental Figure S10 (Related to Figure 7). Comparison of normalized total human HTT
intron 1 and anti-sense (AS) intron 1 in striatum and cortex of 12-month BAC-CAG and
BACHD from striatal and cortical transcriptomic study. Reads corresponding to H77T introns
1 and antisense intronl (from 1 to 7397 nucleotides) from RNA-seq datasets were added for BAC-
CAG and BACHD, respectively. (A) BACHD showed significantly higher human H7T intronl
reads compared to BAC-CAG, while BAC-CAG showed significant higher human H7T antisense
transcript reads (B) in the striatum at 12m of age. Similarly in cortex BACHD had significant
higher human HTT intron1 reads (C), while antisense intron1 reads was higher in BAC-CAG mice.
Bars show means, error bars std. error of the mean and dots the individual observations (n = 6 per
genotype except n = 4 for BACHD genotype). ANOVA followed by Tukey HSD test was used to
test differences among the transgenic samples only. **: p<0.01, ***: p<0.001).
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Supplemental Figure S11 (Related to Figure 7). mHTT Transcription levels were relatively
stable in BAC-CAG brain tissues cross different age points. Reads corresponding to HTT
introns 1 and antisense intronl (from 1 to 7397 nucleotides) from 2m, 6m and 12m BAC-CAG
RNA-seq datasets were added. Statistically no different among different age points for sense (A,
C) and antisense (B, D) of HTT intronl reads. ANOVA followed by Tukey HSD test was used to
test differences among the transgenic samples only. Bars show means, error bars std. error of the
mean and dots the individual observations (n = 6 per age points) **: p< 0.01, ***: p<0.001).
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Figure S12 (Related to Figure 7). Significant higher of mHTT RNAs foci in cortex and
striatum of BACHD mice. 20 um thick brain sections from BAC-CAG and BACHD were probed
with human HTT specific (cat#420231-C2, ACDBio) and mouse Htt specific (cat#473001,
ACDBI0) probes, respectively. Intensities of the foci in cortex (A) and striatum (B) were quantified
using Imaris 9.2. (C) statistic significant nuclear retention of foci was detected in both cortex and
striatum in BACHD mice compared to BAC-CAG mice (Unpaired t test. N=3 each for BAC-CAG,
BACHD and WT), while no difference detected for mouse Htt (D). Results are shown as mean +
SEM. Scale bars: 10 um
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Figure S13 (Related to Figure 7). BAC-CAG mice exhibit brain wide cellular nuclear
accumulations of Mbnll. (A-B) BAC-CAG mice display significant more dot-like Mbnl1 nuclear
accumulation in cortical cells compared with BACHD and WT mice, respectively. Results are
shown as mean + SEM, n=5 for each age groups. ****p<0.0001; Scale bar: 10 um.
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Figure S14 (Related to Figure 7). Q140 mice exhibit brain wide brain cells nuclear
accumulation of Mbnll. Q140 mice at 12 month of old age display dot-like Mbnll nuclear

accumulation in striatal and cortical cells. Scale bar: 10 um
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Figure S15 (Related to Figure 7). Late of age onset RAN translation in the striatum of BAC-
CAG mice. No RAN proteins detected in BAC-CAG brains at 12m of age; at 18m of age polySer
RAN products in aggregate and smear-like forms were detected in all brain regions of mouse brains
including the striatum; we quantified RAN products in mouse striata and found the aggregate form
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Figure S16 (Related to Figure 7). Late of age onset RAN translation in the cortex of BAC-
CAG mice. No RAN proteins detected in BAC-CAG brains at 12m of age; at 18m of age polySer
RAN products in aggregate and smear-like forms were detected in all brain regions of mouse brains
including the cortices; we quantified RAN products in mouse cortices and found the aggregate
form of the RAN products increased as mice aged from 18m to 22m of ages.
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Figure S17 (Related to Figure 7). HD polySer RAN proteins were not detected in BACHD
mouse cortex and striatum at 12m of age.
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Figure S18 (Related to Figure 8).
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