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Supplementary Methods 

Laboratory, clinical, and MRI outcomes 

Body measurements were taken, and laboratory tests were performed at the time of CSF/blood 

collection at the NIH Department of Laboratory Medicine and recorded in the NIH electronical 

medical records. MS patients underwent a full neurological exam and brain MRI at the time of 

sample collection. The neurological exam was documented electronically using NeurExTM App 

(1) that contains algorithms calculating traditional disability scales (e.g. Expanded Disability 

Status Scale [EDSS], including Kurtzke functional system scores) that eliminate noise stemming 

from inaccuracy of translating neurological examination into disability scales by clinicians. The 

research brain MRI (with or without gadolinium contrast) was performed on 1.5T and 3T 

scanners. MRI sequences included T1-magnetization-prepared rapid gradient-echo (MPRAGE) 

or fast spoiled gradient echo (FSPGR) and T2-weighted three-dimensional fluid attenuation 

inversion recovery (3D FLAIR) sequences that were reviewed and graded by a board-certified 

neurologist and recorded using previously published Combinatorial MRI Scale of CNS tissue 

destruction (COMRIS) tool (2) into research database. The brain MRI protocol used extends 

sagittal and axial cuts distally to C5 level, allowing determination of semi-quantitative (semi-

qMRI) MRI biomarkers of medulla/upper spinal cord (SC) atrophy and lesion load.  The 

quantitative MRI outcomes (e.g., brain parenchymal fraction) were generated using cloud-based 

medical image-processing platform, QMENTA, using LesionTOADS algorithm(3).  MS severity 

outcomes – MS Disease Severity Scale (MS-DSS), MS Severity Score (MSSS), and Age-related 

MS Severity Score - were calculated as described (4-6). While MSSS and ARMSS are both 

based on EDSS related to disease duration and age, respectively, MS-DSS is a more complex, 
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machine learning-based model with the strongest variable being Combinatorial weight-adjusted 

disability score (CombiWISE (7))/Age. 

  

NFL ELISA 

All samples were diluted 1:2 with provided sample diluent and then analyzed blindly and in 

singlets. Samples were analyzed on multiple plates; location of samples on each plate was 

randomized and a control sample was analyzed in duplicate. The coefficient of variance (CV) for 

the control sample across the 12 plates was 6.6%, confirming the assay precision and 

reproducibility.  

  

NFL SIMOATM 

All samples were diluted 1:4 with provided sample diluent using on board dilution functionality, 

and then analyzed blindly in singlets. Samples were analyzed in two batches (batch 1: 12 plates 

and batch 2: 4 plates); each plate contained two quality control (QC) samples provided with kit, 

one for low (C1) and one for high (C2) concentration. The CVs for measured concentrations of 

QC samples were within acceptable range (batch 1, C1=9.8%, C2=9.8%; batch 2, C1=9.0%, 

C2=7.7%), confirming the assay precision. 

 

Statistical Analysis 

To test whether brain atrophy can explain superiority of sNFL over cNFL we generated NFL 

residuals by subtracting the variance of cNFL explained by sNFL. Then we calculated quartiles 
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of the NFL residual and removed samples falling within the interquartile range (IQR). Samples 

with NFL residuals below the first quartile represented patients with measured cNFL much lower 

than what would be predicted by the simple linear regression model. To test whether spinal cord 

damage could explain superiority of sNFL in predicting MS severity, we generated NFL 

residuals, by subtracting variance of the sNFL explained by the measured cNFL. Then we 

eliminated samples with NFL residuals within the IQR, resulting in a group of samples with 

measured sNFL higher than what would be predicted by the model and samples with measured 

sNFL levels that were lower than what the model predicted. Differences between the samples 

from the first and the third quartile were evaluated using unpaired wilcox.test or t.test method.  

Propensity score matching was performed using matchit function with “full” method (“MatchIt” 

package(8)). Differences between propensity score-matched groups were evaluated by 

stat_compare_means function (“ggpubr” package (9)) using paired wilcox.test or t.test method.   

Poisson regression models were generated using glm function (“stats” package {, 2020 #15}).  
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Supplementary Figures 

 

Supplementary Figure 1: Comparison of performance between simple linear regression model 

(left) and multiple linear regression model (right) in the validation cohort shows similar amount 

of variance explained between measured and predicted sNFL levels if all longitudinal samples 

were included (top), if only first sample per patient was included (middle), and if medians of 

NFL levels for longitudinal samples were considered (bottom). R – Pearson correlation 

coefficient, R2 – coefficient of determination, ns - number of samples, np – number of patients. 



7 
 

 

Supplementary Figure 2: Exponential fit (purple curve, gray shaded area represents 95% 

confidence interval) between measured cNFL, measured sNFL, and adjusted sNFL and the 

number of contrast enhancing lesions (CELs) expressed as natural logarithm on y axis shows the 

highest proportion of variance of CELs explained by cNFL, followed by adjusted sNFL, and the 

lowest by measured sNFL. R2 – coefficient of determination, ns - number of samples, np – 

number of patients. 
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Supplementary Figure 3: Testing of two mutually non-exclusive hypotheses for sNFL’s 

superiority compared to cNFL, in predicting MS severity in propensity score-matched datasets. 

NFL residuals from the first and the third quartile were matched for their sNFL levels (for 

Hypothesis 1) and for their cNFL levels (for Hypothesis 2). For hypothesis 1 (left), the matched 

pairs of samples were then evaluated using paired Wilcoxon signed rank test to ask whether there 

is a statistically significant difference in brain atrophy measured by semiquantitative total brain 

atrophy outcome and fully quantitative brain parenchymal fraction. Statistically significant 

increase in brain atrophy in samples with proportionally lower cNFL concentration in the 

training cohort failed to validate in an independent validation cohort. For hypothesis 2, the 

matched pairs of samples were evaluated using paired Wilcoxon signed rank test to ask whether 

there is a statistically significant difference in brain atrophy measured my semiquantitative MRI 
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outcome consisting of lesion load (LL) and atrophy of Medulla and upper cervical spine (CS) 

and by clinical outcome generated from neurological examination (NeurEx) assessing muscle 

atrophy and bowel, bladder, sexual and autonomic (BBSA) functions. Samples with 

proportionally higher sNFL levels compared to cNFL levels showed statistically significant 

increase in both outcomes measuring spinal cord damage in both training and validation cohorts. 
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Supplementary Figure 4: Paired Wilcoxon Ranked Sum Test showed statistically significant 

difference in two parts of NeurExTM (muscle atrophy and bowel, bladder, sexual, and autonomic 

[BBSA] dysfunctions) combined (first row) or separated (muscle atrophy: second row and 

BBSA: third row) outcomes between samples with different sNFL levels in the training cohort; 

the observed differences were confirmed in the validation cohort. 

 

 

Supplementary Figure 5: Comparison of performance of simple linear regression model, 

multiple linear regression model including 5 validated confounders: age, alkaline phosphatase 

(AP), blood urea nitrogen (BUN), creatinine, and weight, and multiple linear regression model 

that includes two additional spinal cord (SC) damage outcomes: MRI SC atrophy and NeurEx-

based muscle atrophy and bowel, bladder, sexual and autonomic (BBSA) dysfunction. In MS 
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samples only shows that addition of 5 confounders increased variance explained from 26% to 

48% in the training cohort and from 22% to 41% in the validation cohort. Addition of SC 

damage outcomes further improved the model performance, increasing the variance explained to 

53% and 47% in the training and validation cohorts, respectively. R – Pearson correlation 

coefficient, R2 – coefficient of determination, CCC – concordance correlation coefficient, ns - 

number of samples, np – number of patients. 

 

 

Supplementary Figure 6: Comparison of performance of simple linear regression model and 

multiple linear regression models including either just 2 confounders (age + BMI) or 5 

confounders (age + weight + AP + Cr + BUN). R – Pearson correlation coefficient, R2 – 

coefficient of determination, CCC – concordance correlation coefficient, ns – number of samples 

measured, np – number of patients represented by the samples. Green line represents linear 

regression model with gray shading corresponding to 95% confidence interval. 
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Supplementary Figure 7: Correlations between cNFL measurements using two different assays, 

ELISA and SIMOA. R – Pearson correlation coefficient, R2 – coefficient of determination, ns – 

number of samples measured. Brown line represents linear regression model with gray shading 

corresponding to 95% confidence interval. 

 

   

  

 


