Supplementary information

CRISPR-free base editors with enhanced activity and expanded targeting scope in mitochondrial and nuclear DNA

In the format provided by the authors and unedited

Supplementary Information

Continuous evolution of mitochondria base editors with improved activity and expanded targeting scope

Beverly Y. Mok^{1,2,3}, Anna V. Kotrys^{4,5}, Aditya Raguram^{1,2,3}, Tony P. Huang^{1,2,3}, Vamsi K. Mootha^{4,5} and David R. Liu^{1,2,3*}

Supplementary Discussion	Page # 3-4
Supplementary Table 1 . Mutation table of variants from PANCE of canonical T7- DdCBE for improved T <u>C</u> activity using PANCE	5
Supplementary Table 2 . Mutation table of variants from PACE of T7-DdCBE-DddA1 for improved T <u>C</u> activity	6
Supplementary Table 3 . Mutation table of variants from PANCE of T7-DdCBE- DddA1 for expanded targeting scope	7
Supplementary Table 4 . Mutation table of variants from the PACE evolution to expand targeting scope	8
Supplementary Table 5. Sequencing coverage for ATAC-seq samples	Excel
Supplementary Table 6 . List of predicted off-target nuclear DNA sites for SIRT6- DdCBE and JAK2-DdCBE Mutation table of variants from the G <u>C</u> -specific PANCE	Excel
Supplementary Table 7. Mutation table of variants from the GC-specific PANCE	11
Supplementary Table 8. Amplicons for high-throughput sequencing analyses	12-15
Supplementary Table 9. List of bacterial plasmids used in this work	16-17
Supplementary Table 10. List of DNA sequences recognized by TALE proteins	18
Supplementary Table 11 . Primers used for mammalian and bacteria cell genomic DNA amplification at sites targeted by DdCBEs	19-20

Supplementary Table 12 . Sequences of unique molecular identifiers associated with each target plasmid	21
Supplementary Sequences 1. TALE sequences used in DdCBEs	22-27
Supplementary Sequences 2. Sequences of full-length DddA variants	28-29
Supplementary Sequences 3 . Sequences used for fluorescence-activated cell sorting of DdCBE-expressing cells	30
Supplementary Note 1 . Mitochondrial editing efficiencies of DdCBEs containing a mismatched or non-mismatched terminal TALE repeat	31
Supplementary Note 2. Representative FACS gating plots for eGFP ⁺ /mCherry ⁺ cells	32-33
Supplementary Note 3 . Nuclear editing efficiencies of DdCBEs containing N-terminal UGI fusions or C-terminal UGI fusions	34
Supplementary References	35

Further evolution of T7-DdCBE-DddA11 for improved GC activity

We previously performed a PANCE of canonical T7-DdCBE using a strains 9 and 10 transformed with MP6. These strains expressed the GCA or GCG linker, respectively (**Extended Data Fig. 7a**). After fifteen passages, the overnight fold phage propagation increased to 1,000, representing >1,000-fold improvement. Clonal sequencing of phage isolated at the end of PANCE, however, revealed a stochastic frameshift mutation within the open reading frame encoding either the left- or right-half of T7-DdCBE (data not shown, available upon request). We speculated that the premature stop codons helped improve phage fitness by reducing the translational burden on the phage, thus increasing phage propagation in a manner that was independent of the deamination activity of DddA. Given that DddA11 already exhibited a broadened targeting scope and non-zero G<u>C</u> activity (**Fig. 6b**), we hypothesized that DddA11 could be a promising evolutionary stepping-stone to serve as a starting target for evolving DddA variants towards higher G<u>C</u> activity.

We initiated PANCE of T7-DdCBE containing DddA11 in duplicates using the same MP6-transformed strains 9 and 10. One replicate in PANCE-GCA and one replicate PANCE-GCG evolved 'cheaters' in which gIII was recombined into the phage genome. The PANCE schedules shown in **Extended Data Fig. 7d** are for the other replicates that do not contain gIII within the SP genome. We isolated six to eight plaques from each replicate after round 9 and round 12 for clonal sequencing. The mutation N1378S was strongly enriched in PANCE-GCA and PANCE-GCG. One replicate of PANCE-GCA also showed strong consensus for the additional mutations A1341I and P1394S (**Supplementary Table 7**).

We selected two strongly enriched genotypes (7.9.1 and 7.12.1) and two moderately enriched genotypes (7.12.2 and 7.12.3) for validation of mtDNA base editing activity in human cells (**Extended Data Fig. 8a**). Variant 7.12.1 generally resulted in a 2.2- to 27-fold decline in A<u>C</u> and C<u>C</u> editing compared to DddA11 (**Extended Data Fig. 8b-e**). Variants 7.9.1, 7.12.2, and 7.12.3 improved T<u>C</u> and non-T<u>C</u> editing by 1.4- to 1.6fold when tested as ND4.3-DdCBE, but did not enhance G<u>C</u> editing compared to DddA11 (**Extended Data Fig. 8b**). ND5.4-DdCBE containing variant 7.9.1 resulted in comparable editing to DddA11 at A<u>C</u> and C<u>C</u> targets (**Extended Data Fig. 8c**). When tested at other sites, variants 7.9.1, 7.12.2, and 7.12.3 improved T<u>C</u> editing by an average of 1.2-fold compared to DddA11. These variants, however, generally resulted in lower non-T<u>C</u> compared to DddA11 when tested as ND5.2-DdCBE and ATP8-DdCBE (**Extended Data Fig. 8d and 8e**).

Structure alignment of DddA to APOBEC3G

Our previous work identified ssDNA-specific APOBEC3G cytidine deaminase, which has an intrinsic 5'-C<u>C</u> preference⁴⁵, as the closest structural relative to DddA. We aligned the catalytic domain of human APOBEC3G complexed with its ssDNA 5'-C<u>C</u>A substrate⁴⁶ with DNA-free DddA. The PACE-derived DddA variants DddA8 and DddA11 expanded the putative T<u>C</u> sequence preference to include A<u>C</u> and C<u>C</u> (**Fig. 3b**). These variants contained mutations A1341V, N1342S, G1344R and G1344S that are positioned within a loop that aligns most closely to loop 3 of APOBEC3G (**Extended Data Fig. 10a and 10b**). Previous studies identified DNA-binding loop 3 to be critical for enhancing the catalytic activity of APOBEC3G at 5'C<u>C</u>⁴⁷. In this study, the N1342S nucleotide substitution in DddA11e increased T<u>C</u> editing by 1.3-fold and yielded low but detectable A<u>C</u> and C<u>C</u> editing (**Fig. 3f**). These results suggest that the DddA loop containing N1342 could be engineered to improve the catalytic activity of DddA and support deamination at non-T<u>C</u> contexts.

In APOBEC3G, residue D317 in loop 7 is critical for selectivity towards C₋₁⁴⁷ (**Extended Data Fig. 10b**). Context-specific PANCE of DddA strongly enriched for E1370K across all tested linkers of ACC, CCC and GCC (**Supplementary Table 3**). Given that loop 7 of APOBEC3G spatially aligns with the DddA loop containing E1370K, E1370K could also be involved in altering the substrate selectivity of DddA (**Extended Data Fig. 10b**).

Supplementary Table 1 | Mutation table of variants from PANCE of canonical T7-DdCBE for improved TC activity. Strain 4 transformed with MP6 was infected with input SP encoding the canonical T7-DdCBE (see Extended Data Fig. 1a). Four plaques from each replicate (A, B, C and D) were sequenced after 7 passages. Mutations are highlighted in blue. Genotypes in red were tested for mitochondrial base editing in human cells (see Extended Data Fig. 1d).

					Dde	dA-139	7-N					[DddA-G	31397-0	c
Position	1307	1320	1321	1326	1330	1364	1372	1379	1380	1394	1396	1368	1399	1409	1418
wt	Y	D	Α	S	S	V	Т	М	Т	Р	E		- I	Т	S
A.1	Y	D	Α	S	S	V	1	M	Т	Ρ	E		Ĩ.	Т	S
A.2	Y	D	Α	S	S	V	Т	М	1	Р	Е	L	I	Т	S
A.3	Y	D	Α	S	1	V	I	М	Т	Р	Е	L	1	Т	S
A.4	Y	D	Α	S	S	V	1	М	Т	Р	E	L		Т	S
B.1	Y	D	Α	1	S	V	Т	М	Т	S	Е	Ĺ	I	1	R
B.2	Y	Ν	Α	1	S	V	Т	М	Т	S	E	F	L	1	S
B.3	Y	Ν	Α	S	S	V	Т	I	Т	Р	Е	L	1	Т	S
B.4	Y	D	Т	1	S	V	Т	М	Т	S	E	L	1	1	S
C.1	Y	D	Α	S	S	V	Т	Μ		Р	E	L	I	Т	S
C.2	Y	D	Α	S	S	V	Т	М	I	Р	E	L	I	Т	S
C.3	н	D	Α	S	S	L	Т	м	Т	Р	E	L	Î.	Т	S
C.4	Y	D	Α	S	S	V	Т	М	I	Р	E	L	S	Т	S
D.1	Y	D	Α	S	S	V	Т	-	Т	Р	E			Т	S
D.2	Y	D	Α	S	S	V	1	М	Т	Р	E	L	1	Т	S
D.3	Y	D	Α	S	S	V	Т	1	Т	Р	Е	L	I	Т	S
D.4	Y	D	Α	S	S	V	Т	М	1	Р	K	L	I	Т	S

Supplementary Table 2 | Mutation table of variants from PACE of T7-DdCBE-DddA1 for improved TC activity. Strain 4 transformed with MP6 was infected with SP encoding T7-DdCBE-DddA1 (see Extended Data Fig. 1a). Individual plaques were isolated at the end of PACE and sequenced for their DddA genes. Genotypes in red were tested for mitochondrial base editing in human cells (see Fig. 2a).

				Dde	dA -G139	7-N				DddA-G	G1397-C
Position	1310	1314	1320	1326	1330	1370	1380	1389	1396	1413	1417
Wildtype	Q	Т	D	S	S	E	Т	ĸ	E	Т	Ν
T7-DdCBE-DddA1	Q	Т	D	S	S	E	1-1	K	E	Т	N
A.1	Q	Т	D	1	S	E	1	К	K	T	Ν
A.2	Q	Т	D	S	S	E	1	к	K	Т	Ν
A.3	Q	A	D	S	S	E	1	ĸ	K	Т	N
A.4	Q	Α	D	S	S	G	1	к	K	Т	Ν
A.5	Q	Α	D	S	S	E	1	к	K	Т	Ν
A.6	Q	A	D	S	S	E	I	ĸ	K	Т	N
A.7	Q	А	D	S	S	Е	_1	K	K	Т	N
B.1	Q	Т	D	S	S	E	1	ĸ	E	I.	Ν
B.2	Q	T	D	S	S	E	1	ĸ	E	T	Ν
B.3	Q	A	D	S	S		L	K	E	Т	N
B.4	Q	Α	D	S	S	E	I.	ĸ	Е	т	Ν
B.5	Q	Т	D	S	S	E	1	κ	Е	Т	Ν
B.6	Q	Т	D	S	S	E	1	ĸ	Ε	Т	Ν
B.7	Q	Т	D	S	S	E	1	ĸ	Ε	Т	N
B.8	Q	Т	D	S	S	Е	1	К	E	Т	N
C.1	Q	Т	D	S	S	E	1	K	E	- (I)	N
C.2	Q	Т	D	S	S	E	L.	Q	E	1	Ν
C.3	Q	Т	D	S	S	E	1	ĸ	Е	I	N
C.4	Q	Т	D	S	S	E	1	κ	Е	Т	Ν
C.5	Q	Т	D	S	S	E	1	К	E	Т	Ν
C.6	Q	Т	D	S		E	1	К	G	Τ	Ν
C.7	Q	Т	D	S	S	Е		K	E	1	N
D.2	R	Т	D	S	1	E	I.	K	E	Т	N
D.3	R	Т	D	S	1	E	1	ĸ	E	Т	N
D.5	R	Т	D	S	1	E	1	ĸ	Ε	Т	K
D.6	Q	Т	N	S		E	1	ĸ	Е	Т	N
D.7	Q	А	D	S	S	Е	1	ĸ	Е	Т	Ν
D.8	R	Т	D	S	1	E	1	K	Ε	Т	Ν

Supplementary Table 3 | Mutation table of variants from PANCE of T7-DdCBE-DddA1 for expanded targeting scope. Strains 5, 6 or 7, which were each transformed with MP6, were used for PANCE-ACC, PANCE-CCC or PANCE-GCC, respectively (see Extended Data Fig. 3a for strain identities). Each host strain was infected with input SP encoding T7-DdCBE-DddA1. Plaques from each replicate (A, B, C and D) were sequenced after 9 passages. Mutations are highlighted in blue. Phage lagoons highlighted in red were used as inputs for PACE.

Pacition	1290 1	299 1300	1301	1310	1314 132	D	ddA-G13	197-N	1334	1341	1342	1344	1364	1370 13	80 1398	Ddd/	-G 397	-C		
Wildtype	G	1 S	A	Q	T D	A	S	VS	P	A	N	G	V	E 1	A	T	T	S G	- C	
T7-DdCBE-DddA1	G	1 5	A	Q	T D	A	S	v s	Р	Α	N	G	٧	E	A	т	т	SG	S.	
ACC-A.8	G	1 \$	Α	Q	A D	A	S	V S	Р	Α	N	G	٧	K	A	Т	T	SG		
ACC-B.1	G	IS	A	Q	TD	A.	S	VS	P	A	S	G	V	K	A	Ţ	Ţ	SG		
ACC-B2	G	1 5	A	ö	τ n	A	S	V S	P	A	N	G	v	ĸ	A	÷	÷	5 G		
ACC-B4	Ğ	I S	A	Q	Ť Ď	Ä	S	vs	P	A	S	G	v	ĸ	A	Ť	Ť	SG		
ACC-B.6	G	I S	A	Q	T D	A	S	V S	Р	A	S	G	V	K I	A	Ť	Ť	SG		
ACC-B.7	G	1 <u>S</u>	A	Q	D	A	S	V S	Р	A	S	G	v	K I	A	T	T	SG		
ACC-C.1	G		A	Q		A	S	VS	Р	A	N	G	v	K	A	1	+	SG		
ACC-C2	G	1 5	A	u 0		~	2	v s v s	P	A .	N	C	v	ĸ	A	÷	÷	5 G		
ACC-C4	Ğ	is	A	õ	A D	Â	S	vs	P.	Â	N	Ğ	v	ĸ	Â	÷	÷.	SG		DINOT 100
ACC-C.5	G	V S	A	Q	A D	A	S	v s	P	A	N	G	v	K I	A	Ť	T	SG	\sim	PANCE-ACC
ACC-C.6	G	IS	Α	Q	A D	Α	S	v s	Р	Α	N	G	۷	K I	A	т	т	SG		
ACC-C.8	G	<u> S</u>	A	Q	A D	A	S	v s	P	A	N	G	V	K	A	T	Ţ	S G	S .	
ACC-D.1	G	1 5	A	Q	TD	Ŷ.	S	v	P	Â	N	G	V	K	A	+	+	SG		
ACC-D3	G	i S	A	ö	T D	Â	S	VS	P	A	N	G	v	ĸ	Â	÷	÷	SG		
ACC-D.4	G	I S	A	Q	T D	A	S	vs	P	A	N	G	v	K	A	Ť	Ť	SG		
ACC-D.5	G	I S	Α	Q	ΤD	Α	S	v s	Р	Α	N	G	۷	K I	A	т	т	SG		
ACC-D.6	G	IS	A	Q	TD	A	S	V S	P	A	N	G	V	K	A	Ţ	Ţ	SG		
ACC-D.7	G	1 5	A	Q	TD	A	5	v s v s	Р	Â	N	G	v	K	A	+	÷	SG		
CCCA 1	G	1 5	Â	ä	T D	Â	S	v s	P	Â	S	G	v	K	Â	Ť	÷-	S G	\leq	
CCC-A.2	G	I S	A	Q	ΤD	A	S	v s	Р	Α	S	G	v	K I	A	т	T	G	<u> </u>	
CCC-A.3	G	IS	Α	Q	T D	Α	S	vs	Р	Α	S	G	۷	K I	A	т	т	SG		
CCC-A.4	G	IS	A	Q	TD	A	S	V S	S	A	S	G	V	K I	A	Ţ	Ţ	SG		
CCCA.5	G	1 0	A	Q	TP	A	S	vs	P	A	00	G	v	K	A	÷	÷	5 6		
CCCA 7	Ğ	i S	A	o	T D	Â	S	vs	P	Â	S	G	v	K	Â	÷	÷.	SG		
CCCA.8	G	IS	A	Q	TD	A	S	v s	P	A	S	G	v	K	A	Ť	Ť	SG		
CCC-B.1	G	1 S	Α	Q	T D	S	S	v s	Р	Α	S	G	٧	K I	A	A	Т	S G		
CCC-B.2	G	IS	A	Q	TD	A	S	VS	Р	A	N	R	M	K	A	Ţ	Ţ	SG		
CCC-B.3	G	1 5	A	Q	TD	A	5	vs	Р	A	N	P	M	K	A	÷	÷	SG		
000-8.4	G	1 5	Â	õ	T D	Â	S	V S	P	Â	N	G	¥	ĸ	Â	Ť	÷	5 G		
CCC-B.6	G	I S	A	Q	T D	A	S	vs	P	A	N	R	M	ĸ	A	Ť	Ť	SG		
CCC-B.7	G	I S	Α	Q	T D	Α	S	v s	Р	Α	N	R	М	K I	A	т	т	SG		
CCC-B.8	G	I S	A	Q	T D	A	S	V S	Р	A	N	G	V	K I	A	I	T	S G		PANCE-CCC
CCC-C 1	G		A	Q	T D	A	S	VS	Р	÷	S	G	v	K	A	÷.	÷.	S G		
CCC-C3	Ğ	I S	Â	õ	TD	Â	S	v s	P	Ť	S	G	v	K	Â	÷	÷	SG		
CCC-C.4	Ğ	i S	A	ĸ	Ť Ď	A	ŝ	v T	P	A	N	G	Ŷ	K i	A	Ť	Ť	SG		
CCC-C.5	G	I S	A	Q	TD	A	S	V S	Р	T	S	G	v	K I	A	T	T	SG		
CCC-C.6	G	IS	A	Q	TD	A	S	V S	Р	1	S	G	¥	K	A	1	÷.	SG		
000-07	G		A	ö	T D	A	S	v s v s	P	÷	S	G	v	K	A	÷	Ŧ	5 G		
CCC-D 1	G	1 S	A	Q	TD	A	S	v s	P	v	N	G	v	K	A	Ť	Ť	SG	6	
CCC-D.3	G	I S	Α	Q	ΤD	Α	S	M S	Р	V	S	G	v	K I	A	т	т	S G		
CCC-D.4	G	I S	A	Q	TD	A	S	vs	Р	V	S	G	۷	K	A	Т	Т	S V		
CCC-D.5	C		A	Q	TD	Â	S	V S	P.	V	S	C	v	E	A	÷.	+	SG		
CCC-D.6	G	I S	Â	ă	τ D	Â	S	v s	P	v	S	G	v	ĸ	Â	÷	÷	SG		
CCC-D.8	G	I S	A	Q	T D	A	S	v s	P	V	S	G	v	K	A	Ť	T	SG		
GCC-A.1	G	1 5	A	Q	TD	A	S	V	Р	V	N	G	V	K	A	Т	Т	SG	$\left \right\rangle$	
GCC-A.2	G		A	Q	TD	A	S	V I	P	V	S	G	¥	K	A	Ţ	Ţ	SG		
GCC-A.3	G		A	õ	TD	A	S	VS	P	V	S	G	v	K	Å	÷	Ť	5 6		
GCC-A 5	Ğ	i š	Â	ā	τĎ	Â	s	v ĭ	P	v	S	Ğ	v	ĸ	Â	Ť	Ť	SG		
GCC-A.6	G	I S	A	Q	T D	Α	S	V S	Р	V	S	G	v	K I	A	Т	Т	SG		
GCC-A.7	G	I S	A	Q	TD	A	S	v s	Р	V	N	G	¥	KI	A	Ţ	Ţ	SG		
GCC-A.8	G		A	Q	H N	A	S	V S	Р	V A	S	G	V	K	A	<u> </u>	+	S G		
GCC-B2	Ğ	I S	A	õ	Ť D	Â	S	vs	P	Â	N	S	v	K	Â	÷.	÷.	SG		
GCC-B3	G	I S	A	Q	T D	A	S	vs	Р	A	N	S	v	K	A	T	Ť	SG		
GCC-B.4	G	I S	Α	Q	T D	Α	S	v s	Р	Α	N	S	۷	K I	A	T	1	SG		
GCC-B.5	G	IS	A	Q	V D	A	S	VS	P	A	N	S	V	K	A	Ţ	Ţ	SG		
GCC-B6	G	1 0	A	Q	AP	A	S	vs	P	A	N	0 0	V	K	A	÷	÷	5 6		
GCC-BR	G	i S	Â	ä	T D	Â	S	vs	P	Â	N	S	v	K	Â	÷	τ.	SG		BUNGE SSE
GCC-C.1	G	1 \$	A	Q	TD	S	S	v s	P	A	N	G	V	ĸ	A	A	T	SG		PANCE-GCC
GCC-C.2	G	I S	A	Q	T D	A	S	v s	Р	Α	N	S	v	K I	A	Т	Т	SG		
GCC-C.3	G	S	A	Q	TD	A	S	VS	Р	A	N	S	V	K	Ą	Ţ	Ţ	SG		
GCCCC4	G	9	A	C	TD	~	S	v s	P	A	N	00	v	K	Å	÷	Ť	5 6		
GCCC6	Ğ	i s	Â	õ	T D	Â	s	vs	P	A	N	S	v	K	Â	÷	ŕ	SG		
GCC-C.7	G	I S	A	Q	ŤĎ	A	S	v s	Р	A	N	S	v	K	A	Ť	T	SG		
GCC-C.8	G	R	A	Q	T D	A	S	V S	Р	Α	N	S	۷	K I	A	T	T	SG		
GCC-D.1	G	I S	A	Q	I D	A	S	V S	P		S	G	V	K	A	Ţ	Ţ	SG		
GCC-D.2	G	1 0	A	Q O	TP	4	S	v S V C	P	A	N	0 0	v	K	÷	ļ.	÷	5 6		
GCC-D 4	Ğ	is	Â	Q	τĎ	Â	ŝ	vš	P	Â	N	S	v	ĸ	A	Ť	Ť	SG		
GCC-D.5	V	I S	A	Q	TN	A	S	v s	Р	Α	N	S	v	K I	A	т	Т	SG		
GCC-D.6	G	I S	A	Q	T D	A	S	VS	Р	A	N	S	V	KI	Т	Ţ	Ţ	SG		
GCC-D.7	6	1 9	A	0	TN	A	s	v S	Р	A	N	0 0	v	K	A	÷	÷	5 6		
0000.0	· · ·		~			~	~		 COL 			-		- 1X				~ ~	1.1	

Supplementary Table 4 | Mutation table of variants from the PACE evolution to expand targeting scope. Host strain 6 transformed with MP6 was infected with the phage population CCC-B from PANCE. Host strain 7 transformed with MP6 was infected either phage population GCC-A or GCC-D from, both of which were derived from PANCE (see Extended Data Fig. 3a for strain identities). The consensus genotypes of input phage populations from PANCE are shown. Data was obtained by sequencing individual plaques isolated at the end of PACE. Genotypes in red were tested for base editing in mammalian cells (see Fig. 3c). [†]T1413I was included in this genotype.

		DddA-G1397N														DddA-G1397-C							
	Position	1301	1314	1321	1323	1325	1326	1329	1330	1341	1342	1344	1364	1370	1377	1380	1396	1398	1404	1407	1410	1413	1417
	Wild-type	Α	Т	A	G	E	S	F	S	Α	N	G	۷	E	۷	Т	E	Α	G	G	к	Т	N
PANCE	CCC-B	Α	Т	A	G	E	S	F	S	Α	Ν	R	М	К	٧	1	E	Α	G	G	к	Т	N
	CCC-B.1	A	Α	A	G	E	S	F	S	A	N	R	Μ	K	٧	1	E	A	G	G	ĸ	1	N
	CCC-B.2	Α	Т	Α	G	A	S	F	S	Α	S	R	М	K	۷	1	E	Α	G	G	к	1	N
DACE	CCC-B.3	A	Α	E	S	Е	S	F	S	Α	N	R	М	K	۷	1	E	Α	G	G	κ	Т	N
PACE	CCC-B.4	A	Т	A	G	E	S	F	S	A	S	R	M	K	V	1	E	A	G	G	K	T.	N
	CCC-B.5	Α	т	Α	G	E	S	F	S	Α	N	G	V		۷		E	Α	G	D	к	1	N
	CCC-B.6	S	Τ	Α	G	E	S	F	S	Α	N	R	М	Κ	V		E	Α	G	G	к		S
PANCE	GCC-A	Α	Т	Α	G	E	S	F	1	V	S	G	۷	K	۷	L.	E	A	G	G	к	Т	N
	GCC-A.11	A	Т	Α	G	E	S	F	1	V	S	G	۷	K	٧	1	E	A	G	G	K	Т	N
	GCC-A.2	Α	т	E	G	E	S	F	1	V	S	G	۷	K	۷	1	E	Α	G	G	к	Т	N
	GCC-A.3	Α	т	A	G	E	S	F	1	٧	S	G	۷	К	۷	1	E	Α	G	G	ĸ	Т	N
DACE	GCC-A.4	Α	Т	A	G	E	S	F	1	V	S	G	V	K	۷	1	E	A	G	G	к	Т	N
PAGE	GCC-A.5	Α	т	Α	G	E	S	F	1	V	S	G	۷	K	۷	1	E	Α	G	G	к	Т	N
	GCC-A.6	Α	Т	Α	G	E	S	F	Ĵ.	٧	S	G	V	K	۷	1	E	Α	G	G	к	Т	N
	GCC-A.7	Α	т	Α	G	Е	S	F	1	V	S	G	۷	К	٧	1	Е	Α	G	G	κ	Т	N
	GCC-A.8	Α	Т	A	G	E	S	F	1	V	S	G	V	K	Μ	-1	E	A	G	G	к	Т	N
PANCE	GCC-D	Α	Т	Α	G	E	S	F	S	Α	Ν	S	۷	К	V		E	Т	G	G	К	Т	N
	GCC-D.1	Α	Α	Α	G	E	S	F	S	Α	N	S	۷	K	۷	1	G	Т	G	G	R	Т	N
	GCC-D.2	Α	Α	A	G	E	S	F	S	Α	N	S	۷	К	۷	1	E	Α	G	G	ĸ	Т	N
	GCC-D.3	Α	Α	Α	G	E	S	F	S	A	N	S	V	K	۷	L	E	A	G	G	к	Т	N
DACE	GCC-D.4	Α	Α	Α	G	E	S	F	S	Α	N	S	۷	K	٧		E	Т	G	G	к	Т	Ν
TAVE	GCC-D.5	A	Α	A	G	E	S	F	S	A	N	S	۷	K	٧	1	K	Т	G	G	K	T	N
	GCC-D.6	Α	A	A	G	E	S	F	S	A	N	S	V	K	٧		E	T	G	G	ĸ	1	N
	GCC-D.7	Α	т	A	G	Е	S	F	S	A	N	S	۷	K	٧	1	E	Т	G	G	к	1	N
	GCC-D.8	Α	Т	A	G	E	V	L	S	A	N	S	V	К	V	1	K	Т	G	G	к	1	N

(See the separately provided Excel file.)

Supplementary Table 5 | Sequencing coverage for ATAC-seq samples. Sequencing coverages for all replicates in Fig. 3g are provided.

(See the separately provided Excel file.)

Supplementary Table 6 | List of predicted off-target nuclear DNA sites for SIRT6-DdCBE and JAK2-DdCBE. TALE off-targets were predicted using the online PROGNOS tool. Off-target sites were ranked based on the RVD nucleotide preferences observed in natural TAL effectors. **Supplementary Table 7 | Mutation table of variants from the GC-specific PANCE.** Strain 9 transformed with MP6 was used for PANCE-GCA. Strain 10 transformed with MP6 was used for PANCE-GCG (see Extended Data Fig. 7b for strain identities). Each host strain was infected with input SP encoding the DddA11 variant of T7-DdCBE. Plaques were sequenced after nine and 12 passages. Mutations are highlighted in blue.

									G1397-N	1									Ddd	A-C
	1290	1296	T1311	1320	1325	1326	1330	1334	P1336	1341	1342	1349	1351	1370	1378	1380	1394	1413	1414	1421
Wild-type	G	P	<u> </u>	D	<u> </u>	<u> </u>	S	Р	Р	A	N	Q	A	E	N	Т	Р	Т	G	S
DddA11	G	Р	T	D	E	S		Р	Р	V	S	Q	A	K	N		Р		G	S
GCA.1	G	Р	т	D	E	S	1	Р	Р	V	S	Q	Α	ĸ	N	1	Р	1	G	S
GCA_2	G	Р	Т	D	E	S	1	Р	Р	V	S	Q	Α	K	N	1	Р	1	G	S
GCA.3	G	Р	т	D	E	S	1	Р	Р	A	S	Q	Т	K	N	1	Р	1	G	S
GCA.4	G	Р	Т	D	E	S	1	Р	Р	V	S	Q	A	K	N	1	Р	1	S	S
GCA.5	G	Т	Т	D	E	S	1	Р	Р	V	S	Q	Α	K	N	1	Р	I.	G	S
GCA.6	V	Р	т	D	E	S	1	Р	Р	V	S	Q	Α	K	N	1	Р	1	G	S
GCA.7	G	Р	т	D	E	S	1	Р	Р	V	S	Q	Α	K	N	1	Р	1	G	S
GCA.8	G	Р	Т	D	E	S	1	Р	Р	V	S	Q	Α	K	N	1	Р	1	G	S
GCG.1	G	Р	Α	D	K	S	1	Р	Р	V	S	Q	Α	K	S	1	Р	1	G	S
CCC2	G	Р	Т	D	K	S	1	Р	Р	V	S	Q	A	K	S	1	Р	4	G	S
GCG.3	G	Р	Т	D	E	1	1	Р	Р	V	S	Q	A	K	S	1	Р	1	G	S
GCG.4	G	Р	т	D	E	S	1	Р	Р	V	S	Q	Α	K	S	1	Р	1	G	S
GCG.5	G	Р	т	D	E	S	1	Р	Р	V	S	Q	Α	K	S	1	Р	1	G	S
GCG.6	G	Р	т	D	E	S	1	Р	Р	V	S	Q	Α	K	S	1	Р	1	G	S
GCG.7	G	Р	т	D	K	S	1	Р	Р	V	S	Q	Α	ĸ	S	1	Р	1	G	S
GCG.8	G	P	Т	D	E	S	1	S	Р	V	S	Q	A	K	S	i i	Р	1	G	S
GCA.1	G	Р	Т	D	K	S	1	Р	Р	V	S	Q	Α	K	N	1	Р	1	G	S
GCA.2	G	Р	Т	N	E	S	1	Р	Р	1	S	Q	Α	K	S	1	S	1	G	S
GCA3	G	P	Т	D	E	S	1	P	P	1	S	Q	A	K	S	1.	S	1	G	S
GCA.4	G	Р	т	D	E	S	1	Р	Р	1	S	Q	Α	K	S	1	S	I	G	S
GCA.5	G	Р	т	D	E	S	1	Р	Р	1	S	Q	Α	K	S	1	S	1	G	S
GCA.6	G	Р	Т	D	E	S	1	Р	Р	1	S	Н	Α	K	S	1	S	1	G	S
GCG.1	G	Р	Т	D	К	S	1	Р	Р	V	S	Q	Α	K	S	1	Р	1	G	S
GCG.2	G	P	Т	D	E	S	1	S	S	V	S	Q	A	K	S	1	Р	1	G	S
GCG.3	G	Р	т	D	E	S	1	Р	Р	V	S	Q	Α	K	S	1	Р	I	G	S
GCG.4	G	Р	т	D	E	S	1	Р	Р	V	S	Q	Α	K	S	1	Р	1	G	S
GCG.5	G	Р	т	D	K	S	1	Р	Р	V	S	Q	Α	K	S	1	Р	1	G	R
GCG.6	G	Р	Т	D	E	S	1	S	Р	V	S	Q	Α	K	S	1	Р	1	G	S

Supplementary Table 8 | Amplicons for high-throughput sequencing analyses

Site	Amplicon
ND1	CTCACCATCGCTCTTCTACTATGAACCCCCCTCCCCATACCCAACCCCCTGGTC
	AACCTCAACCTAGGCCTCCTATTTATTCTAGCCACCTCTAGCCTAGCCGTTTACT
	CAATCCTCTGATCAGGGTGAGCATCAAACTCAAACTACGCCCTGATCGGCGCAC
	TGCGAGCAGTAGCCCAAACAATCTCATATGAAGTCACCCTAGCC
ND1.2	GCCAACCTCCTACTCCTCATTGTACCCATTCTAATCGCAATGGCATTCCTAATGC
	TTACCGAACGAAAAATTCTAGGCTATATACAACTACGCAAAGGCCCCCAACGTTGT
	AGGCCCCTACGGGCTACTACAACCCTTCGCTGACGCCATAAAACTCTTCACCAA
	AGAGCCCCTAAAACCCGCCACATCTACCATCACCCTCTACATCACCGCCC
ND2	CGTAAGCCTTCTCCTCACTCTCTCAATCTTATCCATCATAGCAGGCAG
	GGATTAAACCAAACCCAGCTACGCAAAATCTTAGCATACTCCTCAATTACCCCACA
	TAGGATGAATAATAGCAGTTCTACCGTACAACCCTAACATAACCATTCTTAATTTA
	ACTATTTATATTATCCTAACTACCGCATTCCTACTCAAC
ND4	GACTTCAAACTCTACTCCCACTAATAGCTTTTTGATGACTTCTAGCAAGCCTCGC
ND4.5	
NDJ.Z	
ND3.4	
AIFO	
SIR 10 (011-	
largel)	
JAKZ (ON-	
target)	
DM40	
pBM10	
plasmid series	
TOR NCN library	
	Blue = UMI; Bold = TALE binding sites; Underlined = NCN target

SIRT6-OT1	TGGCCAAGCAGGGATCACGTCCCTCTGCCTTGGCCACTCCAGGCCACCTGCAG AGGGGGCAGCCCTGTCAGTGATGGAGGGGGGAGACAGCCTGTGTTATTCACGCC GGAAGTCCATGGCATTCTCAGAGAGCTCTTCCCCGTACCTCCCCAGAACACTGA GAATGGATGAATCAGTCCCGGCTCATCAGAGCCTTTCATGCTAAACCAGCCCAA ATGACTGATTTAGAAACTGCGTGGTCTTGTTCTTTGAGTGGATTTCTGAGGCACA CTCCAGAGCAGGCCCAGGTCTTCATTATCTCCATGCACACCCTTTGATTAAGCAT CTGTGACCACACAGCACTGTGTGCTGTACCCAAGGAGGCAACAG
SIRT6-OT2	GGGGGAGTCGGACTTAGAAGGTTGCCTCTGCTGCTCTCCCACTAAGAACAATG
	TTCAGCAAACCTATTCACACACCCCATAAACATTTCTGAGCACCTGCTGTGTGCC
	AAG
SIRT6-OT3	TGCTAGGCCCCGATTTGTGGACACTGAGCTAGGCAAAAGGATATATAAAGAGAT
	GCAAGCTAGAGGAGGGGAAAGTTCTGGATGGGGACCTCATTGGCCTCCTCACC
	TCTGTAGACCCACGTCTTGGGTTGACCCAGGGTAGAACCCTATAAGGATTTGTT
	CAATAAACGAATGCATAGAGACTGATCAACAACTGACAAAGTGGTATTTTACAGA
	TGCCGTGAAAGCAGCATACAAGCCGGAGAGCCTACTGGAAGCAAGAGGGGAAA
	ACCCAGCCGGGTATGGGGGGCTGCGGGGGGGGGGGGGGG
	TTCAGGATTTGATGCTTGAACTGAACCTTCTTTTAAGAGGTGAGTGGGCTGGGA
	GGTTGTGATGCCCAGAGGGTGAGGAAGGAAGTGGGG
SIR16-014	
	TCCTGTGCTCCAGCCAGAGC
SIRT6-OT5	GGATCCAAGGTGCCTTCACCCTGCGGCCTGCTCTATGAGGGCCTGCGTCGCAC
	ATCAGCTGTTGGTATCCTCACCTCGCTGAGCCGTTCCTCCGAGTGTGCTCTGTG
	GCTTGCACCAGGCCTAGCTGGGCCTTGTGTCTGGTCTCATCCAGCGTCTTCTGA
	TTGTGGGGAATGAGGCAGAGGTCTCCCCACCTGGGCTGTCCGTGTGGCGAAAG
	CCTTCCGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG
	GTGGCACTGAGGGCTCTGGCAGCTGCACACAGGTTGATAATGTCACTGGTGGG
SIR16-016	
	GAAGAGCCCCCGGAAAAGCCACCCTTGCTCTGGCACCTGTCATGCAGCCCTCAC
	AGCAGTACTCCCATGGGGTATGGGAGGACAGGGGCACTTCTGTTGGTCTTTCCT
	TCCTCATGTTCGTCCCAGTAGGGCCTG
SIRT6-OT7	CCCAGGACAAAGTTGCTTTGGGGCGCTTACAGGTTGAATCACCCATAGCTATGT
_	TTTGTTTGGCTTGTACTGTGTTGTTTACATTATTTATTAGTTGGCAATAGCTTTAA
	ATCAAAATTTACATTAAGGTCCAGATTTGGGGGCTCCTCTTAAAAAAAA
	CACATCTACAACAGTAGGATTTTCACGCCCAATGGCAAAATCTGTTAAAGCTGTG

	TGACAGCTTCTCCTTTTAATGGAGATGACCTCTTCAGACCCTGTACTCCAGGTGC
	CACAGGAACCAGCTGCCCGGTTCATCCTTGTGTGTTACCTGCATGAGGTGGCAA
	CCTTGTGCAAGAG
SIRT6-OT8	GCCTCGCCAAGAAACGCCCATTTATTTCCTTCCTATTTATT
	GCCTTTTGAAAGCCGGAGTGCAGTGCGGACTGGCTGAGGCCGGGGCCCAGGC
	GCGCGCCTCCTTCCTGCAGGCGGCCCGGGGCATCGATCGCGCGGGGCGTAAT
	GAACCCTAATAACAGCTCTATCACCGCCCGCCCGCCAATTGGCCCGGGTGCCC
	TCCAAATTAGCCACAAAGAAGCCAGTCTGTCAATATTAATTCCGCCGCGGAGATT
	ACTTGTTGTGGGAGAACAAAGGTGTTCTGGCTTGAGCTGAACAACTTAACTCCTT
	GTCTCATAAAATTTAAGCTGCTATTGATCGCCTCCTTGCATTGTGTGAGGATTAA
	ACACGTGCGCGTGCACATCCAGGCACACGCGCGCACACACTCGGGGCGCCCCG
	GCCCCGCTCAGGCAGCCGCCCCACCTCCTCGCCTACCCGGAAT
SIRT6-OT9	CCAGCACACCCTGATAAGCAGGATTCAGATTGGGCATGGGACAGGACAAAGGC
	TCTGAGGAGGCATGAGTGGAGTAGTAGAGAGAACACAGGACTCTGGGTTCTGA
	GCCAAGCTCTGCCATCCTGCAGCCATCTGACCCCTGGCCAGGCCTTCCCCCAA
	CTTCCTCAGCTGTGAAACGCGGCAGGGCTGCAGATGACGTAGGTGGGCAGAGG
	CCCTCTGGTGCCTACTGCTAGACACCCTTCTACTCTGGTGGGAGACCTTGTGCT
	CAAACGCTCTCAGAAGTCAGGGCAGTTGGGAGTCCAGGTCACACACA
	GGGGCCCT
SIRT6-OT10	CCAGGGCAACAGGTTTAAGACCCATTAGGAGACAATATTGTCGTCATGAATATAA
	ATGAGGCCTAGGCAGGTTGGGAGTAGCTAGTGTCTTGGCTCTGGCACAACCAG
	GCCCTGTTCCTCCACAGGGCTGGCCAGGGCAGAGGTGAAAGGGGCTGGGGTG
	TGACCGAGTGAGCTGGGGTAGAGGTAGAAAAAGGGACACAGAACATCCCAGGC
	CTAAGCTACATGGAGTATGAGAGAACAGCTGGAATGTGCTCTAGAAGCCCTGGG
	AGAAGGCCTCAGTTGAGGCTGAATTCAGATATGCCTGGGACCCGGTCTCTGTTA
	AGAGACCCCGGAGAGCTGGTGCAGAGCTGATGTGGGC
JAK2-OT1	GTGTGGTCAGGACAAACTGTTCCCTGAACTTAAAAGGTGAAGGACAAGACCCCA
	TATTATTATCCTGTATTAAAAAAGGAAATATACATATATGTACACAGACACCCCAT
	ATCACAGACAAGAAACTTCCCATAATTCAAAGGGAGACCATTTCCTTATTAGCAA
	AGGTGCGCATTACAGTATTTCATGACAGTTAAAAATTACACACCTACCACCTGTT
	TTGGTCAATCTTGCTAAAAAAGACACTGAAATAGACAATTTCTTCTTCTTAAGGTAA
	AGACAATGTCTAATTTAGAAAATCTTCCTCTTGAGATTGCACAGTGAAAGGTATC
	AGTTAATTAAATATAAAAGCTTACCGTTTTTGTTTTTTTT
	CAGTCGCCCAGGCTGGAG
JAK2-OT2	GGGGCTGGGAGAAGAGAGGAATGGGAGTTATTGATAATGGGTACAGTTTCAGTT
	TGAAAAGATGAAAAATTCTGAAGATGGATGGTGGTAGTGATTATACAACAATGTG
	AATATACTTAATGCTGCTGAACTATACAGTTTAAAATGGTTAAATGGTACATTTTA
	TGTATACGTTACCATAAAAAAAAAAGTCTGGACTATAATGTTAGAAGTAAAGATA
	GTAGTAATCTTATAGGAGAAAGAAGAAGAGGATGGTGTTCAGAAAGAGCGTGGTGAG
	GGTGGGGAACTTCAAGGGTGCTGGCAATATTCTATTCCTGGGCATAGGTTATCA
	GTGG
JAK2-OT3	GTCCACTCTGTGTTACCCAGATCTTGTACAGGAAATGGAGTGTATTTAATATTGA
	TGACTCTGTATGTGTCATTTAATTGTCTCTATTGATTGGATTTCATCAGAGTGTGG
	GGCTTGGACAGAGCTTTGATTAGACTGTAAGGATTCTTTGCCGTTTTCTTTTTC
	CGACACCATATCAATGTACCTTCTGGTGTGATATCACTTTCACAATCAAT
	AAAAAAGCTCTGCACACAGGCCTGCAGGAAAAGAGAGAGA
	GTCCCCTTATACACATAGATTTAACCTCTCCAATTGAAAAAGGTTTATTGCATGTT
	TTAGAGCAGGATGGAGTGGGAAAAAAGACCTGAAGGAGTCTCCATAG
JAK2-OT4	GCCGGTTTAGGTATGGGAACCACACACACCTCTAAAGTGAAGGAGGCTTCTCCAG
	CAAAACCGAACGGCATATTCAGATGCTGGGTGAGGATTCATAATATTTAGCTATT

	TTGTTAATTAATATAACAGTAATTTCTTTATTCAGTCACAGAAACATCAATGTATCT
	ATGCTGAAGCACCATAATTTTATAAGCACAGTTATTGGGGGGAAAATGTTACCTTT
	TTGTCCTAAAAAGACTCTCCACGCATGTAGCTAGGGAAAGCTAAGGTCAGTGGC
	AGAGTTATATGCACACCTCCACCACCAACATCACCACCACCACCTCCTTCAT
	CTCTCATCCAGCTCTGCCTTAGGCCCTTTTTTTTCTTTTCTTTTCTTTTCTTTTTTTT
	TTTCCCCAAGACAGGGTCTCACTC
JAK2-OT5	GGAACAGTGATCAGTTCTGTTACCTGACCATAATGGCTAAACAAAACAACCAAAT
	TATAAATTAAAAGGGGTTTGAATATATAGAACATTCATTTTCAGCTACTAGCCAA
	AAAATACTATCTCTACCTGCTATCCCATGTGTTGTGTTCTTTTAGACTGTCTAAT
	TTTGAGCTGAACTGTTTCTTAGACTGACAGACAAGTCATAAATCAAGTGATTGCT
	ATAAATGCTTTTTATTTATATAGAGAGTGTCTCAGATTTTTACCTTTCTTCATAAA
	CTTGTCATAAATTTCTAATTCACCAATAGATGGTTGGTGTCCATTTTTCTTGAGTC
	TAAGACACTTTTAAAAATTTACTTGACTTGGTCTTTTACGTACTTTCTTCAGAGCC
JAK2-OT6	TCCGGATTCTCCTGCTGAGGCAGGAGAATCGCTTGAAGCTGGGAGGCAGAGAT
	TGCAGTGAGCTAAGATCAGGCCATTGCACTCCAGCCTGGGTGACAGAGCGAGA
	CTCTGTCTCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
	AGATCAGGAGTGTCCAATCTTTTGGCTCCTCTGGAAGAAGAATTGTCTTGGGCC
	ACACATAAAATACACCATCACCTAACGATAGCTGATGAGCTTAAAAAAAA
	GAAAAATATCATAATGTTTTAAGAATGTTTATGAATTTTTTACAAATTTCTGTTGGG
	CCACATTCAAAGCTGTCCTGGG
JAK2-OT7	CCGACTGCTCTGCCTTCTGAATCATATGTAACCAAATCAAGTCAAACAGGTTAGA
	AGACAACTCACACTTCAGTGTCATCTGTACTCTTATCTTCATGAGTGTGGGGAATG
	TACAATCCACTTTCGCTCACTATATTAATTCATTCTGGTTCCTCATGTACTTAACC
	TATTTTATTTTCAGTTTGGATACAACCCAAATCCTCTCAAGCCTTTTAAATGC
	AAAAAAAAAAAAAATAAATTTAAAGTATATGTAGTTAAAAATACTCATGTCTTTACCCA
JAK2-018	GICCAIGAAIGACAGAGCACAIICACACICAIICAIIIACAIAIIIICIAIGCCIG
JAK2-019	GTAAGGGTGAAAATTCATTTGATGGAAATACTTGTGTATATTTAAAGACCCCAATT
	GCICCICIGGAGCIIGIACIIICAAGAAIGAIIAAICIGIGIAAIAAACIGGIIA
	CTACAGTCATTACATATAATTTTGTGTGAATAGGCTTTTTCATTTTTAAGAAGTTT
	GTCTAGCTGAGATTAGTGGTGGATTTTCTCCCACTTCTGAAATGTTCATTTATACT
	GGTTGCATTTTAAGATCATGAAACAATTCCAGTTACATTGTAAAAAGGATATCTTA
	CGAGTAATTTTATTGAACAAGTTAGAGGCATAAGCTTAAGAGCATTTCCATGAAA
	CAACACATGCAGCATTCCAGGAACTTG
1	

Supplementary Table 9 | List of bacterial plasmids used in this work

			ORF1		ORF2	
Name	Class (res)	Origin	Promoter	[RBS] Genes	Promoter	[RBS] Genes
Dddl	AP (carb)	SC101	P	[SD8] gIII	ProD	[SD8] DddI–VSV-G
MP6	MP (chlor)	cloDF13	PBAD	dnaQ926, dam, seqA, emrR, ugi, cda1	P _c	araC
AP1	AP (carb_)	SC101	P _{T7}	[SD8] gIII		
AP2	AP (carb)	SC101	P _{T7}	[sd8] gIII		
CP1-TCC	CP (spec_)	CoIE1	P Pro1	[sd2] T7 RNAP-TCC linker-degron		
CP2-TCC	CP (spec)	CoIE1	P Pro1	[sd4U] T7 RNAP–TCC linker–degron		
CP2-ACC	CP (spec)	CoIE1	P Pro1	[sd4U] T7 RNAP–ACC linker–degron		
CP2-CCC	CP (spec)	CoIE1	P Pro1	[sd4U] T7 RNAP-CCC linker-degron		
CP2-GCC	CP (spec)	CoIE1	P Pro1	[sd4U] 17 RNAP-GCC linker- degron		
CP3-GCA	CP (spec)	CoIE1	P Pro1	[sd5] T7 RNAP–GCA linker–degron		
CP3-GCG	CP (spec ^R)	CoIE1	P Pro1	[sd5] T7 RNAP–GCG linker–degron		
pBM10a	NCN target (carb)	SC101	N.A.	ACA target		
pBM10b	NCN target (carb)	SC101	N.A.	ACT target		
pBM10c	NCN target (carb)	SC101	N.A.	ACC target		
pBM10d	NCN target (carb)	SC101	N.A.	ACG target		
pBM10e	NCN target (carb)	SC101	N.A.	TCA target		
pBM10f	NCN target (carb)	SC101	N.A.	TCT target		
pBM10g	NCN target (carb)	SC101	N.A.	TCC target		
pBM10h	NCN target (carb)	SC101	N.A.	TCG target		
pBM10i	NCN target (carb)	SC101	N.A.	CCA target		
pBM10j	NCN target (carb)	SC101	N.A.	CCT target		
pBM10k	NCN target (carb [®])	SC101	N.A.	CCC target		
pBM10I	NCN target (carb)	SC101	N.A.	CCG target		
pBM10m	NCN target (carb)	SC101	N.A.	GCA target		
pBM10n	NCN target (carb)	SC101	N.A.	GCT target		
pBM10o	NCN target (carb)	SC101	N.A.	GCC target		
pBM10p	NCN target (carb)	SC101	N.A.	GCG target		
pBM22a	Window profiling (carb)	SC101	N.A.	(TC) ₁₂ target, top strand		
pBM22b	R Window profiling (carb)	SC101	N.A.	(TC) ₁₃ target, top strand		
pBM22c	Window profiling (carb)	SC101	N.A.	(TC) ₁₄ target, top strand		
pBM22d	Window profiling (carb)	SC101	N.A.	(TC) ₁₅ target, top strand		
pBM22e	R Window profiling (carb)	SC101	N.A.	(TC) ₁₆ target, top strand		
pBM22f	R Window profiling (carb)	SC101	N.A.	(TC) ₁₇ target, top strand		
pBM22g	R Window profiling (carb ^R)	SC101	N.A.	(TC) ₁₈ target, top strand		
pBM23a	ہ Window profiling (carb)	SC101	N.A.	(TC) ₁₂ target, bottom strand		
pBM23b	R Window profiling (carb	SC101	N.A.	(TC) ₁₃ target, bottom strand		
pBM23c	R Window profiling (carb	SC101	N.A.	(TC) ₁₄ target, bottom strand		
pBM23d	ہ Window profiling (carb)	SC101	N.A.	(TC) ₁₅ target, bottom strand		
pBM23e	Window profiling (carb [®])	SC101	N.A.	(TC) ₁₆ target, botttom strand		
pBM23f	R Window profiling (carb	SC101	N.A.	(TC) ₁₇ target, bottom strand		
pBM23g	R Window profiling (carb)	SC101	N.A.	(TC) ₁₈ target, bottom strand		

pBM13h	NCN assay (spec [®])	CoIE1		[sd2] UGI–TALE3–DddA-G1397-N wildtype	P _c	araC
pBM13h- sd4U	window profiling (spec)	CoIE1		[sd4U] UGI–TALE3–DddA-G1397-N wildtype		
pBM13	R NCN assay (spec)	CoIE1		[sd2] UGI–TALE3–DddA-G1397-N (Q1310R + S1330I + T1380I)	P _c	araC
pBM13- sd4U	^R window profiling (spec)	CoIE1		[sd4U] UGI-TALE3-DddA-G1397-N (Q1310R + S1330I + T1380I)	P _c	araC
pBM13a	NCN assay (spec)	CoIE1		[502] UGI=TALES=D00A-G1397-N (T1314A + G1344R + V1364M + E1370K + T1380I)	P _c	araC
pBM13b	R NCN assay (spec)	CoIE1	PBAD	[sd2] UGI–TALE3–DddA-G1397-N (N1342S + G1344R + V1364M + E1370K + T1380I)	P _c	araC
pBM13c	NCN assay (spec)	CoIE1		[sd2] UGI–TALE3–DddA-G1397-N (A1341T + N1342S + E1370K + T1380I)	P _c	araC
pBM13e	R NCN assay (spec)	CoIE1		[sd2] UGI–TALE3–DddA-G1397-N (T1314A + G1344S + E1370K + T1380I)	P _c	araC
pBM13f	NCN assay (spec)	CoIE1		[sd2] UGI–TALE3–DddA-G1397-N (T1314A + G1344S + E1370K + T1380I + E1396K)	P _c	araC
pBM13g	NCN assay (spec)	CoIE1	PBAD	[sd2] UGI–TALE3–DddA-G1397-N (S1330I + A1341V + N1342S + E1370K + T1380I)	P _c	araC
pBM13g- sd4U	^R window profiling (spec)	CoIE1		[sd4U] UGI-TALE3-DddA-G1397-N (S1330I + A1341V + N1342S + E1370K + T1380I)	P _c	araC
pBM14d	R NCN assay (kan)	p15A	P _{BAD}	[sd2] UGI-TALE4-DddA-G1397-C wildtype	P _c	araC
pBM14	NCN assay (kan)	p15A	P _{BAD}	[sd2] UGI–TALE4–DddA-G1397-C (T1413I)	P _c	araC
pBM14c	R NCN assay (kan)	p15A	PBAD	[sd2] UGI–TALE4–DddA-G1397-C (A1398T + T1413I)	P _c	araC
pBM19	window profiling (spec)	p15A	P _{BAD}	[sd4U] UGI–TALE4–DddA-G1397-C (T1413I)	P _c	araC
SPBM13	SP (none)	M13 f1	P _{gIII}	[sd8] UGI–TALE3–DddA-G1397-N wildtype	P_BBa_J23101	[sd8] UGI-TALE3- DddA-G1397-C wildtype
SPBM13a	SP (none)	M13 f1	P _{gIII}	[sd8] UGI–TALE3–DddA-G1397-N (T1380I)	P _{BBa_J23101}	[sd8] UGI–TALE3– DddA-G1397-C wildtype
SPBM14	SP (none)	M13 f1	PgIII	[sd8] UGI–TALE3–DddA-G1397-N (E1347A)	P BBa_J23101	[sd8] UGI-TALE3- DddA-G1397-C wildtype
SPBM29	SP (none)	M13 f1	P _{gIII}	[sd8] UGI–TALE3–DddA-G1397-N (S1330I + A1341V + N1342S + E1370K + T1380I)	P BBa_J23101	[sd8] UGI–TALE3– DddA-G1397-C (T1413I)

DdCBE	Left-TALE target sequence	Right-TALE target sequence
Т7	5'-T CCGACTTCGCGTT	5'-T CGTCGTTTGCT
ND1.1	5'-T CTAGCCTAGCCGTTT-3'	5'-T GAGTTTGATGCTCACCCT-3'
ND1.2	5'-T CCTAATGCTT-3'	5'-T ATATAGCCTAGA-3'
ND2	5'-T CTTAGCATACTCCTCAAT-3'	5'-T AGAACTGCTATTATT-3'
ND4	5'-T GCTAGTAACCACGTTCT-3'	5'-T CCTGTAAGTAGGAGAGT-3'
ND4.2	5'-T GAAGCTTCACC-3'	5'-T GGGCGATTATGA-3'
ND4.3	5'-T CTTCAATCAGCC-3'	5'-T GGCTGTTACT-3'
ND5.2 (mismatched)	5'-T CAAAACCATACCTCT-3'	5'-T GCTAGGCTGCCAATGT-3'
ND5.2 (no mismatch)	5'-T CAAAACCATACCTCT-3'	5'-T GCTAGGCTGCCAATGG-3'
ND5.4	5'-T CATAATAGTTACAA-3'	5'-T GCTAGGTGT-3'
ATP8 (mismatched)	5'-T ATTAAACACAAACTAT-3'	5'-T ATGGGCTTTGGT-3'
ATP8 (no mismatch)	5'-T ATTAAACACAAACTAC-3'	5'-T ATGGGCTTTGGT-3'
ND5.4	5'-T CATAATAGTTACAA-3'	5'-T GCTAGGTGT-3'
SIRT6	5'-T TACGCGGCGGGGCTGTC-3'	5'-T CCGGGAGGCCGCACTTG-3'
JAK2	5'-T CTGAAAAAGACTCTGCA-3'	5'-T CCATTTCTGTCATCGTA-3'

Supplementary Table 10 | List of DNA sequences recognized by TALE proteins

Supplementary Table 11 | Primers used for mammalian and bacteria cell genomic DNA amplification at sites targeted by DdCBEs

Site	HTS forward primer	HTS reverse primer
ND1.1	ACACTCTTTCCCTACACGACGCTC	TGGAGTTCAGACGTGTGCTCTTCCGA
	TTCCGATCTNNNNCTCACCATCG	TCTGGCTAGGGTGACTTCATATGAG
	CTCTTCTACTATG	
ND1.2	ACACTCTTTCCCTACACGACGCTC	TGGAGTTCAGACGTGTGCTCTTCCGA
	TTCCGATCTNNNNGCCAACCTCC	TCTGGGCGGTGATGTAGAGGG
	TACTCCTCAT	
ND2	ACACTCTTTCCCTACACGACGCTC	TGGAGTTCAGACGTGTGCTCTTCCGA
	TTCCGATCTNNNNCGTAAGCCTTC	TCTGTTGAGTAGTAGGAATGCGGTAG
ND4		
		G
ND4.2		
ND4.3	CAACAGACC	
ND5.2	ACACTCTTTCCCTACACGACGCTC	TGGAGTTCAGACGTGTGCTCTTCCGA
	TTCCGATCTNNNNCGGGTCCATC	TCTAGAGTAATAGATAGGGCTCAGGC
	ATCCACAAC	
ND5.4	ACACTCTTTCCCTACACGACGCTC	TGGAGTTCAGACGTGTGCTCTTCCGA
	TTCCGATCTNNNNGCAGTCTGCG	TCTCGAATATCTTGTTCATTGTTAAGG
	CCCTTAC	TTG
ATP8	ACACTCTTTCCCTACACGACGCTC	TGGAGTTCAGACGTGTGCTCTTCCGA
	TTCCGATCTNNNNCTTTACAGTGA	TCTGGGGGCAATGAATGAAGCG
	AATGCCCCAAC	
SIR16 (on-	ACACICITICCCIACACGACGCIC	IGGAGIICAGACGIGIGCICIICCGA
target)		
		TOCACTTCACACOTOTOCTOTOCCA
JAKZ (011-		
largel)		
		TGGAGTTCAGACGTGTGCTCTTCCGA
(for targeting	TTCCGATCTNNNNCGTTTTAGACT	TCTCGGATGCCGGGAGC
NCN library	GAGCACGTCAATAC	
plasmid		
SIRT6-OT1	ACACTCTTTCCCTACACGACGCTC	TGGAGTTCAGACGTGTGCTCTTCCGA
	TTCCGATCTNNNNTGGCCAAGCA	TCTCTGTTGCCTCCTTGGGTAC
	GGGATC	
SIRT6-OT2	ACACTCTTTCCCTACACGACGCTC	TGGAGTTCAGACGTGTGCTCTTCCGA
	TTCCGATCTNNNNGGGGGGAGTCG	TCTCTTGGCACACAGCAGGTGCTC
	GACTTAGAAGG	
SIRT6-OT3	ACACTCTTTCCCTACACGACGCTC	TGGAGTTCAGACGTGTGCTCTTCCGA
	TTCCGATCTNNNNTGCTAGGCCC	TCTCCCCACTTCCTTCCTCACCCT
	CGATTTGTGG	
SIRT6-OT4	ACACTCTTTCCCTACACGACGCTC	TGGAGTTCAGACGTGTGCTCTTCCGA
	TTCCGATCTNNNNGACCCTTCCAT	TCTGCTCTGGCTGGAGCACAGGAA
	TAGATCTGAGGGC	

SIRT6-0T5 ACACTCTTTCCCTACACGACGCTC TGGAGTTCAGACGTGTGCTCTTCCGA TTCCGATCTNNNGGATCCAAGG TCTACCACAGAGGCTCACCACGACGCTC TGGAGTTCAGACGTGTGCTCTTCCGA SIRT6-0T6 ACACTCTTTCCCTACACGACGCTC TGGAGTTCAGACGTGGCTCTTCCGA SIRT6-0T7 ACACTCTTTCCCTACACGACGCTC TGGAGTTCAGACGTGGCTCTTCCGA SIRT6-0T8 ACACTCTTTCCCTACACGACGCTC TGGAGTTCAGACGTGTGCTCTTCCGA SIRT6-0T8 ACACTCTTTCCCTACACGACGCTC TGGAGTTCAGACGTGTGCTCTTCCGA TCCCGATCTNNNNGCCTCGCCAA GAAACGCCCAT TGGAGTTCAGACGTGTGCTCTTCCGA SIRT6-0T9 ACACTCTTTCCCTACACGACGCTC TGGAGTTCAGACGTGTGCTCTTCCGA TCCCGATCTNNNNCCAGCGCACC TGGAGTTCAGACGTGTGCTCTTCCGA SIRT6-0T9 ACACTCTTTCCCTACACGACGCTC TGGAGTTCAGACGTGTGCTCTTCCGA SIRT6-0T10 ACACTCTTTCCCTACACGACGCTC TGGAGTTCAGACGTGTGCTCTTCCGA JAK2-0T1 ACACTCTTTCCCTACACGACGCTC TGGAGTTCAGACGTGTGCTCTTCCGA JAK2-0T1 ACACTCTTTCCCTACACGACGCTC TGGAGTTCAGACGTGTGCTCTTCCGA JAK2-0T2 ACACTCTTTCCCTACACGACGCTC TGGAGTTCAGACGTGTGCTCTTCCGA JAK2-0T3 ACACTCTTTCCCTACACGACGCTC TGGAGTTCAGACGTGTGCTCTTCCGA JAK2-0T4 ACACTCTTTCCCTACACGACGCTC TGGAGTTCAGACGTGTGCTCTTCCGA JAK2-0T5
TTCCGATCTNNNNGGATCCAAGGTCTACCACAGAGCCTCACCCACCASIRT6-OT6ACACTCTTTCCCTACACGACGCTCTGGAGTTCAGACGTGTGCTCTTCCGASIRT6-OT7ACACTCTTTCCCTACACGACGCCCTGGAGTTCAGACGTGGCCTCTTCCGASIRT6-OT8ACACTCTTTCCCTACACGACGACCATCTCTTGCACAGAGGTGCCCCCCCSIRT6-OT8ACACTCTTTCCCTACACGACGCCCTGGAGTTCAGACGTGTGCTCTTCCGASIRT6-OT9ACACTCTTTCCCTACACGACGCCCTGGAGTTCAGACGTGGTGCTCTTCCGASIRT6-OT9ACACTCTTTCCCTACACGACGCCCTGGAGTTCAGACGTGGTGCTCTTCCGASIRT6-OT10ACACTCTTTCCCTACACGACGCCCTGGAGTTCAGACGTGGTGCTCTTCCGASIRT6-OT10ACACTCTTTCCCTACACGACGCCCTGGAGTTCAGACGTGGTGCTCTTCCGATTCCGATCTNNNNCCAGGCAACTCTGCCACATCAGCTGTGCTCTTCCGAJAK2-OT1ACACTCTTTCCCTACACGACGCCCTGGAGTTCAGACGTGTGCTCTTCCGAJAK2-OT2ACACTCTTTCCCTACACGACGCCCTGGAGTTCAGACGTGTGCTCTTCCGAJAK2-OT3ACACTCTTTCCCTACACGACGCCCTGGAGTTCAGACGTGTGCTCTTCCGAJAK2-OT4ACACTCTTTCCCTACACGACGCCCTGGAGTTCAGACGTGTGCTCTTCCGAJAK2-OT5ACACTCTTTCCCTACACGACGCCCTGGAGTTCAGACGTGTGCTCTTCCGAJAK2-OT6ACACTCTTTCCCTACACGACGCCCTGGAGTTCAGACGTGTGCTCTTCCGAJAK2-OT6ACACTCTTTCCCTACACGACGCCCTGGAGTTCAGACGTGTGCTCTTCCGAJAK2-OT6ACACTCTTTCCCTACACGACGCCCTGGAGTTCAGACGTGTGCTCTTCCGAJAK2-OT6ACACTCTTTCCCTACACGACGCCCTGGAGTTCAGACGTGTGCTCTTCCGAJAK2-OT6ACACTCTTTCCCTACACGACGCCCTGGAGTTCAGACGTGGTGCTCTTCCGAJAK2-OT6ACACTCTTTCCCTACACGACGCCCTGGAGTTCAGACGTGGTGCTCTTCCGAJAK2-OT6ACACTCTTTCCCTACACGACGCCCTGGAGTTCAGACGTGTGCTCTTCCGA
TGCCTTCACCCSIRT6-OT6ACACTCTTTCCCTACACGACGCTCTGGAGTTCAGACGTGGCCTTTCCGAACACTCTTTCCCTACACGACGCTCTGGAGTTCAGACGTGGCCTCTTCCGATTCCGATCTNNNNCCCAGGACAATCTCTTTGCACAAGGTGCCACCTCAGTTGCTTTGGGGCTGGAGTTCAGACGTGTGCTCTTCCGASIRT6-OT8ACACTCTTTCCCTACACGACGCTCTGGAGTTCAGACGTGTGCTCTTCCGATTCCGATCTNNNNCCCTGCCAAGAAACGCCCATTCTATTCCGGAGTGGCTCTTCCGASIRT6-OT9ACACTCTTTCCCTACACGACGCTCTGGAGTTCAGACGTGTGCTCTTCCGATCCGATCTNNNNCCAGCACACCTCTAGGGCCCCAGTGAGTGTCTAGGGCCCCAGTGAGTGSIRT6-OT10ACACTCTTTCCCTACACGACGCTCTGGAGTTCAGACGTGTGCTCTTCCGATTCCGATCTNNNNCCAGGCAACTCTGCCCACATCAGCTCTGCTGGAGTTCAGACGTGTGCTCTTCCGAJAK2-OT1ACACTCTTTCCCTACACGACGCTCTGGAGTTCAGACGTGTGCTCTTCCGAJAK2-OT2ACACTCTTTCCCTACACGACGCTCTGGAGTTCAGACGTGTGCTCTTCCGAJAK2-OT3ACACTCTTTCCCTACACGACGCTCTGGAGTTCAGACGTGTGCTCTTCCGAJAK2-OT4ACACTCTTTCCCTACACGACGCTCTGGAGTTCAGACGTGTGCTCTTCCGAJAK2-OT5ACACTCTTTCCCTACACGACGCTCTGGAGTTCAGACGTGTGCTCTTCCGAJAK2-OT5ACACTCTTTCCCTACACGACGCTCTGGAGTTCAGACGTGTGCTCTTCCGAJAK2-OT5ACACTCTTTCCCTACACGACGCTCTGGAGTTCAGACGTGTGCTCTTCCGAJAK2-OT6ACACTCTTTCCCTACACGACGCTCTGGAGTTCAGACGTGTGCTCTTCCGAJAK2-OT6ACACTCTTTCCCTACACGACGCTCTGGAGTCAGACGTGTGCTCTTCCGAJAK2-OT6ACACTCTTTCCCTACACGACGCTCTGGAGTTCAGACGTGTGCTCTTCCGAJAK2-OT6ACACTCTTTCCCTACACGACGCTCTGGAGTCAGACGTGTGCTCTTCCGAJAK2-OT6ACACTCTTTCCCTACACGACGCTCTGGAGTCAGACGTGTGCTCTTCCGA
SIRT6-0T6ACACTCTTTCCCTACACGACGCTCTGGAGTTCAGACGTGTGCTCTTCCGA TCCCAGGCCTACTGGGACGAACASIRT6-0T7ACACTCTTTCCCTACACGACGCCCTGGAGTTCAGACGTGTGCTCTTCCGA TCCGATCTNNNNCCCAGGACAAAGTTGCTTTGCGTACACGACGCCCTGGAGTTCAGACGTGTGCTCTTCCGA TCCGATCTNNNNCCCAGGACGCCCSIRT6-0T8ACACTCTTTCCCTACACGACGCCC TTCCGATCTNNNNCCCAGCACGCCTGGAGTTCAGACGTGTGCTCTTCCGA TCTATTCCGGTGTCTTCCGASIRT6-0T9ACACTCTTTCCCTACACGACGCCC TTCCGATCTNNNNCCAGCACACC CTGGATAAGCTGGAGTTCAGACGTGTGCTCTTCCGA TCTAGGCCCCAGTGAGTGSIRT6-0T10ACACTCTTTCCCTACACGACGCCC TTCCGATCTNNNNCCAGGCAAC AGGTTTAAGTGGAGTTCAGACGTGTGCTCTTCCGA TCTGCCACTCTTCCGA TCTCCACCGACGCCCJAK2-0T1ACACTCTTTCCCTACACGACGCTC TCCGATCTNNNNGTGTGGTCAG GACAAACTGTTCCCTGGAGTTCAGACGTGTGCTCTTCCGA TCTCCACTCCACACGACGCTC TCCCACTCTTCCCGACGCCC TCCCACTCTTTCCCTACACGACGCTC TCCCACTCTTTCCCTACACGACGCTC TCCCACTCTTTCCCTACACGACGCTC TCCCACTCTTTCCCTACACGACGCTC TCCCACTCTTCCCACACGACGCTC TCCCACTCTTCCCACACGACGCTC TCCCACTCTTCCCGA TCCCACTCTTCCCACACGACGCTC TCCCACTCTTCCCGACTCTTCCGA TCCCACTCTTCCCCACACGACGCTC TCCCACTCTTCCCACGACGCTC TCCCACTCTTCCCACACGACGCTC TCCCACTCTTCCCACACGACGCTC TCCGATCTNNNNGCCCGCTTTAG TCCGATCTNNNNGCCCGCTTTAG TCCGATCTNNNNGCACCACCCTGGAGTTCAGACGTGTGCTCTTCCGA TCGAGTTCAGACGTGGCTCTTCCGA TCCGATCTNNNNGCACCACGCTC TCGAGTTCAGACCGTGTGCCTTTCCGA TCCCGATCTNNNNGCACCACCCTGGAGTTCAGACGTGGCCTCTCCGA TCCGACTNNNNGCACACGTGA TCCCCACGACGCTC TCCCACGACCCCTGGAGTTCAGACCGTGGCCTTCCCGA TCCCACGACGCTC TCCCAGGCCCCJAK2-0T6ACACTCTTTCCCTACACGACGCCC TCCCGACCNNNNCCGGGTTAG TCCCCACGACCCCCTGGAGTTCAGACCGTGCCTTCCCGA TCCCCAGGCCCCJAK2-0T6ACACTCTTTCCCTACACGACGCCC TCCCACGACCCCCCCCCCCCCCCCC
TTCCGATCTNNNNGCTGGATTCG ATCTGAGGTCAGCTTCTCAGGCCTACTGGGACGACA ACTTTCCGATCTNNNNCCCAGGACGCTCSIRT6-0T7ACACTCTTTCCCTACACGACGCCC TTCCGATCTNNNNCCCAGGACAA AGTTGCTTTGCGACCTNNNNGCCTCGCCAA GAAACGCCCATTGGAGTTCAGACGTGTGCTCTTCCGA TCTATTCCGGTCTNCCGA TCAGGCCCAGTGGCCCCCCCGGGAGGCGGGGGGGGGGGG
ATCTGAGGTCAGCTSIRT6-017ACACTCTTTCCCTACACGACGACCTTCCGATCTNNNNCCCAGGACAATCTCTTTGCACAAGGTTGCCACCTCAGTTGCTTTGGGGCTGGAGTTCAGACGTGTGCTCTTCCGASIRT6-018ACACTCTTTCCCTACACGACGCCCTGGAGTTCAGACGTGGGCCCTTCCGAGAAACGCCCATTCTATTCCGGAGTGGCTCTTCCGASIRT6-019ACACTCTTTCCCTACACGACGCCCTGGAGTTCAGACGTGGGCTCTTCCGATTCCGATCTNNNNCCAGGCACACCTCTAGGGCCCCAGTGAGTGSIRT6-010ACACTCTTTCCCTACACGACGCTCTGGAGTTCAGACGTGTGCTCTTCCGATTCCGATCTNNNNCCAGGGCAACAGGTTTAAGJAK2-011ACACTCTTTCCCTACACGACGCTCTGGAGTTCAGACGTGTGCTCTTCCGATTCCGATCTNNNNCTGTGGGCCAGTCTCCCCGACGTGGCCTCTTCCGAJAK2-012ACACTCTTTCCCTACACGACGCTCTGGAGTTCAGACGTGTGCTCTTCCGAJAK2-013ACACTCTTTCCCTACACGACGCTCTGGAGTTCAGACGTGTGCTCTTCCGAJAK2-014ACACTCTTTCCCTACACGACGCTCTGGAGTTCAGACGTGTGCTCTTCCGAJAK2-015ACACTCTTTCCCTACACGACGCTCTGGAGTTCAGACGTGTGCTCTTCCGAJAK2-016ACACTCTTTCCCTACACGACGCTCTGGAGTTCAGACGTGTGCTCTTCCGAJAK2-017ACACTCTTTCCCTACACGACGCTCTGGAGTTCAGACGTGTGCTCTTCCGAJAK2-014ACACTCTTTCCCTACACGACGCTCTGGAGTTCAGACGTGTGCTCTTCCGAJAK2-015ACACTCTTTCCCTACACGACGCTCTGGAGTTCAGACGTGGGCTCTTCCGAJAK2-016ACACTCTTTCCCTACACGACGCTCTGGAGTTCAGACGTGGCTCTTCCGAJAK2-017ACACTCTTTCCCTACACGACGCTCTGGAGTTCAGACGTGGCTCTTCCGAJAK2-016ACACTCTTNNNNGCACAGTGATCTGGAGTCAGACGTGGCTCTTCCGAJAK2-016ACACTCTTTCCCTACACGACGCTCTGGAGTTCAGACGTGGCTCTTCCGAJAK2-016ACACTCTTNNNN
SIRT6-0T7ACACTCTTTCCCTACACGACGCTC TTCCGATCTNNNNCCCAGGACAA AGTTGCTTGCGGGCTGGAGTTCAGACGACGTGGCTCTTCCGA TCTCTTGCACAAGGTGGCCCTTCCGA TCCGATCTNNNNGCCTCGCCAA GAAACGCCCATSIRT6-0T8ACACTCTTTCCCTACACGACGCTC TCCGATCTNNNNCCCAGCACGCCC TTCCGATCTNNNNCCAGCACACC CTGATAAGCTGGAGTTCAGACGTGGCTCTTCCGA TCTAGGCCCCAGTGAGTGSIRT6-0T9ACACTCTTTCCCTACACGACGCTC TTCCGATCTNNNNCCAGCACACC CTGATAAGCTGGAGTTCAGACGTGGCTCTTCCGA TCTAGGGCCCCAGTGAGTGSIRT6-0T10ACACTCTTTCCCTACACGACGCTC TTCCGATCTNNNNCCAGGGCAAC AGGTTTAAGTGGAGTTCAGACGTGTGCTCTTCCGA TCTGCCCACACACGACGCTC TCCGATCTNNNNGTGTGGTCAG GACAAACTGTTCCCJAK2-0T1ACACTCTTTCCCTACACGACGCTC TTCCGATCTNNNNGGGGCTGGGA GACAAACTGTTCCCTGGAGTTCAGACGTGTGCTCTTCCGA TCTCCACTGACGACGCTC TCCGATCTNNNNGGGGCTGGGAJAK2-0T3ACACTCTTTCCCTACACGACGCTC TTCCGATCTNNNNGCCGGTTAG GTATGCCAGATCTGGAGTTCAGACGTGTGCTCTTCCGA TCCGATCTNNNNGCCGGTTTAG GTATCCCAGACCACJAK2-0T4ACACTCTTTCCCTACACGACGCTC TTCCGATCTNNNNGCCGGTTAG GTATGGGAACCACTGGAGTTCAGACGTGTGCTCTTCCGA TCTGAGTGAGACCCTGTCTTGGGGAJAK2-0T5ACACTCTTTCCCTACACGACGCTC TTCCGATCTNNNNGCACAGTGA TCCGATCTNNNNGCACAGTGA TCCGATCTNNNNGGAACAGTGA TCAGTTCTGTTACCCGACGCTC TTCCGATCTNNNNGGAACAGTGA TCAGTTCTGCTACACGACGCTC TCGGAGTCAGACGTGTGCTCTTCCGA TCCGATCTNNNNGGAACAGTGA TCAGTTCTGCTACACGACGCTC TTCCGATCTNNNNGGAACAGTGA TCGGAGTCAGACGTGTGCTCTTCCGA TCCGATCTNNNNGGAACAGTGA TCGGATCAACGACGTC TTCCGATCTNNNNCCGGACGCTC TTCCGATCTNNNNGGAACAGTGA TCGGATCTNNNNCCGGACGCTC TCGGAGTCAACGAGGTGGCTCTTCCGA TCCGATCTNNNNCCGGACGCTC TCGGAGTCAACGACGTCGCCC TGGAGTTCAGACGTGGCTCTTCCGA TCCCAAGGCCCCCCCCCCCCCCCAGGACGCTCTTCCGA TCCCCAGGTGAGCCCTCCCCCCCCCCCCCCCCCCCCCCC
TTCCGATCTNNNNCCCAGGACAA AGTTGCTTTGCGGCTCTCTCTTGCACAAGGTTGCCACCTC AGTTGCTTTCCCTACACGACGCTCSIRT6-078ACACTCTTTCCCTACACGACGCTC TCCGATCTNNNNCCCAGCACAC CTGATAAGCTGGAGTTCAGACGTGTGCTCTTCCGA TCTAGGGCCCCAGTGAGTGSIRT6-079ACACTCTTTCCCTACACGACGCTC TTCCGATCTNNNNCCAGCGCACC CTGATAAGCTGGAGTTCAGACGTGTGCTCTTCCGA TCTAGGGCCCCAGTGAGTGSIRT6-0710ACACTCTTTCCCTACACGACGCTC TTCCGATCTNNNNCCAGGGCAAC AGGTTTAAGTGGAGTTCAGACGTGTGCTCTTCCGA TCTGCCCACACGACGTCJAK2-071ACACTCTTTCCCTACACGACGCTC TCCGATCTNNNNGTGTGGTCAG GACAAACTGTTCCCTGGAGTTCAGACGTGTGCTCTTCCGA TCCCGATCTNNNNGTGTGGGTCAG GACAAACTGTTCCCCJAK2-072ACACTCTTTCCCTACACGACGCTC TTCCGATCTNNNNGTCCAGCGCGGGATGGAGTTCAGACGTGTGCTCTTCCGA TCTCCACTGGGCGACTGACGAC TCCCATCAGCGGGGAAJAK2-073ACACTCTTTCCCTACACGACGCTC TTCCGATCTNNNNGTCCAGCGTTTAG GTACCCAGACCTGGAGTTCAGACGTGTGCTCTTCCGA TCCCATCACGGACGTTTAG GTATCGGAACCACJAK2-074ACACTCTTTCCCTACACGACGCTC TTCCGATCTNNNNGCCAGGCGTTAG GTATGGGAACCACTGGAGTTCAGACGTGTGCTCTTCCGA TCTGAGTGAGACCCTGTCTTGGGGAJAK2-075ACACTCTTTCCCTACACGACGCTC TCCGATCTNNNNGCCAGCGTTA GTATCGGACCTNNNNGGCACACGTC TCCGATCTNNNNGGAACAGTAC TCGGAGTCAGACGTGTGCTCTTCCGA TCCGATCTNNNNGGAACAGTGA TCTGGCTCTGAAGAAAGTACGTAAAA TCAGTTCTGTACCAGACGTGACCCTGGAGTTCAGACGTGTGCTCTTCCGA TCGGAGTCAGACGTGTGCTCTTCCGA TCGGAGTCAGACGTGTGCTCTTCCGA TCCGATCTNNNNGGAACAGTGA TCTGCCTGAAGAAGTACGTAAAA GACCAAG
AGTTGCTTTGGGGCSIRT6-0T8ACACTCTTTCCCTACACGACGCCC TTCCGATCTNNNNGCCTCGCCAA GAAACGCCCATTGGAGTTCAGACGTGGCTCTTCCGA TCTAGGGCCCCAGTGGCTCTTCCGA TCCGATCTNNNNCCAGCACACC TTCCGATCTNNNNCCAGGCACACC CTGATAAGCSIRT6-0T10ACACTCTTTCCCTACACGACGCCC TTCCGATCTNNNNCCAGGCCAC AGGTTTAAGTGGAGTTCAGACGTGTGCTCTTCCGA TCCGATCTNNNNCCAGGGCAAC AGGTTTAAGJAK2-0T1ACACTCTTTCCCTACACGACGCTC TTCCGATCTNNNNGTGTGGGCCAC GACAAACTGTTCCCTGGAGTTCAGACGTGTGCTCTTCCGA TCCGATCTNNNNGTGTGGGCAC GACAAACTGTTCCCJAK2-0T2ACACTCTTTCCCTACACGACGCTC TCCGATCTNNNNGTGGGCTGGA GACAAACTGTTCCCTACACGACGCTC TTCCGATCTNNNNGTCCACCACGCCCTGGAGTTCAGACGTGTGCTCTTCCGA TCCCACTGATAACCTATGCCCAGGA TCTCCACTGATAACCTATGCCCAGGAJAK2-0T3ACACTCTTTCCCTACACGACGCTC TTCCGATCTNNNNGTCCACTCTGT TTCCGATCTNNNNGTCCACTCTGT TTCCGATCTNNNNGCCGGTTTAG GTATGGGAACCACTGGAGTTCAGACGTGTGCTCTTCCGA TCCGATCTNNNNGCCGGTTTAG GTATGGGAACCACJAK2-0T4ACACTCTTTCCCTACACGACGCTC TCCGATCTNNNNGCACAGTGA TCCGATCTNNNNGGAACAGTGA TCCGATCTNNNNGGAACAGTGA TCCGATCTNNNNGGAACAGTGA TCCGATCTNNNNGGAACAGTGA TCCGATCTNNNNGGAACAGTGA TCCGATCTNNNNGGAACAGTGA TCTGGCTCTGAAGAAAGTACGTAAAA GACACTCTTTCCCTACACGACGTCC TTCCGATCTNNNNGGAACAGTGA TCTGGCTCTGAAGAAAGTACGTAAAA GACACTCTTTCCCTACACGACGTCA TCGGAGTCAGACGTGTGCTCTTCCGA TCCGATCTNNNNGGAACAGTGA TCTGGCTCTGAAGAAAGTACGTAAAA GACCAGGJAK2-0T6ACACTCTTTCCCTACACGACGCTC TTCCGATCTNNNNCCGGATTCTC CTGCTGAGACCTTGCAGCCTGGAGTTCAGACGTGTGCTCTTCCGA TCCCAAGAGC
SIRT6-OT8ACACTCTTTCCCTACACGACGCTC TTCCGATCTNNNNGCCTCGCCAA GAAACGCCCATTGGAGTTCAGACGTGTGCTCTTCCGA TCTATTCCGGTCTNNNNCCAGCACGCC TCCGATCTNNNNCCAGCACACC CTGATAAGCSIRT6-OT9ACACTCTTTCCCTACACGACGCTC TTCCGATCTNNNNCCAGCACCC CGATAAGCTGGAGTTCAGACGTGTGCTCTTCCGA TCTGCGATCTNNNNCCAGGGCAAC AGGTTTAAGJAK2-OT1ACACTCTTTCCCTACACGACGCTC TTCCGATCTNNNNGTGTGGTCAG GACAACTGTTCCCTGGAGTTCAGACGTGTGCTCTTCCGA TCTCCGATCTNNNNGTGTGGTCAG GACAACTGTTCCCJAK2-OT2ACACTCTTTCCCTACACGACGCTC TTCCGATCTNNNNGGGGCTGGGA GAAGAGGAATGGAGTTCAGACGTGTGCTCTTCCGA TCCCATCTNNNNGGGGCTGGGA TCTCCATCTACGACGTGTGCTCTTCCGA TCCCGATCTNNNNGGCGGCTGCGAJAK2-OT3ACACTCTTTCCCTACACGACGCTC TTCCGATCTNNNNGTCCACTCTGT GTTACCCAGATCTGGAGTTCAGACGTGTGCTCTTCCGA TCTCATGGAGACCCCCTCTGGGGAJAK2-OT4ACACTCTTTCCCTACACGACGCTC TTCCGATCTNNNNGCCGGTTTAG GTATGGGAACCACTGGAGTTCAGACGTGTGCTCTTCCGA TCTGAGTGAGACCCTGTTTGGGGAJAK2-OT5ACACTCTTTCCCTACACGACGCTC TTCCGATCTNNNGGAACAGTGA TCAGTTCTGTTACCTGACTGGAGTTCAGACGTGTGCTCTTCCGA TCTGGCTCTGAAGAAAGTACGTAAAA GACACTCTTTCCCTACACGACGCTC TCGGATCTNNNNGGCAGCAGCACJAK2-OT6ACACTCTTTCCCTACACGACGCTC TTCCGATCTNNNNGGAACAGTGA TCAGTTCCCTACACGACGCTC TTCCGATCTNNNNGGAACAGTGA TCAGTTCCCACCACACJAK2-OT6ACACTCTTTCCCTACACGACGCTC TTCCGATCTNNNNGGAACAGTCA TCCGATCTNNNNGGAACAGTCC TTCCGATCTNNNNGCGGATTCCJAK2-OT6ACACTCTTTCCCTACACGACGCTC TTCCGATCTNNNNCGCGGATCCC TTCCGATCTNNNNCGCGGATTCCJAK2-OT6ACACTCTTTCCCTACACGACGCTC TTCCGATCTNNNNCCCGGATTCC
TTCCGATCTNNNNGCCTCGCCAA GAAACGCCCATTCTATTCCGGGTAGGCGAGGAGGTSIRT6-OT9ACACTCTTTCCCTACACGACGCTC TTCCGATCTNNNNCCAGCACACC CTGATAAGCTGGAGTTCAGACGTGTGCTCTTCCGA TCTAGGGCCCCAGTGAGTGSIRT6-OT10ACACTCTTTCCCTACACGACGCTC TTCCGATCTNNNNCCAGGGCAAC AGGTTTAAGTGGAGTTCAGACGTGTGCTCTTCCGA TCTGCCACTCACACGACGCTC TCCGATCTNNNNGTGTGGTCAG GACAAACTGTTCCCJAK2-OT1ACACTCTTTCCCTACACGACGCTC TTCCGATCTNNNNGGTGGGCTGGA GACAAACTGTTCCCTGGAGTTCAGACGTGTGCTCTTCCGA TCTCCACCGACGCTC TCCGATCTNNNNGGGGCTGGAAJAK2-OT3ACACTCTTTCCCTACACGACGCTC GAAGAGGAATGGAGTTCAGACGTGTGCTCTTCCGA TCCCGATCTNNNNGTCCACTCTGT TTCCGATCTNNNNGTCCACCTCTGT GTTACCCAGATCJAK2-OT4ACACTCTTTCCCTACACGACGCTC TTCCGATCTNNNNGCCGGTTTAG GTATGGGAACCACTGGAGTTCAGACGTGTGCTCTTCCGA TCTCGATCTNNNNGCCGGTTAG GTATGGGAACCACJAK2-OT5ACACTCTTTCCCTACACGACGCTC TTCCGATCTNNNNGGCACAGTGA GTATGGGAACCACTGGAGTTCAGACGTGTGCTCTTCCGA TCTGGCTCTGAAGAAAGTACGTAAAA GACACTCTTTCCCTACACGACGCTC TCGGAGTCAGACGACGTGT TCCGATCTNNNNGGCAGCAGCTC TCCGATCTNNNNGCCGGTTTAG GTATGGGAACCACTGGAGTTCAGACGTGTGCTCTTCCGA TCTGGCTCTGAAGAAAGTACGTAAAA GACCAAGJAK2-OT6ACACTCTTTCCCTACACGACGCTC TTCCGATCTNNNNGCAGACAGTGA TCAGTTCTGTTACCTGACTGGAGTTCAGACGTGTGCTCTTCCGA TCTGGCTCTGAAGAAAGTACGTAAAA GACCAAGJAK2-OT6ACACTCTTTCCCTACACGACGCTC TTCCGATCTNNNNCCGGATTCCTGGAGTTCAGACGTGTGCTCTTCCGA TCCCAACGACGCTC TGGAGTCAGACGTGTGCTCTTCCGA TCCCAGACGACC
GAAACGCCCATSIRT6-OT9ACACTCTTTCCCTACACGACGCTC TTCCGATCTNNNNCCAGCACACC CTGATAAGCTGGAGTTCAGACGTGTGCTCTTCCGA TCTGGCCCACATCAGCTCTGC AGGTTTAAGJAK2-OT1ACACTCTTTCCCTACACGACGCTC TTCCGATCTNNNNCCAGGGCAAC AGGTTTAAGTGGAGTTCAGACGTGTGCTCTTCCGA TCTGCCCACATCAGCTCTGC AGGTTCAGACGTGTGCTCTTCCGA TCCGATCTNNNNGTGGTGGTCAG GACAAACTGTTCCCJAK2-OT2ACACTCTTTCCCTACACGACGCTC ACACTCTTTCCCTACACGACGCTC TTCCGATCTNNNNGGGGCTGGGATGGAGTTCAGACGTGTGCTCTTCCGA TCTCCACTGATAACCTATGCCCAGGA TCTCCACTGATCACGACGCTC TTCCGATCTNNNNGTCCACTCTGT TTCCGATCTNNNNGCCGGCTGCA TTCCGATCTNNNNGCCACTCTGT TTCCCGATCTNNNNGCCGGTTAG GTACCCAGACCJAK2-OT3ACACTCTTTCCCTACACGACGCTC TTCCGATCTNNNNGCCACTCTGT GTTACCCAGACCTGGAGTTCAGACGTGTGCTCTTCCGA TCTCTATGGAGACCCTGTCTTCCGA TCTGAGTGAGACCCTGTCTTCCGA TCTGAGTGAGACCCTGTCTTCCGA TCTGGAGTTCAGACGTGTGCTCTTCCGA TCTGGAGTTCAGACGTGTGCTCTTCCGA TCTGGAGTCAGACGTGTGCTCTTCCGA TCTGGAGTCAGACGTGTGCTCTTCCGA TCTGGAGTCAGACGTGTGCTCTTCCGA TCTGGAGTCAGACGTGTGCTCTTCCGA TCTGGAGTCAGACGTGTGCTCTTCCGA TCTGGAGTCAGACGTGTGCTCTTCCGA TCTGGCTCTGAAGAAAGTACGTAAAA GACCAAGJAK2-OT6ACACTCTTTCCCTACACGACGCTC TCCGATCTNNNNGCAACAGTGA TCAGTTCTCTTCCCTACACGACGCTC TCGGAGTCAGACGTGTGCTCTTCCGA TCCGATCTNNNTCCGGATTCCJAK2-OT6ACACTCTTTCCCTACACGACGCTC TCCGATCTNNNTCCGGATTCCC TCCGATCTNNNTCCGGATTCCCJAK2-OT6ACACTCTTTCCCTACACGACGCTC TCCGATCTNNNTCCGGATTCCCJAK2-OT6ACACTCTTTCCCTACACGACGCTC TCCGATCTNNNTCCGGATTCCCJAK2-OT6ACACTCTTTCCCTACACGACGCTC TCCGATCTNNNTCCGGATTCCC
SIRT6-OT9ACACTCTTTCCCTACACGACGCTC TTCCGATCTNNNNCCAGCACACC CTGATAAGCTGGAGTTCAGACGTGTGCTCTTCCGA TCTAGGGCCCCAGTGAGTGSIRT6-OT10ACACTCTTTCCCTACACGACGCTC TTCCGATCTNNNNCCAGGGCAAC AGGTTTAAGTGGAGTTCAGACGTGTGCTCTTCCGA TCTGCCCACATCAGCTCTGCJAK2-OT1ACACTCTTTCCCTACACGACGCTC TCCGATCTNNNNGTGTGGTCAG GACAAACTGTTCCCTGGAGTTCAGACGTGTGCTCTTCCGA TCTCCCACCGACGCGCAJAK2-OT2ACACTCTTTCCCTACACGACGCTC TTCCGATCTNNNNGGGGCTGGATGGAGTTCAGACGTGTGCTCTTCCGA TCTCCATCCACGACGCTC TTCCGATCTNNNNGTCCACTCTGTJAK2-OT3ACACTCTTTCCCTACACGACGCTC TTCCGATCTNNNNGCCGGTTAG GTTACCCAGATCTGGAGTTCAGACGTGTGCTCTTCCGA TTTCCCJAK2-OT4ACACTCTTTCCCTACACGACGCTC TTCCGATCTNNNNGCCGGTTTAG GTATGGGAACCACTGGAGTTCAGACGTGTGCTCTTCCGA TCTGAGTGAGACCCTGTCTTGGGGAJAK2-OT5ACACTCTTTCCCTACACGACGCTC TTCCGATCTNNNGCACACGCTGGAGTTCAGACGTGTGCTCTTCCGA TCTGAGTGAGACCCTGTCTTGGGGAJAK2-OT6ACACTCTTTCCCTACACGACGCTC TTCCGATCTNNNNGCAACAGTGA TCAGTTCTGTTACCTGACTGGAGTTCAGACGTGTGCTCTTCCGA TCTGGCTCTGAAGAAAGTACGTAAAA GACCAAGJAK2-OT6ACACTCTTTCCCTACACGACGCTC TTCCGATCTNNNTCCGGATTCTC CTGCTGAGGCTGGAGTTCAGACGTGTGCTCTTCCGA TCTGCAGCGTGTGCTCTTCCGA TCCGATCTNNNTCCGGATTCC
SIRT6-OT9ACACTCTTTCCCTACACGACGCTC TTCCGATCTNNNNCCAGCACACC CTGATAAGCTGGAGTTCAGACGTGTGCTCTTCCGA TCTAGGGCCCCAGTGAGTGSIRT6-OT10ACACTCTTTCCCTACACGACGCTC TTCCGATCTNNNNCCAGGGCAAC AGGTTTAAGTGGAGTTCAGACGTGTGCTCTTCCGA TCTGCCCACATCAGCTGTGCTCTTCCGA TCCGATCTNNNNGTGTGGGCAG GACAAACTGTTCCCJAK2-OT1ACACTCTTTCCCTACACGACGCTC TTCCGATCTNNNNGTGGGCAGG GACAGAGGGAATGGAGTTCAGACGTGTGCTCTTCCGA TCTCCCACCTGGGCGGACTGAATJAK2-OT2ACACTCTTTCCCTACACGACGCTC TTCCGATCTNNNNGGGGCTGGGA GAAGAGAGGAATGGAGTTCAGACGTGTGCTCTTCCGA TCTCCACTGATAACCTATGCCCAGGAJAK2-OT3ACACTCTTTCCCTACACGACGCTC TTCCGATCTNNNNGTCCACTCTGT GTTACCCAGATCTGGAGTTCAGACGTGTGCTCTTCCGA TCTCAGTGTGGTCTTCCGAJAK2-OT4ACACTCTTTCCCTACACGACGCTC TTCCGATCTNNNNGCCGGTTTAG GTATGGGAACCACTGGAGTTCAGACGTGTGCTCTTCCGA TCTGAGTGAGACCCTGTCTTGGGGAJAK2-OT5ACACTCTTTCCCTACACGACGCTC TTCCGATCTNNNNGCACACGTGA GTATGGGAACCACTGGAGTTCAGACGTGTGCTCTTCCGA TCTGGCTCTGAAGAAAGTACGTAAAA TCAGTTCTGTTACCTGACJAK2-OT6ACACTCTTTCCCTACACGACGCTC TCCGATCTNNNNCCCGGATTCC TCCGATCTNNNNCCGGATTCC TCGGAGTCAGACGTGTGCTCTTCCGATGGAGTTCAGACGTGTGCTCTTCCGA TCTGGATCTNNNTCCGGATTCC
TTCCGATCTNNNNCCAGCACACC CTGATAAGCTCTAGGGCCCCAGTGAGTG CTGATAAGCSIRT6-OT10ACACTCTTTCCCTACACGACGCTC TTCCGATCTNNNNCCAGGGCAAC AGGTTTAAGTGGAGTTCAGACGTGTGCTCTTCCGA TCTGCCACACGACGTCCJAK2-OT1ACACTCTTTCCCTACACGACGCTC TCCGATCTNNNNGTGTGGGTCAG GACAAACTGTTCCCTGGAGTTCAGACGTGGCCCTTCCGA TCCCACTCACACGACGCTC TGGAGTTCAGACGTGTGCTCTTCCGA TCCCACTGATAACCTATGCCCAGGAJAK2-OT2ACACTCTTTCCCTACACGACGCTC TCCGATCTNNNNGGGCTGGGA GAAGAGGAGAATGGAGTTCAGACGTGTGCTCTTCCGA TCCCACTGATAACCTATGCCCAGGAJAK2-OT3ACACTCTTTCCCTACACGACGCTC TTCCGATCTNNNNGTCCACTCTGT GTTACCCAGATCTGGAGTTCAGACGTGTGCTCTTCCGA TCTCAGTGTGGCTCTTCCGA TCTGAGTGGGACCCCJAK2-OT4ACACTCTTTCCCTACACGACGCTC TTCCGATCTNNNNGCCGGTTTAG GTATGGGAACCACTGGAGTTCAGACGTGTGCTCTTCCGA TCTGGAGTCAGACGTGTGCTCTTCCGA TCTGGAGTCAGACGTGTGCTCTTCCGA TCGGAGTTCAGACGTGTGCTCTTCCGA TCGGAGTCAGACAGTGAGACACGTGAJAK2-OT5ACACTCTTTCCCTACACGACGCTC TCCGATCTNNNNGGAACAGTGA TCAGTTCTGTTACCTGACTGGAGTTCAGACGTGTGCTCTTCCGA TCGGAGTTCAGACGTGTGCTCTTCCGA TCGGAGTCCAGACGTGTGCTCTTCCGA TCGGAGTTCAGACGTGTGCTCTTCCGA TCCGATCTNNNNGGAACAGTGA TCAGTTCTGTTACCTGACTGGAGTTCAGACGTGTGCTCTTCCGA TCGCGATCTNCCGATCTC TCCCAGAGCGCCC
CTGATAAGCSIRT6-OT10ACACTCTTTCCCTACACGACGCTC TTCCGATCTNNNNCCAGGGCAAC AGGTTTAAGTGGAGTTCAGACGTGTGCTCTTCCGA TCTGCCACATCAGCTCTGCJAK2-OT1ACACTCTTTCCCTACACGACGCTC TCCGATCTNNNNGTGTGGGTCAG GACAAACTGTTCCCTGGAGTTCAGACGTGGCCCTTCCGA TCTCCACTCACACGACGCTC TGGAGTTCAGACGTGTGCTCTTCCGA TCCCACTGATAACCTATGCCCAGGAJAK2-OT2ACACTCTTTCCCTACACGACGCTC TCCGATCTNNNNGGGGCTGGGA GAAGAGAGAGAATGGAGTTCAGACGTGTGCTCTTCCGA TCTCCACTGATAACCTATGCCCAGGAJAK2-OT3ACACTCTTTCCCTACACGACGCTC TTCCGATCTNNNNGTCCACTCTGT GTTACCCAGATCTGGAGTTCAGACGTGTGCTCTTCCGA TCTCAGTGTGGCTCTTCCGA TCTCGATCTNNNNGCCGGTTTAG GTATGGGAACCACJAK2-OT4ACACTCTTTCCCTACACGACGCTC TCCGATCTNNNNGCCGGTTTAG GTATGGGAACCACTGGAGTTCAGACGTGTGCTCTTCCGA TCTGGATCAGACGTGTGCTCTTCCGA TCGGAGTCAGACGTGTGCTCTTCCGA TCGGAGTCAGACGTGTGCTCTTCCGA TCGGAGTCAGACGTGTGCTCTTCCGA TCGGAGTCAGACAGTAGAAAAGTACGTAAAA TCAGTTCTGTTACCTGACJAK2-OT6ACACTCTTTCCCTACACGACGCTC ACACTCTTTCCCTACACGACGCTC TCCGATCTNNNNGCACAGTGA TCAGTTCTGTTACCTGACTGGAGTTCAGACGTGTGCTCTTCCGA TCGGAGTTCAGACGTGTGCTCTTCCGA TCCGAACGAGCGCCJAK2-OT6ACACTCTTTCCCTACACGACGCTC TCCGATCTNNNNTCCGGATTCTCTGGAGTTCAGACGTGTGCTCTTCCGA TCCCAGAGGC
SIRT6-OT10ACACTCTTTCCCTACACGACGCTC TTCCGATCTNNNNCCAGGGCAAC AGGTTTAAGTGGAGTTCAGACGTGTGCTCTTCCGA TCTGCCACATCAGCTGTGCTCTTCCGAJAK2-OT1ACACTCTTTCCCTACACGACGCTC TCCGATCTNNNNGTGTGGTCAG GACAAACTGTTCCCTGGAGTTCAGACGTGTGCTCTTCCGA TCCCGATCTNNNNGGGGCTGGGA GAAGAGAGGAAJAK2-OT2ACACTCTTTCCCTACACGACGCTC TTCCGATCTNNNNGGCGCTGGGA GAAGAGAGGAATGGAGTTCAGACGTGTGCTCTTCCGA TCTCCACTGATAACCTATGCCCAGGAJAK2-OT3ACACTCTTTCCCTACACGACGCTC TTCCGATCTNNNNGTCCACTCTGT GTTACCCAGATCTGGAGTTCAGACGTGTGCTCTTCCGA TCTCCATCTAGCCAGACGTCJAK2-OT4ACACTCTTTCCCTACACGACGCTC TTCCGATCTNNNNGCCGGTTTAG GTATGGGAACCACTGGAGTTCAGACGTGTGCTCTTCCGA TCTGAGTGAGACCCTGTCTTCCGA TCTGAGTGAGACCCTGTCTTGGGGAJAK2-OT5ACACTCTTTCCCTACACGACGCTC TCCGATCTNNNNGCAACAGTGA TCAGTTCTGTTACCTGACTGGAGTTCAGACGTGTGCTCTTCCGA TCTGGCTCTGAAGAAAGTACGTAAAA TCAGTTCTGTTACCTGACJAK2-OT6ACACTCTTTCCCTACACGACGCTC TTCCGATCTNNNNTCCGGATTCTC TTCCGATCTNNNNTCCGGATTCTC TCCCAGGACAGCTTTGAGACGTGTGCTCTTCCGA
TTCCGATCTNNNNCCAGGGCAAC AGGTTTAAGTCTGCCCACATCAGCTCTGC AGGTTTAAGJAK2-OT1ACACTCTTTCCCTACACGACGCTC TTCCGATCTNNNNGTGTGGTCAG GACAAACTGTTCCCTGGAGTTCAGACGTGTGCTCTTCCGA TCTCCCAGCCTGGGCGACTGAATJAK2-OT2ACACTCTTTCCCTACACGACGCTC TTCCGATCTNNNNGGGGCTGGGA GAAGAGAGAGAATGGAGTTCAGACGTGTGCTCTTCCGA TCTCCACTGATAACCTATGCCCAGGAJAK2-OT3ACACTCTTTCCCTACACGACGCTC TTCCGATCTNNNNGTCCACTCTGT GTTACCCAGATCTGGAGTTCAGACGTGTGCTCTTCCGA TCTCTATGGAGACCTCTTCCGA TCTCATGGAGACCCTGTCTTCCGAJAK2-OT4ACACTCTTTCCCTACACGACGCTC TTCCGATCTNNNNGCCGGTTTAG GTATGGGAACCACTGGAGTTCAGACGTGTGCTCTTCCGA TCTGGCTCTGGAGACCCTGTCTTCCGA TCTGGCTCTGGAGACAGTGAJAK2-OT5ACACTCTTTCCCTACACGACGCTC TCCGATCTNNNGGAACAGTGA CAGTTCTGTTACCTGACTGGAGTTCAGACGTGTGCTCTTCCGA TCTGGCTCTGAAGAAAGTACGTAAAA TCAGTTCTGTTACCTGACJAK2-OT6ACACTCTTTCCCTACACGACGCTC TTCCGATCTNNNNGCACAGGACTGGAGTTCAGACGTGTGCTCTTCCGA TCTGGCTCTGAAGAAGTACGTAAAA GACCAAGJAK2-OT6ACACTCTTTCCCTACACGACGCTC TTCCGATCTNNNNTCCGGATTCTC CTGCTGAGGCTGGAGTTCAGACGTGTGCTCTTCCGA TCCCCAGGACAGCTTTGATGGGC
AGGTTTAAGJAK2-OT1ACACTCTTTCCCTACACGACGCTC TTCCGATCTNNNNGTGTGGTCAG GACAAACTGTTCCCTGGAGTTCAGACGTGGCTCTTCCGA TCTCTCCAGCCTGGGCGACTGAATJAK2-OT2ACACTCTTTCCCTACACGACGCTC TTCCGATCTNNNNGGGGCTGGGA GAAGAGAGGAATGGAGTTCAGACGTGTGCTCTTCCGA TCTCCACTGATAACCTATGCCCAGGAJAK2-OT3ACACTCTTTCCCTACACGACGCTC TTCCGATCTNNNNGTCCACTCTGT GTTACCCAGATCTGGAGTTCAGACGTGTGCTCTTCCGA TCTCTATGGAGACCCTCTTCCGAJAK2-OT4ACACTCTTTCCCTACACGACGCTC TTCCGATCTNNNNGCCGGTTTAG GTATGGGAACCACTGGAGTTCAGACGTGTGCTCTTCCGA TCTGAGTGAGACCCTGTCTTGGGGAJAK2-OT5ACACTCTTTCCCTACACGACGCTC TTCCGATCTNNNNGGAACAGTGA TCAGTTCTGTTACCTGACTGGAGTTCAGACGTGTGCTCTTCCGA TCTGGCTCTGAAGAAAGTACGTAAAA GACCAAGJAK2-OT6ACACTCTTTCCCTACACGACGCTC TTCCGATCTNNNNTCCGGATTCTC CTGCTGAGGCTGGAGTTCAGACGTGTGCTCTTCCGA TCTCCCAGGACGCTTCTGAAGAAAGTACGTAAAA GACCAAG
JAK2-OT1ACACTCTTTCCCTACACGACGCTC TTCCGATCTNNNNGTGTGGTCAG GACAAACTGTTCCCTGGAGTTCAGACGTGTGCTCTTCCGA TCTCCACCGACGTCC TGGAGTTCAGACGTGTGCTCTTCCGAJAK2-OT2ACACTCTTTCCCTACACGACGCCC TTCCGATCTNNNNGGGGCTGGGA GAAGAGAGAGAATGGAGTTCAGACGTGTGCTCTTCCGA TCTCCACTGATAACCTATGCCCAGGAJAK2-OT3ACACTCTTTCCCTACACGACGCTC TTCCGATCTNNNNGTCCACTCTGT GTTACCCAGATCTGGAGTTCAGACGTGTGCTCTTCCGA TCTCCGATCTNNNNGTCCACTCTGT TTTCCCJAK2-OT4ACACTCTTTCCCTACACGACGCTC TTCCGATCTNNNNGCCGGTTTAG GTATGGGAACCACTGGAGTTCAGACGTGTGCTCTTCCGA TCTGAGTGAGACCCTGTCTTGGGGAJAK2-OT5ACACTCTTTCCCTACACGACGCTC TTCCGATCTNNNNGGAACAGTGA TCAGTTCTGTTACCTGACTGGAGTTCAGACGTGTGCTCTTCCGA TCTGGCTCTGAAGAAAGTACGTAAAA GACCAAGJAK2-OT6ACACTCTTTCCCTACACGACGCTC TTCCGATCTNNNNTCCGGATTCTC CTGCTGAGGCTGGAGTTCAGACGTGTGCTCTTCCGA TCTCCCAGGACAGCTTTGAATGTGGC
TTCCGATCTNNNNGTGTGGTCAG GACAAACTGTTCCCTCTCTCCAGCCTGGGCGACTGAATJAK2-OT2ACACTCTTTCCCTACACGACGCTC TTCCGATCTNNNNGGGGCTGGGA GAAGAGAGGAATGGAGTTCAGACGTGTGCTCTTCCGA TCTCCACTGATAACCTATGCCCAGGAJAK2-OT3ACACTCTTTCCCTACACGACGCTC TTCCGATCTNNNNGTCCACTCTGT GTTACCCAGATCTGGAGTTCAGACGTGTGCTCTTCCGA TCTCCGATCTNNNNGTCCACTCTGT TTTCCCJAK2-OT4ACACTCTTTCCCTACACGACGCTC TTCCGATCTNNNNGCCGGTTTAG GTATGGGAACCACTGGAGTTCAGACGTGTGCTCTTCCGA TCTGAGTGAGACCCTGTCTTGGGGAJAK2-OT5ACACTCTTTCCCTACACGACGCTC TTCCGATCTNNNNGCACAGTGA TCAGTTCTGTTACCTGACTGGAGTTCAGACGTGTGCTCTTCCGA TCTGGCTCTGAAGAAAGTACGTAAAA GACCAAGJAK2-OT6ACACTCTTTCCCTACACGACGCTC TTCCGATCTNNNNTCCGGATTCTC CTGCTGAGGCTGGAGTTCAGACGTGTGCTCTTCCGA TCTCCCAGGACGCTCTTCCGA
GACAAACTGTTCCCJAK2-OT2ACACTCTTTCCCTACACGACGCTC TTCCGATCTNNNNGGGGCTGGGA GAAGAGAGAGAATGGAGTTCAGACGTGTGCTCTTCCGA TCTCCACTGATAACCTATGCCCAGGAJAK2-OT3ACACTCTTTCCCTACACGACGCTC TTCCGATCTNNNNGTCCACTCTGT GTTACCCAGATCTGGAGTTCAGACGTGTGCTCTTCCGA TCTCTATGGAGACTCCTTCAGGTCTTT TTTCCCJAK2-OT4ACACTCTTTCCCTACACGACGCTC TTCCGATCTNNNNGCCGGTTTAG GTATGGGAACCACTGGAGTTCAGACGTGTGCTCTTCCGA TCTGAGTGAGACCCTGTCTTGGGGAJAK2-OT5ACACTCTTTCCCTACACGACGCTC TTCCGATCTNNNNGCACAGTGA TCAGTTCTGTTACCTGACTGGAGTTCAGACGTGTGCTCTTCCGA TCTGGCTCTGAAGAAAGTACGTAAAA GACCAAGJAK2-OT6ACACTCTTTCCCTACACGACGCTC TTCCGATCTNNNNTCCGGATTCTC TTCCGATCTNNNNTCCGGATTCTC TCTGCCAGGCTGGAGTTCAGACGTGTGCTCTTCCGA TCTCCCAGGACAGCTTTGAATGTGGC
JAK2-OT2ACACTCTTTCCCTACACGACGCTCTGGAGTTCAGACGTGTGCTCTTCCGATTCCGATCTNNNNGGGGCTGGGATCTCCACTGATAACCTATGCCCAGGAJAK2-OT3ACACTCTTTCCCTACACGACGCTCTGGAGTTCAGACGTGTGCTCTTCCGATTCCGATCTNNNNGTCCACTCTGTTCTCTATGGAGACTCCTTCAGGTCTTTGTTACCCAGATCTTTCCCJAK2-OT4ACACTCTTTCCCTACACGACGCTCTGGAGTTCAGACGTGTGCTCTTCCGAJAK2-OT5ACACTCTTTCCCTACACGACGCTCTGGAGTTCAGACGTGTGCTCTTCCGAJAK2-OT5ACACTCTTTCCCTACACGACGCTCTGGAGTTCAGACGTGTGCTCTTCCGAJAK2-OT6ACACTCTTTCCCTACACGACGCTCTGGAGTTCAGACGTGTGCTCTTCCGAJAK2-OT6ACACTCTTTCCCTACACGACGCTCTGGAGTTCAGACGTGTGCTCTTCCGAJAK2-OT6ACACTCTTTCCCTACACGACGCTCTGGAGTTCAGACGTGTGCTCTTCCGAJAK2-OT6ACACTCTTTCCCTACACGACGCTCTGGAGTTCAGACGTGTGCTCTTCCGATTCCGATCTNNNNTCCGGATTCTCTCTCCCAGGACAGCTTTGAATGTGGCCTGCTGAGGCTCTCCCAGGACAGCTTTGAATGTGGC
TTCCGATCTNNNNGGGGCTGGGA GAAGAGAGAGAATCTCCACTGATAACCTATGCCCAGGAJAK2-OT3ACACTCTTTCCCTACACGACGCTC TTCCGATCTNNNNGTCCACTCTGT GTTACCCAGATCTGGAGTTCAGACGTGTGCTCTTCCGA TCTCTATGGAGACTCCTTCAGGTCTTT TTTCCCJAK2-OT4ACACTCTTTCCCTACACGACGCTC TTCCGATCTNNNNGCCGGTTTAG GTATGGGAACCACTGGAGTTCAGACGTGTGCTCTTCCGA TCTGAGTGAGACCTGTGTGCTCTTCCGAJAK2-OT5ACACTCTTTCCCTACACGACGCTC TTCCGATCTNNNNGGAACAGTGA TCAGTTCTGTTACCTGACTGGAGTTCAGACGTGTGCTCTTCCGA TCTGGCTCTGAAGAAAGTACGTAAAA GACCAAGJAK2-OT6ACACTCTTTCCCTACACGACGCTC TTCCGATCTNNNNTCCGGATTCTC TTCCGATCTNNNNTCCGGATTCTC CTGCTGAGGCTGCCACGAGCTTTGAATGTGGC
GAAGAGAGGAAJAK2-OT3ACACTCTTTCCCTACACGACGCTC TTCCGATCTNNNNGTCCACTCTGT GTTACCCAGATCTGGAGTTCAGACGTGTGCTCTTCCGA TTTCCCJAK2-OT4ACACTCTTTCCCTACACGACGCTC TTCCGATCTNNNNGCCGGTTTAG GTATGGGAACCACTGGAGTTCAGACGTGTGCTCTTCCGA TCTGAGTGAGACCTGTCTTGGGGAJAK2-OT5ACACTCTTTCCCTACACGACGCTC TTCCGATCTNNNNGGAACAGTGA TCAGTTCTGTTACCTGACTGGAGTTCAGACGTGTGCTCTTCCGA TCTGGCTCTGAAGAAAGTACGTAAAA GACCAAGJAK2-OT6ACACTCTTTCCCTACACGACGCTC TCCGATCTNNNNGGAACAGTGA TCAGTTCTGTTACCTGACTGGAGTTCAGACGTGTGCTCTTCCGA TCTGGCTCTGAAGAAAGTACGTAAAA GACCAAGJAK2-OT6ACACTCTTTCCCTACACGACGCTC TTCCGATCTNNNNTCCGGATTCTC CTGCTGAGGCTGGAGTTCAGACGTGTGCTCTTCCGA TCTCCCAGGACAGCTTTGAATGTGGC
JAK2-OT3ACACTCTTTCCCTACACGACGCTC TTCCGATCTNNNNGTCCACTCTGT GTTACCCAGATCTGGAGTTCAGACGTGTGCTCTTCCGA TCTCTATGGAGACTCCTTCAGGTCTT TTTCCCJAK2-OT4ACACTCTTTCCCTACACGACGCTC TTCCGATCTNNNNGCCGGTTTAG GTATGGGAACCACTGGAGTTCAGACGTGTGCTCTTCCGA TCTGAGTGAGACCCTGTCTTGGGGAAJAK2-OT5ACACTCTTTCCCTACACGACGCTC TTCCGATCTNNNNGGAACAGTGA TCAGTTCTGTTACCTGACTGGAGTTCAGACGTGTGCTCTTCCGA TCTGGCTCTGAAGAAAGTACGTAAAA GACCAAGJAK2-OT6ACACTCTTTCCCTACACGACGCTC TCCGATCTNNNNTCCGGATTCTC TTCCGATCTNNNNTCCGGATTCTC CTGCTGAGGCTGGAGTTCAGACGTGTGCTCTTCCGA TCTCCCAGGACAGCTTTGAATGTGGC
TTCCGATCTNNNNGTCCACTCTGT GTTACCCAGATCTCTCTATGGAGACTCCTTCAGGTCTTT TTTCCCJAK2-OT4ACACTCTTTCCCTACACGACGCTC TTCCGATCTNNNNGCCGGTTTAG GTATGGGAACCACTGGAGTTCAGACGTGTGCTCTTCCGA TCTGAGTGAGACCCTGTCTTGGGGAAJAK2-OT5ACACTCTTTCCCTACACGACGCTC TTCCGATCTNNNNGGAACAGTGA TCAGTTCTGTTACCTGACTGGAGTTCAGACGTGTGCTCTTCCGA TCTGGCTCTGAAGAAAGTACGTAAAA GACCAAGJAK2-OT6ACACTCTTTCCCTACACGACGCTC TTCCGATCTNNNNTCCGGATTCTC CTGCTGAGGCTGGAGTTCAGACGTGTGCTCTTCCGA TCTCCCAGGACAGCTTTGAATGTGGC
GTTACCCAGATCTTTCCCJAK2-OT4ACACTCTTTCCCTACACGACGCTCTGGAGTTCAGACGTGTGCTCTTCCGATTCCGATCTNNNNGCCGGTTTAGTCTGAGTGAGACCCTGTCTTGGGGAGTATGGGAACCACTCTGAGTGAGACGTGTGCTCTTCCGAJAK2-OT5ACACTCTTTCCCTACACGACGCTCTGGAGTTCAGACGTGTGCTCTTCCGATCCGATCTNNNNGGAACAGTGATCTGGCTCTGAAGAAAGTACGTAAAATCAGTTCTGTTACCTGACGACCAAGJAK2-OT6ACACTCTTTCCCTACACGACGCTCTGGAGTTCAGACGTGTGCTCTTCCGAJAK2-OT6ACACTCTTTCCCTACACGACGCTCTGGAGTTCAGACGTGTGCTCTTCCGACTGCTGAGGCCTGCTGAGGCTCTCCCAGGACAGCTTTGAATGTGGC
JAK2-OT4ACACTCTTTCCCTACACGACGCTC TTCCGATCTNNNNGCCGGTTTAG GTATGGGAACCACTGGAGTTCAGACGTGTGCTCTTCCGA TCTGAGTGAGACCGTGTGCTCTTCCGAJAK2-OT5ACACTCTTTCCCTACACGACGCTC TTCCGATCTNNNNGGAACAGTGA TCAGTTCTGTTACCTGACTGGAGTTCAGACGTGTGCTCTTCCGA TCTGGCTCTGAAGAAAGTACGTAAAA GACCAAGJAK2-OT6ACACTCTTTCCCTACACGACGCTC TTCCGATCTNNNNTCCGGATTCTC CTGCTGAGGCTGGAGTTCAGACGTGTGCTCTTCCGA TCTCCCAGGACGCTC TCTCCCAGGACAGCTTTGAATGTGGC
TTCCGATCTNNNNGCCGGTTTAG GTATGGGAACCACTCTGAGTGAGACCCTGTCTTGGGGAJAK2-OT5ACACTCTTTCCCTACACGACGCTC TTCCGATCTNNNNGGAACAGTGA TCAGTTCTGTTACCTGACTGGAGTTCAGACGTGTGCTCTTCCGA TCTGGCTCTGAAGAAAGTACGTAAAA GACCAAGJAK2-OT6ACACTCTTTCCCTACACGACGCTC TTCCGATCTNNNNTCCGGATTCTC CTGCTGAGGCTGGAGTTCAGACGTGTGCTCTTCCGA TCTCCAGGACAGCTTTGAATGTGGC
GTATGGGAACCACJAK2-OT5ACACTCTTTCCCTACACGACGCTCTGGAGTTCAGACGTGTGCTCTTCCGATTCCGATCTNNNNGGAACAGTGATCTGGCTCTGAAGAAAGTACGTAAAATCAGTTCTGTTACCTGACGACCAAGJAK2-OT6ACACTCTTTCCCTACACGACGCTCTGGAGTTCAGACGTGTGCTCTTCCGATTCCGATCTNNNNTCCGGATTCTCTCTCCCAGGACAGCTTTGAATGTGGCCTGCTGAGGCCTGCTGAGGCCTCCCAGGACAGCTTTGAATGTGGC
JAK2-OT5ACACTCTTTCCCTACACGACGCTCTGGAGTTCAGACGTGTGCTCTTCCGATTCCGATCTNNNNGGAACAGTGATCTGGCTCTGAAGAAAGTACGTAAAATCAGTTCTGTTACCTGACGACCAAGJAK2-OT6ACACTCTTTCCCTACACGACGCTCTGGAGTTCAGACGTGTGCTCTTCCGATTCCGATCTNNNNTCCGGATTCTCTCTCCCAGGACAGCTTTGAATGTGGCCTGCTGAGGCCTGCTGAGGC
TTCCGATCTNNNNGGAACAGTGA TCAGTTCTGTTACCTGACTCTGGCTCTGAAGAAAGTACGTAAAA GACCAAGJAK2-OT6ACACTCTTTCCCTACACGACGCTC TTCCGATCTNNNNTCCGGATTCTC CTGCTGAGGCTGGAGTTCAGACGTGTGCTCTTCCGA TCTCCCAGGACAGCTTTGAATGTGGC
TCAGTTCTGTTACCTGAC GACCAAG JAK2-OT6 ACACTCTTTCCCTACACGACGCTC TGGAGTTCAGACGTGTGCTCTTCCGA TTCCGATCTNNNNTCCGGATTCTC TCTCCCAGGACAGCTTTGAATGTGGC CTGCTGAGGC CTGCTGAGGC
JAK2-OT6 ACACTCTTTCCCTACACGACGCTC TGGAGTTCAGACGTGTGCTCTTCCGA TTCCGATCTNNNNTCCGGATTCTC TCTCCCAGGACAGCTTTGAATGTGGC CTGCTGAGGC
TTCCGATCTNNNNTCCGGATTCTC TCTCCCAGGACAGCTTTGAATGTGGC CTGCTGAGGC
CTGCTGAGGC
JAK2-OT7 ACACTCTTTCCCTACACGACGCTC TGGAGTTCAGACGTGTGCTCTTCCGA
TTCCGATCTNNNNCCGACTGCTC TCTGCCCATGTATTGGGGCATAACC
TGCCTTCTGA
TTCCGATCTNNNNGTCCATGAATG
TTCCGATCTNNNNGTCCATGAATG TCTGCTCTGGCTCTTGCAGAC ACAGAGCAC
TTCCGATCTNNNNGTCCATGAATG TCTGCTCTGGCTCTTGCAGAC ACAGAGCAC TGGAGTTCAGACGTGTGCTCTTCCGA
TTCCGATCTNNNNGTCCATGAATG TCTGCTCTGGCTCTTGCAGAC ACAGAGCAC TCTGGATCTNCCCTACACGACGCTC JAK2-OT9 ACACTCTTTCCCTACACGACGCTC TTCCGATCTNNNNGTAAGGGTGA TCTCAAGTTCCTGGAATGCTGCATG

Supplementary Table 12 | Sequences of unique molecular identifiers associated with each target plasmid for N<u>C</u>N context profiling and editing window profiling . For sequence context profiling, each target plasmid contains a target cytosine flanked by two nucleotides of either A, T, C or G.

Plasmid	UMI	Sequence context	No. of TC repeats (top or bottom)
pBM10a	TTTGTAGTCTAGTCT	ACA	
pBM10b	CATTATGATCGTACG	ACT	
pBM10c	CTATTCAGGGATTGA	ACC	
pBM10d	CTGATACCGGAAGAC	ACG	
pBM10e	ATCTCAGTTGAAGTG	TCA	
pBM10f	GTGTATACGACAGAG	TCT	
pBM10g	ACCGTGCACCTACCA	TCC	
pBM10h	AACCTCCTTAGTCTA	TCG	
pBM10i	AGTTCAGACCAATTG	CCA	
pBM10j	GTAGTTTGTCCAGAA	CCT	
pBM10k	CTCAGATTTTATCAC	CCC	
pBM10L	CAGAGGACGCACGCT	CCG	
pBM10m	CTACCTTTATGATCC	GCA	
pBM10n	TCCTTGGTCCTCGAG	GCT	
pBM10o	AAGAGGAGACGTCAG	GCC	
pBM10p	TCCAGATATCTTTAA	GCG	
pBM22a	TTTGTAGTCTAGTCT		12, top
pBM22b	CATTATGATCGTACG		13, top
pBM22c	CTATTCAGGGATTGA		14, top
pBM22d	CTGATACCGGAAGAC		15, top
pBM22e	ATCTCAGTTGAAGTG		16, top
pBM22f	GTGTATACGACAGAG		17, top
pBM22g	ACCGTGCACCTACCA		18, top
pBM23a	AACCTCCTTAGTCTA		12, bottom
pBM23b	AGTTCAGACCAATTG		13, bottom
pBM23c	GTAGTTTGTCCAGAA		14, bottom
pBM23d	CTCAGATTTTATCAC		15, bottom
pBM23e	CAGAGGACGCACGCT		16, bottom
pBM23f	CTACCTTTATGATCC		17, bottom
pBM23g	TCCTTGGTCCTCGAG		18, bottom

Supplementary Sequences 1 | TALE sequences used in DdCBEs

All right-side halves of DdCBEs have the general architecture of (from N- to Cterminus): *COX8A* MTS–3xFLAG–mitoTALE–2aa linker–DddA_{tox} half–4aa linker–1x-UGI– *ATP5B* 3'UTR

All left-side halves of DdCBEs have the general architecture of (from N- to C-terminus): SOD2 MTS-3xHA-mitoTALE-2aa linker-DddAtox half-4aa linker-1x-UGI- SOD2 3'UTR

mitoTALE domains are annotated as: bold for N-terminal domain, underlined for RVD and bolded italics for C-terminal domain.

ND1-DdCBE Right mitoTALE repeat

DIADLRTLGYŠQQQQEKIKPKVRSTVAQHHEALVGHGFTHAHIVALSQHPAALGTVA VKYQDMIAALPEATHEAIVGVGKQWSGARALEALLTVAGELRGPPLQLDTGQLLKIA KRGGVTAVEAVHAWRNALTGAPLNLTPEQVVAIASNNGGKQALETVQALLPVLCQAH GLTPQQVVAIASNIGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNNGGKQALETVQ RLLPVLCQAHGLTPEQVVAIASNGGGKQALETVQALLPVLCQAHGLTPEQVVAIASNG GGKQALETVQALLPVLCQAHGLTPEQVVAIASNGGGKQALETVQALLPVLCQAHGLTPEQVVAIASNG GGKQALETVQALLPVLCQAHGLTPEQVVAIASNGGGKQALETVQALLPVLCQAHGLTPEQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPEQVVAIASNNGGKQA LETVQALLPVLCQAHGLTPEQVVAIASHDGGKQALETVQALLPVLCQAHGLTPEQVVAIASNNGGKQA LETVQALLPVLCQAHGLTPEQVVAIASHDGGKQALETVQALLPVLCQAHGLTPEQVVAI ASNGGGKQALETVQALLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQA HGLTPQQVVAIASNIGGKQALETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQALETV QALLPVLCQAHGLTPQQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPQQVVAIASH DGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGRPALESIVAQLSRPDPALAAL TNDHLVALACLGGRPALDAVKKGLG

ND1-DdCBE Left mitoTALE repeat

DIADLRTLGYSQQQQEKIKPKVRSTVAQHHEALVGHGFTHAHIVALSQHPAALGTVA VKYQDMIAALPEATHEAIVGVGKQWSGARALEALLTVAGELRGPPLQLDTGQLLKIA KRGGVTAVEAVHAWRNALTGAPLNLTPEQVVAIAS<u>HD</u>GGKQALETVQALLPVLCQAH GLTPQQVVAIAS<u>NG</u>GGKQALETVQRLLPVLCQAHGLTPQQVVAIAS<u>NI</u>GGKQALETVQ RLLPVLCQAHGLTPEQVVAIAS<u>NN</u>GGKQALETVQALLPVLCQAHGLTPEQVVAIAS<u>HD</u> GGKQALETVQALLPVLCQAHGLTPEQVVAIAS<u>HD</u>GGKQALETVQALLPVLCQAHGLTP EQVVAIAS<u>NG</u>GGKQALETVQRLLPVLCQAHGLTPEQVVAIAS<u>NI</u>GGKQALETVQALLPV LCQAHGLTPEQVVAIAS<u>NN</u>GGKQALETVQRLLPVLCQAHGLTPEQVVAIAS<u>HD</u>GGKQALETVQALLPV LCQAHGLTPEQVVAIAS<u>NN</u>GGKQALETVQRLLPVLCQAHGLTPEQVVAIAS<u>HD</u>GGKQA LETVQALLPVLCQAHGLTPEQVVAIAS<u>HD</u>GGKQALETVQALLPVLCQAHGLTPEQVVAI AS<u>NN</u>GGKQALETVQALLPVLCQAHGLTPEQVVAIAS<u>NG</u>GGKQALETVQRLLPVLCQA HGLTPQQVVAIAS<u>NG</u>GGKQALETVQRLLPVLCQAHGLTPQQVVAIAS<u>NG</u>GGRPALE*SI* VAQLSRPDPALAALTNDHLVALACLGGRPALDAVKKGLG

ND1.2-DdCBE Left mitoTALE repeat DIADLRTLGYSQQQQEKIKPKVRSTVAQHHEALVGHGFTHAHIVALSQHPAALGTVA VKYQDMIAALPEATHEAIVGVGKQWSGARALEALLTVAGELRGPPLQLDTGQLLKIA

ND2-DdCBE Left mitoTALE repeat **DIADLRTLGYSQQQQEKIKPKVRSTVAQHHEALVGHGFTHAHIVALSQHPAALGTVA VKYQDMIAALPEATHEAIVGVGKQWSGARALEALLTVAGELRGPPLQLDTGQLLKIA KRGGVTAVEAVHAWRNALTGAPLN**LTPEQVVAIAS<u>HD</u>GGKQALETVQALLPVLCQAH GLTPQQVVAIAS<u>NG</u>GGKQALETVQRLLPVLCQAHGLTPQQVVAIAS<u>NG</u>GGKQALETV QRLLPVLCQAHGLTPEQVVAIAS<u>NI</u>GGKQALETVQALLPVLCQAHGLTPEQVVAIAS<u>NN</u> GGKQALETVQALLPVLCQAHGLTPEQVVAIAS<u>HD</u>GGKQALETVQALLPVLCQAHGLTP EQVVAIAS<u>NI</u>GGKQALETVQRLLPVLCQAHGLTPEQVVAIAS<u>NG</u>GGKQALETVQALLPV LCQAHGLTPEQVVAIAS<u>NI</u>GGKQALETVQRLLPVLCQAHGLTPEQVVAIAS<u>HD</u>GGKQALETVQALLPV LCQAHGLTPEQVVAIAS<u>NI</u>GGKQALETVQRLLPVLCQAHGLTPEQVVAIAS<u>HD</u>GGKQALETVQALLPVLCQAHGLTPEQVVAIAS MGGKQALETVQALLPVLCQAHGLTPEQVVAIAS<u>HD</u>GGKQALETVQALLPVLCQAHGLTPEQVVAI AS<u>HD</u>GGKQALETVQALLPVLCQAHGLTPEQVVAIAS<u>HD</u>GGKQALETVQRLLPVLCQAH GLTPQQVVAIAS<u>NG</u>GGKQALETVQRLLPVLCQAHGLTPEQVVAIAS<u>HD</u>GGKQALETVQRLLPVLCQAH

AQLSRPDPALAALTNDHLVALACLGGRPALDAVKKGLG

ND2-DdCBE Right mitoTALE repeat DIADLRTLGYSQQQQEKIKPKVRSTVAQHHEALVGHGFTHAHIVALSQHPAALGTVA VKYQDMIAALPEATHEAIVGVGKQWSGARALEALLTVAGELRGPPLQLDTGQLLKIA KRGGVTAVEAVHAWRNALTGAPLNLTPEQVVAIAS<u>NI</u>GGKQALETVQALLPVLCQAH GLTPQQVVAIAS<u>NN</u>GGKQALETVQRLLPVLCQAHGLTPQQVVAIAS<u>NI</u>GGKQALETVQ RLLPVLCQAHGLTPEQVVAIAS<u>NI</u>GGKQALETVQALLPVLCQAHGLTPEQVVAIAS<u>HD</u>G GKQALETVQALLPVLCQAHGLTPEQVVAIAS<u>NG</u>GGKQALETVQALLPVLCQAHGLTPE QVVAIAS<u>NN</u>GGKQALETVQRLLPVLCQAHGLTPEQVVAIAS<u>HD</u>GGKQALETVQALLPV LCQAHGLTPEQVVAIAS<u>NG</u>GGKQALETVQRLLPVLCQAHGLTPEQVVAIAS<u>NI</u>GGKQA LETVQALLPVLCQAHGLTPEQVVAIAS<u>NG</u>GGKQALETVQALLPVLCQAHGLTPEQVVAIAS<u>NI</u>GGKQA LETVQALLPVLCQAHGLTPEQVVAIAS<u>NG</u>GGKQALETVQALLPVLCQAHGLTPEQVVAIAS<u>NI</u>GGKQA LETVQALLPVLCQAHGLTPEQVVAIAS<u>NI</u>GGGKQALETVQALLPVLCQAHGLTPEQVVAIAS<u>NI</u>GGKQALETVQALLPVLCQAHGLTPEQVVAIAS<u>NI</u>GGKQALETVQALLPVLCQAHGLTPEQVVAIAS<u>NI</u>GGKQALETVQALLPVLCQAHGLTPEQVVAIAS<u>NI</u>GGKQALETVQALLPVLCQAHGLTPEQVVAIAS<u>NI</u>GGKQALETVQALLPVLCQAHGLTPEQVVAIAS<u>NI</u>GGKQALETVQALLPVLCQAHGLTPEQVVAIAS<u>NI</u>GGKQALETVQALLPVLCQAHGLTPEQVVAIAS<u>NI</u>GGKQALETVQALLPVLCQAHGLTPEQVVAIAS<u>NI</u>GGKQALETVQALLPVLCQAHGLTPEQVVAIAS<u>NI</u>GGKQALETVQALLPVLCQAHGLTPEQVVAIAS<u>NI</u>GGKQALETVQALLPVLCQAHGLTPEQVVAIAS<u>NI</u>GGKQALETVQALLPVLCQAHGLTPEQVVAIAS<u>NI</u>GGKQALETVQALLPVLCQAHGLTPEQVVAIAS<u>NI</u>GGKQALETVQALLPVLCQAHGLTPEQVVAIAS<u>NI</u>GGKQALETVQALLPVLCQAHGLTPEQVVAIAS<u>NI</u>GGKQALETVQALLPVLCQAHGLTPEQVVAIAS<u>NI</u>GGKQALETVQALLPVLCQAHGLTPEQVVAIAS<u>NI</u>GGKQALETVQALLPVLCQAH

ND1.2-DdCBE Left mitoTALE repeat DIADLRTLGYSQQQQEKIKPKVRSTVAQHHEALVGHGFTHAHIVALSQHPAALGTVA VKYQDMIAALPEATHEAIVGVGKQWSGARALEALLTVAGELRGPPLQLDTGQLLKIA KRGGVTAVEAVHAWRNALTGAPLNLTPEQVVAIASHDGGKQALETVQALLPVLCQAH GLTPQQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGKQALETV QRLLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALLPVLCQAHGLTPEQVVAIASNI GGKQALETVQALLPVLCQAHGLTPEQVVAIASNGGGKQALETVQALLPVLCQAHGLTPEQVVAIASNI VLCQAHGLTPEQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPQQVVAIASHDGGKQALETVQALLP VLCQAHGLTPEQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPQQVVAIASSNGGGKQALETVQALLP VLCQAHGLTPEQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGK PALESIVAQLSRPDPALAALTNDHLVALACLGGRPALDAVKKGLG

KRGGVTAVEAVHAWRNALTGAPLNLTPEQVVAIAS<u>NI</u>GGKQALETVQALLPVLCQAH GLTPQQVVAIAS<u>NG</u>GGKQALETVQRLLPVLCQAHGLTPQQVVAIAS<u>NI</u>GGKQALETVQ RLLPVLCQAHGLTPEQVVAIAS<u>NG</u>GGKQALETVQALLPVLCQAHGLTPEQVVAIAS<u>NIG</u> GKQALETVQALLPVLCQAHGLTPEQVVAIASN<u>NG</u>GKQALETVQALLPVLCQAHGLTPE QVVAIAS<u>HD</u>GGKQALETVQRLLPVLCQAHGLTPQQVVAIAS<u>HD</u>GGKQALETVQALLPV LCQAHGLTPEQVVAIAS<u>NG</u>GGKQALETVQRLLPVLCQAHGLTPEQVVAIAS<u>NI</u>GGKQA LETVQRLLPVLCQAHGLTPEQVVAIAS<u>NN</u>GGKQALETVQALLPVLCQAHGLTPQQVVAI ASNIGGRPALE*SIVAQLSRPDPALAALTNDHLVALACLGGRPALDAVKKGLG*

24

ND4.2-DdCBE Right mitoTALE repeat DIADLRTLGYSQQQQEKIKPKVRSTVAQHHEALVGHGFTHAHIVALSQHPAALGTVA VKYQDMIAALPEATHEAIVGVGKQWSGARALEALLTVAGELRGPPLQLDTGQLLKIA KRGGVTAVEAVHAWRNALTGAPLNLTPEQVVAIAS<u>NN</u>GGKQALETVQALLPVLCQAH GLTPQQVVAIAS<u>NN</u>GGKQALETVQRLLPVLCQAHGLTPQQVVAIAS<u>NN</u>GGKQALETVQ RLLPVLCQAHGLTPEQVVAIAS<u>HD</u>GGKQALETVQALLPVLCQAHGLTPEQVVAIAS<u>NN</u> GGKQALETVQALLPVLCQAHGLTPEQVVAIAS<u>NI</u>GGKQALETVQALLPVLCQAHGLTPE QVVAIAS<u>NG</u>GGKQALETVQRLLPVLCQAHGLTPEQVVAIAS<u>NG</u>GGKQALETVQALLPV LCQAHGLTPQQVVAIAS<u>NI</u>GGKQALETVQRLLPVLCQAHGLTPEQVVAIAS<u>NG</u>GGKQALETVQALLPV LCQAHGLTPQQVVAIAS<u>NI</u>GGKQALETVQRLLPVLCQAHGLTPEQVVAIAS<u>NG</u>GGKQA LETVQRLLPVLCQAHGLTPQQVVAIAS<u>NN</u>GGKQALETVQRLLPVLCQAHGLTPQQVVA IAS<u>NI</u>GGRPALE*SIVAQLSRPDPALAALTNDHLVALACLGGRPALDAVKKGLG*

ND4-DdCBE Left mitoTALE repeat DIADLRTLGYSQQQQEKIKPKVRSTVAQHHEALVGHGFTHAHIVALSQHPAALGTVA VKYQDMIAALPEATHEAIVGVGKQWSGARALEALLTVAGELRGPPLQLDTGQLLKIA KRGGVTAVEAVHAWRNALTGAPLNLTPEQVVAIASNNGGKQALETVQALLPVLCQAH GLTPQQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGKQALETV QRLLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALLPVLCQAHGLTPEQVVAIASNN GGKQALETVQALLPVLCQAHGLTPEQVVAIASNGGGKQALETVQALLPVLCQAHGLTP EQVVAIASNIGGKQALETVQRLLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALLPVL CQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQAL ETVQALLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALLPVLCQAHGLTPEQVVAIA SHDGGKQALETVQALLPVLCQAHGLTPEQVVAIASNNGGKQALETVQRLLPVLCQAH GLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPEQVVAIASNGGGKQALETVQ ALLPVLCQAHGLTPEQVVAIASHDGGKQALETVQALLPVLCQAHGLTPEQVVAIASNGGGKQALETVQ ALLPVLCQAHGLTPEQVVAIASHDGGKQALETVQALLPVLCQAHGLTPQQVVAIASNG GGRPALESIVAQLSRPDPALAALTNDHLVALACLGGRPALDAVKKGLG

ND4-DdCBE Right mitoTALE repeat DIADLRTLGYSQQQQEKIKPKVRSTVAQHHEALVGHGFTHAHIVALSQHPAALGTVA VKYQDMIAALPEATHEAIVGVGKQWSGARALEALLTVAGELRGPPLQLDTGQLLKIA KRGGVTAVEAVHAWRNALTGAPLNLTPEQVVAIASHDGGKQALETVQALLPVLCQAH GLTPQQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGKQALETV QRLLPVLCQAHGLTPEQVVAIASNNGGKQALETVQALLPVLCQAHGLTPEQVVAIASN GGGKQALETVQALLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALLPVLCQAHGLT PEQVVAIASNIGGKQALETVQRLLPVLCQAHGLTPEQVVAIASNNGGKQALETVQALLP VLCQAHGLTPEQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPEQVVAIASNIGGKQ ALETVQRLLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALLPVLCQAHGLTPEQVV AIASNNGGKQALETVQALLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALLPVLCQA HGLTPEQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNIGGKQALETV QRLLPVLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNIGGKQALETV QRLLPVLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNIGGKQALETV QRLLPVLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNIGGKQALETV

ALLPVLCQAHGLTPEQVVAIAS<u>NI</u>GGKQALETVQALLPVLCQAHGLTPEQVVAIAS<u>NI</u>GG KQALETVQALLPVLCQAHGLTPQQVVAIAS<u>NG</u>GGRPALE**SIVAQLSRPDPALAALTND** HLVALACLGGRPALDAVKKGLG

25

DIADLRTLGYSQQQQEKIKPKVRSTVAQHHEALVGHGFTHAHIVALSQHPAALGTVA VKYQDMIAALPEATHEAIVGVGKQWSGARALEALLTVAGELRGPPLQLDTGQLLKIA **KRGGVTAVEAVHAWRNALTGAPLN**LTPQQVVAIASNNGGKQALETVQRLLPVLCQA HGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGKQALETV QRLLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALLPVLCQAHGLTPQQVVAIASNN GGKQALETVQRLLPVLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTP EQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLP VLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPEQVVAIASHDGGK QALETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPEQV

ND5.2-DdCBE Right mitoTALE repeat (Note: Terminal NG RVD recognizes a mismatched T instead of a G in the reference genome)

ND4.3-DdCBE Left mitoTALE repeat DIADLRTLGYSQQQQEKIKPKVRSTVAQHHEALVGHGFTHAHIVALSQHPAALGTVA VKYQDMIAALPEATHEAIVGVGKQWSGARALEALLTVAGELRGPPLQLDTGQLLKIA **KRGGVTAVEAVHAWRNALTGAPLN**LTPEQVVAIASHDGGKQALETVQALLPVLCQAH GLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGKQALETV QRLLPVLCQAHGLTPEQVVAIASHDGGKQALETVQALLPVLCQAHGLTPEQVVAIASNI GGKQALETVQALLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALLPVLCQAHGLTPE QVVAIASNGGGKQALETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQALETVQALLPV LCQAHGLTPQQVVAIASNIGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNNGGKQA LETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPQQVVA IASHDGGRPALESIVAQLSRPDPALAALTNDHLVALACLGGRPALDAVKKGLG

ALESIVAQLSRPDPALAALTNDHLVALACLGGRPALDAVKKGLG

ND4.3-DdCBE Right mitoTALE repeat DIADLRTLGYSQQQQEKIKPKVRSTVAQHHEALVGHGFTHAHIVALSQHPAALGTVA VKYQDMIAALPEATHEAIVGVGKQWSGARALEALLTVAGELRGPPLQLDTGQLLKIA **KRGGVTAVEAVHAWRNALTGAPLN**LTPEQVVAIASNNGGKQALETVQALLPVLCQAH GLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPQQVVAIASHDGGKQALETVQ RLLPVLCQAHGLTPEQVVAIASNGGGKQALETVQALLPVLCQAHGLTPEQVVAIASNN GGKQALETVQALLPVLCQAHGLTPEQVVAIASNGGGKQALETVQALLPVLCQAHGLTP EQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALLPV LCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGRP

ALACLGGRPALDAVKKGLG

ND4.2-DdCBE Left mitoTALE repeat DIADLRTLGYSQQQQEKIKPKVRSTVAQHHEALVGHGFTHAHIVALSQHPAALGTVA VKYQDMIAALPEATHEAIVGVGKQWSGARALEALLTVAGELRGPPLQLDTGQLLKIA **KRGGVTAVEAVHAWRNALTGAPLN**LTPEQVVAIASNNGGKQALETVQALLPVLCQAH GLTPQQVVAIASNIGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNIGGKQALETVQR LLPVLCQAHGLTPEQVVAIASNNGGKQALETVQALLPVLCQAHGLTPEQVVAIASHDG GKQALETVQALLPVLCQAHGLTPEQVVAIASNGGGKQALETVQALLPVLCQAHGLTPE QVVAIASNGGGKQALETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQALETVQALLPV LCQAHGLTPQQVVAIASNIGGKQALETVQRLLPVLCQAHGLTPQQVVAIASHDGGKQA LETVQRLLPVLCQAHGLTPQQVVAIASHDGGRPALE**SIVAQLSRPDPALAALTNDHLV**

PALDAVKKGLG

ND5.4-DdCBE Right mitoTALE repeat DIADLRTLGYSQQQQEKIKPKVRSTVAQHHEALVGHGFTHAHIVALSQHPAALGTVA VKYQDMIAALPEATHEAIVGVGKQWSGARALEALLTVAGELRGPPLQLDTGQLLKIA **KRGGVTAVEAVHAWRNALTGAPLN**LTPEQVVAIASNNGGKQALETVQALLPVLCQAH GLTPQQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGKQALETV QRLLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALLPVLCQAHGLTPEQVVAIASNN GGKQALETVQALLPVLCQAHGLTPEQVVAIASNNGGKQALETVQALLPVLCQAHGLTP EQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPEQVVAIASNNGGKQALETVQALLP VLCQAHGLTPQQVVAIASNGGGRPALESIVAQLSRPDPALAALTNDHLVALACLGGR

SRPDPALAALTNDHLVALACLGGRPALDAVKKGLG

ND5.2-DdCBE Left mitoTALE repeat DIADLRTLGYSQQQQEKIKPKVRSTVAQHHEALVGHGFTHAHIVALSQHPAALGTVA VKYQDMIAALPEATHEAIVGVGKQWSGARALEALLTVAGELRGPPLQLDTGQLLKIA **KRGGVTAVEAVHAWRNALTGAPLN**LTPEQVVAIASHDGGKQALETVQALLPVLCQAH GLTPQQVVAIASNIGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNIGGKQALETVQR LLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALLPVLCQAHGLTPEQVVAIASNIGGK QALETVQALLPVLCQAHGLTPEQVVAIASHDGGKQALETVQALLPVLCQAHGLTPEQV VAIASHDGGKQALETVQRLLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALLPVLCQ AHGLTPEQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPEQVVAIASNIGGKQALETV QALLPVLCQAHGLTPEQVVAIASHDGGKQALETVQALLPVLCQAHGLTPEQVVAIASH DGGKQALETVQALLPVLCQAHGLTPEQVVAIASNGGGKQALETVQRLLPVLCQAHGLT PQQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGRPALE SIVAQL

LGGRPALDAVKKGLG

ND5.2-DdCBE Right mitoTALE repeat (non-mismatched) DIADLRTLGYSQQQQEKIKPKVRSTVAQHHEALVGHGFTHAHIVALSQHPAALGTVA VKYQDMIAALPEATHEAIVGVGKQWSGARALEALLTVAGELRGPPLQLDTGQLLKIA **KRGGVTAVEAVHAWRNALTGAPLN**LTPQQVVAIASNNGGKQALETVQRLLPVLCQA HGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGKQALETV QRLLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALLPVLCQAHGLTPQQVVAIASNN GGKQALETVQRLLPVLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTP EQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLP VLCQAHGLTPQQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPEQVVAIASHDGGK QALETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPEQV VAIASNIGGKQALETVQALLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALLPVLCQA HGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNNGGKQALETV QRLLPVLCQAHGLTPQQVVAIASNNGGRPALE SIVAQLSRPDPALAALTNDHLVALAC

LGGRPALDAVKKGLG

VAIASNIGGKQALETVQALLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALLPVLCQA HGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNNGGKQALETV QRLLPVLCQAHGLTPQQVVAIASNGGGRPALESIVAQLSRPDPALAALTNDHLVALAC

ATP8-DdCBE Left mitoTALE repeat (non-mismatched) DIADLRTLGYSQQQQEKIKPKVRSTVAQHHEALVGHGFTHAHIVALSQHPAALGTVA VKYODMIAALPEATHEAIVGVGKOWSGARALEALLTVAGELRGPPLOLDTGOLLKIA

GRPALDAVKKGLG

DIADLRTLGYSQQQQEKIKPKVRSTVAQHHEALVGHGFTHAHIVALSQHPAALGTVA VKYQDMIAALPEATHEAIVGVGKQWSGARALEALLTVAGELRGPPLQLDTGQLLKIA **KRGGVTAVEAVHAWRNALTGAPLN**LTPEQVVAIASNIGGKQALETVQALLPVLCQAH GLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGKQALETV QRLLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALLPVLCQAHGLTPEQVVAIASNI GGKQALETVQALLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALLPVLCQAHGLTPE QVVAIASHDGGKQALETVQRLLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALLPVL CQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPEQVVAIASNIGGKQAL ETVQALLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALLPVLCQAHGLTPEQVVAIA SNIGGKQALETVQALLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHG LTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPEQVVAIASNIGGKQALETVQAL LPVLCQAHGLTPQQVVAIASNGGGRPALESIVAQLSRPDPALAALTNDHLVALACLG

ATP8-DdCBE Left mitoTALE repeat (Note: Terminal NG RVD recognizes a mismatched T instead of a C in the reference genome)

DIADLRTLGYSQQQQEKIKPKVRSTVAQHHEALVGHGFTHAHIVALSQHPAALGTVA VKYQDMIAALPEATHEAIVGVGKQWSGARALEALLTVAGELRGPPLQLDTGQLLKIA **KRGGVTAVEAVHAWRNALTGAPLN**LTPQQVVAIASNIGGKQALETVQRLLPVLCQAH GLTPEQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNNGGKQALETVQ RLLPVLCQAHGLTPEQVVAIASNNGGKQALETVQALLPVLCQAHGLTPQQVVAIASNN GGKQALETVQRLLPVLCQAHGLTPQQVVAIASHDGGKQALETVQRLLPVLCQAHGLTP EQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGKQALETVQRLLP VLCQAHGLTPQQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPEQVVAIASNNGGK QALETVQRLLPVLCQAHGLTPEQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPQQV VAIASNGGGRPALESIVAQLSRPDPALAALTNDHLVALACLGGRPALDAVKKGLG

KGLG

DIADLRTLGYSQQQQEKIKPKVRSTVAQHHEALVGHGFTHAHIVALSQHPAALGTVA VKYQDMIAALPEATHEAIVGVGKQWSGARALEALLTVAGELRGPPLQLDTGQLLKIA **KRGGVTAVEAVHAWRNALTGAPLN**LTPEQVVAIASHDGGKQALETVQALLPVLCQAH GLTPQQVVAIASNIGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNGGGKQALETVQ RLLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALLPVLCQAHGLTPEQVVAIASNIG GKQALETVQALLPVLCQAHGLTPEQVVAIASNGGGKQALETVQALLPVLCQAHGLTPE QVVAIASNIGGKQALETVQRLLPVLCQAHGLTPEQVVAIASNNGGKQALETVQALLPVL CQAHGLTPEQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPEQVVAIASNGGGKQA LETVQALLPVLCQAHGLTPEQVVAIASNIGGKQALETVQALLPVLCQAHGLTPEQVVAI ASHDGGKQALETVQRLLPVLCQAHGLTPQQVVAIASNIGGKQALETVQRLLPVLCQAH GLTPQQVVAIASNIGGRPALESIVAQLSRPDPALAALTNDHLVALACLGGRPALDAVK

ND5.4-DdCBE Left mitoTALE repeat

ATP8-DdCBE Right mitoTALE repeat

KRGGVTAVEAVHAWRNALTGAPLNLTPEQVVAIAS<u>NI</u>GGKQALETVQALLPVLCQAH GLTPQQVVAIAS<u>NG</u>GGKQALETVQRLLPVLCQAHGLTPQQVVAIAS<u>NG</u>GGKQALETV QRLLPVLCQAHGLTPEQVVAIAS<u>NI</u>GGKQALETVQALLPVLCQAHGLTPEQVVAIAS<u>NI</u> GGKQALETVQALLPVLCQAHGLTPEQVVAIAS<u>NI</u>GGKQALETVQALLPVLCQAHGLTPE QVVAIAS<u>HD</u>GGKQALETVQRLLPVLCQAHGLTPEQVVAIAS<u>NI</u>GGKQALETVQALLPVL CQAHGLTPEQVVAIAS<u>HD</u>GGKQALETVQRLLPVLCQAHGLTPEQVVAIAS<u>NI</u>GGKQAL ETVQALLPVLCQAHGLTPEQVVAIAS<u>NI</u>GGKQALETVQALLPVLCQAHGLTPEQVVAIA S<u>NI</u>GGKQALETVQALLPVLCQAHGLTPEQVVAIAS<u>HD</u>GGKQALETVQALLPVLCQAHG LTPQQVVAIAS<u>NG</u>GGKQALETVQRLLPVLCQAHGLTPEQVVAIAS<u>NI</u>GGKQALETVQAL LPVLCQAHGLTPQQVVAIAS<u>HD</u>GGRPALE*SIVAQLSRPDPALAALTNDHLVALACLGG RPALDAVKKGLG* Supplementary sequences 2 | Sequences of full-length DddA variants

DddA1 (T1380I) GSYALGPYQISAPQLPAYNGQTVGTFYYVNDAGGLESKVFSSGGPTPYPNYANAGHV EGQSALFMRDNGISEGLVFHNNPEGTCGFCVNMIETLLPENAKMTVVPPEGAIPVKRG ATGETKVFTGNSNSPKSPTKGGC

DddA2 (T1314A + T1380I) GSYALGPYQISAPQLPAYNGQTVGAFYYVNDAGGLESKVFSSGGPTPYPNYANAGHV EGQSALFMRDNGISEGLVFHNNPEGTCGFCVNMIETLLPENAKMTVVPPEGAIPVKRG ATGETKVFTGNSNSPKSPTKGGC

DddA3 (T1314A + T1380I + E1396K) GSYALGPYQISAPQLPAYNGQTVGAFYYVNDAGGLESKVFSSGGPTPYPNYANAGHV EGQSALFMRDNGISEGLVFHNNPEGTCGFCVNMIETLLPENAKMTVVPPKGAIPVKRG ATGETKVFTGNSNSPKSPTKGGC

DddA4 (T1380I + T1413I) GSYALGPYQISAPQLPAYNGQTVGTFYYVNDAGGLESKVFSSGGPTPYPNYANAGHV EGQSALFMRDNGISEGLVFHNNPEGTCGFCVNMIETLLPENAKMTVVPPEGAIPVKRG ATGETKVFIGNSNSPKSPTKGGC

DddA5 (Q1310R + S1330I + T1380I) GSYALGPYQISAPQLPAYNGRTVGTFYYVNDAGGLESKVFISGGPTPYPNYANAGHVE GQSALFMRDNGISEGLVFHNNPEGTCGFCVNMIETLLPENAKMTVVPPEGAIPVKRGA TGETKVFTGNSNSPKSPTKGGC

DddA6 (Q1310R + S1330I + T1380I + T1413I) GSYALGPYQISAPQLPAYNGRTVGTFYYVNDAGGLESKVFISGGPTPYPNYANAGHVE GQSALFMRDNGISEGLVFHNNPEGTCGFCVNMIETLLPENAKMTVVPPEGAIPVKRGA TGETKVFIGNSNSPKSPTKGGC

DddA7 (T1314A + G1344R + V1364M + E1370K + T1380I + T1413I) GSYALGPYQISAPQLPAYNGQTVGAFYYVNDAGGLESKVFSSGGPTPYPNYANARHV EGQSALFMRDNGISEGLMFHNNPKGTCGFCVNMIETLLPENAKMTVVPPEGAIPVKRG ATGETKVFIGNSNSPKSPTKGGC

DddA8 (N1342S + G1344R + V1364M + E1370K + T1380I + T1413I) GSYALGPYQISAPQLPAYNGQTVGTFYYVNDAGGLESKVFSSGGPTPYPNYA<mark>S</mark>ARHV EGQSALFMRDNGISEGLMFHNNPKGTCGFCVNMIETLLPENAKMTVVPPEGAIPVKRG ATGETKVFIGNSNSPKSPTKGGC

DddA9 (T1314A + G1344S + E1370K + T1380I + A1398T + T1413I) GSYALGPYQISAPQLPAYNGQTVGAFYYVNDAGGLESKVFSSGGPTPYPNYANASHV EGQSALFMRDNGISEGLVFHNNPKGTCGFCVNMIETLLPENAKMTVVPPEGTIPVKRG ATGETKVFIGNSNSPKSPTKGGC DddA10 (T1314A + G1344S + E1370K + T1380I + E1396K + A1398T + T1413I) GSYALGPYQISAPQLPAYNGQTVGAFYYVNDAGGLESKVFSSGGPTPYPNYANASHV EGQSALFMRDNGISEGLVFHNNPKGTCGFCVNMIETLLPENAKMTVVPPKGTIPVKRG ATGETKVFIGNSNSPKSPTKGGC

DddA11 (S1330I + A1341V + N1342S + E1370K + T1380I + T1413I) GSYALGPYQISAPQLPAYNGQTVGTFYYVNDAGGLESKVFISGGPTPYPNYVSAGHVE GQSALFMRDNGISEGLVFHNNPKGTCGFCVNMIETLLPENAKMTVVPPEGAIPVKRGA TGETKVFIGNSNSPKSPTKGGC

DddA-7.9.1(E1325K + S1330I + A1341V + N1342S + E1370K + N1378S + T1380I + T1413I)

GSYALGPYQISAPQLPAYNGQTVGTFYYVNDAGGLKSKVFISGGPTPYPNYVSAGHVE GQSALFMRDNGISEGLVFHNNPKGTCGFCVSMIETLLPENAKMTVVPPEGAIPVKRGA TGETKVFIGNSNSPKSPTKGGC

DddA-7.12.1(S1330I + A1341I + N1342S + E1370K + N1378S + T1380I + P1394S + T1413I)

GSYALGPYQISAPQLPAYNGQTVGTFYYVNDAGGLESKVFISGGPTPYPNYISAGHVE GQSALFMRDNGISEGLVFHNNPKGTCGFCVSMIETLLPENAKMTVVSPEGAIPVKRGA TGETKVFIGNSNSPKSPTKGGC

DddA-7.12.2 (S1330I + P1334S + A1341V + N1342S + E1370K + N1378S + T1380I + T1413I)

GSYALGPYQISAPQLPAYNGQTVGTFYYVNDAGGLESKVFISGG<mark>S</mark>TPYPNYVSAGHVE GQSALFMRDNGISEGLVFHNNPKGTCGFCVSMIETLLPENAKMTVVPPEGAIPVKRGA TGETKVFIGNSNSPKSPTKGGC

DddA-7.12.3 (S1330I + P1334S + P1336S + A1341V + N1342S + E1370K + N1378S + T1380I + T1413I)

GSYALGPYQISAPQLPAYNGQTVGTFYYVNDAGGLESKVFISGG<mark>STS</mark>YPNYVSAGHVE GQSALFMRDNGISEGLVFHNNPKGTCGFCVSMIETLLPENAKMTVVPPEGAIPVKRGA TGETKVFIGNSNSPKSPTKGGC **Supplementary Sequences 3** | Sequences used in fluorescence-activated cell sorting of DdCBE expressing cells

Right-side halves of DdCBE have the general architecture of (from N- to C-terminus): COX8A MTS-3xFLAG-mitoTALE-GS linker-DddA half-SGGS linker-1x-UGI-GSG linker-P2A-eGFP-ATP5B 3'UTR

Right-side halves of DdCBE have the general architecture of (from N- to C-terminus): <u>SOD2 MTS-3xHA-mitoTALE</u>-GS linker-DddA half-SGGS linker-1x-UGI-GSG linker-P2A-mCherry-SOD2 3'UTR

P2A sequence ATNFSLLKQAGDVEENPGP

eGFP sequence

MVSKGEELFTGVVPILVELDGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPW PTLVTTLTYGVQCFSRYPDHMKQHDFFKSAMPEGYVQERTIFFKDDGNYKTRAEVKF EGDTLVNRIELKGIDFKEDGNILGHKLEYNYNSHNVYIMADKQKNGIKVNFKIRHNIEDG SVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMVLLEFVTAAGITLG MDELYK

mCherry sequence

MVSKGEEDNMAIIKEFMRFKVHMEGSVNGHEFEIEGEGEGRPYEGTQTAKLKVTKGG PLPFAWDILSPQFMYGSKAYVKHPADIPDYLKLSFPEGFKWERVMNFEDGGVVTVTQ DSSLQDGEFIYKVKLRGTNFPSDGPVMQKKTMGWEASSERMYPEDGALKGEIKQRLK LKDGGHYDAEVKTTYKAKKPVQLPGAYNVNIKLDITSHNEDYTIVEQYERAEGRHSTG GMDELYK **Supplementary Note 1.** Mitochondrial editing efficiencies of DdCBEs containing a mismatched or non-mismatched terminal TALE repeat

The original right TALE in ND5.2-DdCBE contained an RVD in the terminal repeat that recognized a mismatched thymine instead of guanine. The original left TALE in ATP8-DdCBE contained an RVD in the terminal repeat that recognized a mismatched thymine instead of cytosine⁴⁸. To clarify the effect of a mismatched RVD on mitochondrial editing efficiencies, we compared the base editing activities between the DdCBE containing the mismatched RVD (labelled as T) and the variant containing the non-mismatched RVD, which is labelled as G for ND5.2-DdCBE (**a**) and C for ATP8-DdCBE (**b**).

The editing efficiencies for mismatched DdCBEs containing DddA variants were generally comparable to or resulted in 2-10% higher average editing than the equivalent non-mismatched DdCBE (see **a** and **b**). Given that DdCBEs containing DddA6 or DddA11 resulted in similar editing efficiencies when tested as a mismatched TALE or non-mismatched TALE, all subsequent figures, except for Figs. 2c, 2d, 3d and 3e, are produced from DdCBEs containing the original mismatched RVD. Values and error bars reflect the mean±s.d of n=3 independent biological replicates

Supplementary Note 2. Representative FACS gating plots for eGFP⁺/mCherry⁺ cells

FACs gating plots for eGFP⁺ and mCherry⁺ cell sorting to isolate HeLa cells (Graphic 1), K562 cells (Graphic 2), U2OS cells (Graphic 3) and HEK293T cells (Graphic 4) expressing both halves of ND5.2-DdCBE. The image data was generated on a Sony LE-MA900 cytometer using Cell Sorter Software v. 3.0.5. Cells were initially gated on population using FSC-A/BSC-A (Gate A), then sorted for singlets using FSC-A/FSC-H (Singlet). Live cells were sorted for by gating mCherry-positive and eGFP-positive cells (Double positive). Single-color eGFP and mCherry controls were used for compensation.

Graphic 2

Graphic 4

Gates and Statistics

Name	Events	%Parent	%Total
All Events	100,000	0.00%	100.00%
A	34,545	34.55%	34.55%
singlet	29,917	86.60%	29.92%
double po	22.145	74.02%	22.15%

Supplementary Note 3. Nuclear editing efficiencies of DdCBEs containing N-terminal UGI fusions or C-terminal UGI fusions

We previously reported that the N-terminal 2xUGI fusion of a nuclear-targeting DdCBE resulted in more efficient nuclear base editing compared to a C-terminal 1xUGI fusion¹⁸. We compared the editing efficiencies of these two architectures in SIRT6-DdCBE (**a**) and JAK2-DdCBE (**b**). Consistent with earlier observations, N-terminal UGI fusions generally yielded higher T<u>C</u> and non-T<u>C</u> editing efficiencies compared to C-terminal fusions, except for canonical JAK2-DdCBE. Values and error bars reflect the mean±s.d of n=3 independent biological replicates

Supplementary References

- 45 Yu, Q. *et al.* Single-strand specificity of APOBEC3G accounts for minus-strand deamination of the HIV genome. *Nat Struct Mol Biol* **11**, 435-442, doi:10.1038/nsmb758 (2004).
- 46 Maiti, A. *et al.* Crystal structure of the catalytic domain of HIV-1 restriction factor APOBEC3G in complex with ssDNA. *Nature Communications* **9**, 2460, doi:10.1038/s41467-018-04872-8 (2018).
- 47 Rathore, A. *et al.* The Local Dinucleotide Preference of APOBEC3G Can Be Altered from 5'-CC to 5'-TC by a Single Amino Acid Substitution. *Journal of Molecular Biology* **425**, 4442-4454, doi:<u>https://doi.org/10.1016/j.jmb.2013.07.040</u> (2013).
- Bacman, S. R. *et al.* MitoTALEN reduces mutant mtDNA load and restores tRNA(Ala) levels in a mouse model of heteroplasmic mtDNA mutation. *Nat Med* 24, 1696-1700, doi:10.1038/s41591-018-0166-8 (2018).