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Materials and Methods 
Model simulations 
To examine the individual contribution of China’s Carbon Neutrality (CNCN) to global warming 
mitigations, 4 pairs of simulations based on CESM 2.1.3 are implemented. Each pair of simulations 
consist in a default CESM simulation and a CNCN one. In the default simulations, anthropogenic 
surface CO2 emission data is from the default shared socioeconomic pathway (SSP). In this study, 
4 SSPs, i.e. SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5, are used. In the CNCN simulations, the 
anthropogenic surface CO2 emission is replaced by the values in the scenario of CNCN. The 4 
pairs of CESM simulations are run at spatial resolution of 1.9°×2.5° (Table S1). 

 
Table S1. Eight CESM simulations used in this study. The CMIP6 simulation is referred to as the 
default shared socioeconomic pathway (SSP) experiment for the Coupled Model Intercomparison 
Project Phase 6 (CMIP6) based on the CESM2.1.3, and the CNCN simulation is referred to as the 
CMIP6 simulation with replacement of anthropogenic CO2 emissions under the China’s Carbon 
Neutrality (CNCN) scenario. 
No. Simulations Spatial Res. Explanation 

1 SSP1-2.6 CMIP6 1.9°×2.5° The default SSP1-2.6 experiment for CMIP6 

2 SSP1-2.6 CNCN 1.9°×2.5° SSP1-2.6 CMIP6 with anthropogenic CO2 emissions under China’s 
Carbon Neutrality (CNCN) scenario 

3 SSP2-4.5 CMIP6 1.9°×2.5° The default SSP2-4.5 experiment for CMIP6 

4 SSP2-4.5 CNCN 1.9°×2.5° SSP2-4.5 CMIP6 with anthropogenic CO2 emissions under China’s 
Carbon Neutrality (CNCN) scenario 

5 SSP3-7.0 CMIP6 1.9°×2.5° The default SSP3-7.0 experiment for CMIP6 

6 SSP3-7.0 CNCN 1.9°×2.5° SSP3-7.0 CMIP6 with anthropogenic CO2 emissions under China’s 
Carbon Neutrality (CNCN) scenario 

7 SSP5-8.5 CMIP6 1.9°×2.5° The default SSP5-8.5 experiment for CMIP6 

8 SSP5-8.5 CNCN 1.9°×2.5° SSP5-8.5 CMIP6 with anthropogenic CO2 emissions under China’s 
Carbon Neutrality (CNCN) scenario 

 
Anthropogenic surface CO2 emissions under CNCN scenario 
In October 2020, a research team in Tsinghua University released a synthesis report, Strategies 
and Transmission Pathway for China’s Long-term Low Carbon Development (Ref S1). And this 
report was later published in a Chinese journal, China Population, Resources and Environment in 
November 2020 (Ref S2). In this report, a first roadmap on CNCN, i.e. anthropogenic CO2 
emission data from 2015 to 2050 was projected. 
The CNCN scenario is mainly based on carbon emissions consistent with the IPCC 1.5 °C target, 
but it requires further reductions in national total energy consumptions and large increases in the 
proportion of non-fossil energy to primary energy consumptions. The CNCN scenario also requires 
significant decreases in non-CO2 GHG emissions and increases in terrestrial ecosystem carbon 
sinks, and large-scale implementations of carbon capture and storage (CCS) and carbon dioxide 
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removal (CDR). Anthropogenic surface CO2 emission data under the CNCN scenario is a total 
value of the entire China (CO!,#$$), so it has to be converted into spatial domain in China. To do 
this, we assume that future anthropogenic CO2 emission for each grid under CNCN (CO!(i, j)) is 
linearly proportional to its original SSP values (CO!,%%&(i, j)), i.e. the Equation S1 below. 

CO!(i, j) =
#'!,#$$	

∑ #'!,&&'(*,+)(
)

× CO!,%%&(i, j)             (S1) 

 
Figure S1. Difference of  China's anthropogenic CO2 emissions between the default CMIP6 and 
CNCN scenarios (dCO2) for 4 SSPs in the year 2070. The unit of  dCO2 is kgCO2 m-2 year-1.  

 
Figure S2. China's anthropogenic CO2 emissions from 1950 to 2100. Before 2015, three 
independent datasets are used. The three datasets consist of the default CO2 forcing data of CESM 
(CESM forcing), Global Carbon Project (GCP, http://www.globalcarbonatlas.org/en/CO2-
emissions, Ref S3) and Carbon  Emission Accounts & Datasets (CEADs, https://www.ceads.net/, 
Ref S4). After 2015, anthropogenic CO2 emissions data from four SSPs and CNCN (Ref S1-2) are 
used. 
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Based on 4 SSP anthropogenic surface CO2 emission data, we regenerated the anthropogenic 
surface CO2 emission data from 2015 to 2100 in China’s domain and replaced the China’s CO2 
emission data but kept unchanged in other regions of the world. The new datasets are used to drive 
the CESM model for all 4 SSP scenarios and represent the CNCN simulations. Figure S1 illustrates 
the CO2 emission difference (dCO2) between the default SSP and CNCN scenarios for 2070 in 
China. 
Figure S2 shows the China's anthropogenic CO2 emissions from 1950 to 2100. Before 2000, 
China's anthropogenic CO2 emission has increased steadily. After 2000, three datasets show 
consistent and large increase of anthropogenic CO2 emissions, reaching about 10 GtCO2 year-1 
(Gigatons). From present to the end of this century, China's anthropogenic CO2 emission ranges 
from -2.55 GtCO2 year-1 for SSP126 in 2090 to 19.21 GtCO2 year-1 for SSP5-8.5 in 2070. 
Compared with CNCN scenario, China’s carbon neutrality pledge could reduce emissions up to 
18 GtCO2 year-1 (Figure S2). 

 
Figure S3. Total global anthropogenic CO2 emission from 2015 to 2100 for four SSPs under the 
default CMIP6 and CNCN scenarios. 
Contribution of CNCN to global anthropogenic surface CO2 emissions varies for SSP and with 
year (Figure S3). Under two low forcing pathways (SSP1-2.6 and SSP2-4.5), the CNCN scenario 
differs not too large from the default CMIP6. But under two high forcing pathways (SSP3-7.0 and 
SSP5-8.5), CNCN could cause a reduction of global anthropogenic surface CO2 emissions 19.21 
GtCO2 year-1 for SSP5-8.5 in 2070. This amount of reduction in anthropogenic surface 
CO2 emissions accounts for around 56% of currently global CO2 emissions. It is expected that such 
a huge reduction in emissions of CO2 may mitigate future global warming. 

 
CH4 and N2O emissions and conversion from emissions to concentrations under CNCN 
scenario 

Under the default CMIP6 scenarios, global annual CH4 and N2O emissions are shown in left panel 
of Figure S4. We can see that global annual CH4 and N2O emissions evolves largely different 
among four SSPs. Estimates of future CH4 and N2O emissions for different SSPs are derived from 
various global Integrated Assessment Models (IAMs) and these database are archived in IIASA 
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(https://tntcat.iiasa.ac.at/SspDb). Among those IAMs, China is generally considered as one or a 
quite similar geographical region, so that it is easy to extract their future variations of both CH4 
and N2O from 2014-2100 in China’s domain (right panel of Figure S4). As China doesn’t specify 
non-CO2 GHG (CH4 and N2O) emissions reduction target and timeline for GHG neutrality yet, an 
assumption of equative marginal cost at emissions reductions between CO2 and non-CO2 GHG is 
applied to run global change assessment model (GCAM, version 5.4) (Ref S5) and CO2 emissions 
under the CNCN scenario is used as a constraint.  

 
Figure S4. Annual emissions of CH4 and N2O for the four SSPs over the global and the four SSPs 
and CNCN scenarios in China from 2015 to 2100. 
The first step of the procedure is to calculate out the carbon price based on the CNCN pathway. 
Following the equative marginal cost at emissions reductions between CO2 and non-CO2 GHG, 
the second step is to derive the prices of CH4 and N2O according to their corresponding global 
warming potentials (GWP). And finally, the GCAM is used to derive the emissions pathways of 
CH4 and N2O for the CNCN scenario (right panel of Figure S4). 
Both global annual CH4 and N2O emissions for SSP3-7.0 roughly linearly increase with year, and 
those for other SSPs evolve differently each other. For the two primary non-GHGs, China’s 
proportions account for about 10% of global share for each default SSP. Under the CNCN scenario, 
evolution curve of annual CH4 emissions is ranked between SSP1-2.6 and SSP2-4.5 or SSP3-7.0, 
and N2O evolves between SSP1-2.6 and SSP2-4.5. 

Both CH4 and N2O forcing data of the CESM are prescribed as globally uniform surface 
concentrations, rather than their surface fluxes. Conversion from flux to concentrations generally 
requires to run a IAM like MAGICC (Ref S6). Running IAM has often required a large amount of 
simulation tasks. Because both CH4 and N2O concentrations in the troposphere have strong 
dependences (R2 close to 1) on cumulative emissions (Figure S5) for four SSPs under the default 
CMIP6 scenario although their fitting equations are largely different among variables and SSPs, it 
is feasible to derive corresponding surface concentrations based on their cumulative emissions 
during a specified period (2015-2100) (Figure S5). 
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Figure S5. Dependence of global CH4 (top) or N2O (bottom) concentrations on cumulative 
emissions for the four SSPs under the default CMIP6 scenarios during the period 2015-2100. 

 
Figure S6. Comparisons of global CH4 (left) and N2O (right) concentrations between the default 
SSPs and corresponding CNCN scenarios during the period 2015-2100. 
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Once the fitting equations between surface concentrations and cumulative emissions under 
different SSPs are derived, surface concentrations of both CH4 and N2O can be calculated out 
based on their emissions under the CNCN scenario (Figure S6). As a result, CNCN doesn’t actually 
results in large impacts on global CH4 and N2O concentrations for both SSP1-2.6 and SSP2-4.5 
but caused remarkable differences in global CH4 concentration (maximal 74 ppb for SSP3-7.0 and 
41 ppb for SSP5-8.5) and N2O concentrations (maximal 2.1 ppb for SSP3-7.0 and 1.7 ppb for 
SSP5-8.5) (Figure S6). 

 
Figure S7. Mean surface temperature difference between the China’s carbon neutrality (CNCN) 
and its extension scenarios with additional CH4 and NO2 emission reductions accompanied by the 
CO2 emission reductions for China's carbon neutrality (CNCNext) for four SSPs. Panels from left 
to right represent near term (2021-2040), mid-term (2041-2060) and long term (2081-2100), and 
panel from top to bottom represent SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5, respectively. 
Mean surface temperature difference (dT, unit in °C) is calculated as the value of CNCNext minus 
CNCN for each combinations of study term and SSP. Pixels overlayed by sign of dot  indicate that 
dT is statistically significant at confidence of 0.01. The paired t-test was used to calculate the 
significance. 
 

Robustness of CESM 
We run the CESM2.1.3 (Ref S7) with a full coupled components from 1850 and 1900 to 2014, and 
compare the global mean temperature (reference height temperature) with three historical global 
temperature datasets, including the Berkeley (http://berkeleyearth.org/data/), NASA GISTEMP 
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(https://data.giss.nasa.gov/gistemp/) and HadCRUT5.0 (https://crudata.uea.ac.uk/cru/data/ 
temperature/#datdow) datasets (Figure S4). Generally, global mean temperature (including land 
and ocean) derived from the CESM agrees well with the three temperature datasets (Figure S4), 
particularly during the period 1930-2014 (linear correlation coefficient from 0.78 to 0.85) (Figure 
S5). These results justify the robustness of CESM in simulating long-term temperature. 

 
Figure S8. Anomaly of global mean surface temperature (“Global Mean Temperature” in the y-
axis) simulated by CESM 2.1.3 and its comparison with three observation-based global 
temperature datasets, including the datasets from the Berkeley Earth, GISTEMP and HadCRUT5. 
The CESM model are run two times with starting year from 1850 (CESM:1850-2014) and 1900 
(CESM:1900-2014) to 2014. 
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Figure S9. Scatter plot of relationship between global mean surface temperature anomaly 
simulated by CESM during the period 1930-2014 and three global temperature datasets. Shown in 
the diagonal panels is the histogram of temperature anomaly for each dataset. The number with 
sign of “***” shown in the upright panel represent the correlation coefficient and the 
corresponding p significance, and “***” denotes the p value less than 0.001. 
 

References 
S1.  He JK. Introduction to Project Achievements: Research on China’s Low-Carbon Development 

Strategy and Transformation Path. 2020; 15. 
S2. Institute of Climate Change and Sustainable Development, Tsinghua University. Synthesis 

Report on Strategies and Transformation Pathway for China’s Long-term Low Carbon 
Development. China Population, Resources and Development. 2021; 30: 1-25. 

S3.  Friedlingstein P, O'Sullivan M, Jones MW, Andrew RM, Hauck J, Olsen A, Peters GP, Peters 
W, Pongratz J, Sitch S, Le Quéré C, Canadell JG, Ciais P, Jackson RB, Alin S, Aragão LEOC, 
Arneth A, Arora V, Bates NR, Becker M, Benoit-Cattin A, Bittig HC, Bopp L, Bultan S, 
Chandra N, Chevallier F, Chini LP, Evans W, Florentie L, Forster PM, Gasser T, Gehlen M, 
Gilfillan D, Gkritzalis T, Gregor L, Gruber N, Harris I, Hartung K, Haverd V, Houghton RA, 
Ilyina, T, Jain AK, Joetzjer E, Kadono K, Kato E, Kitidis V, Korsbakken JI, Landschützer P, 
Lefèvre N, Lenton A, Lienert S, Liu Z, Lombardozzi D, Marland G, Metzl N, Munro DR, 
Nabel JEMS, Nakaoka S-I, Niwa Y, O'Brien K, Ono T, Palmer PI, Pierrot D, Poulter B, 
Resplandy L, Robertson E, Rödenbeck C, Schwinger J, Séférian R, Skjelvan I, Smith AJP, 
Sutton AJ, Tanhua T, Tans PP, Tian H, Tilbrook B, van der Werf G, Vuichard N, Walker AP, 
Wanninkhof R, Watson AJ, Willis D, Wiltshire AJ, Yuan W, Yue X, and Zaehle S.Global 
Carbon Budget 2020. Earth Syst. Sci. Data. 2021; 12: 3269–3340. https://doi.org/10.5194/ 
essd-12-3269-2020. 

S4.  Chen J, Gao M, Cheng S, Hou W, Song M, Liu X, Liu Y, Shan Y. County-level CO2 emissions 
and sequestration in China during 1997–2017. Sci Data.2020; 7: 391 https://doi.org/ 10.1038/ 
s41597-020-00736-3. 

S5. Calvin K, Patel P, Clarke L, Asrar G, Bond-Lamberty B, Cui RY, et al. GCAM v5.1: 
representing the linkages between energy, water, land, climate, and economic systems. 
Geoscientific Model Development 2019, 12(2): 677-698. 

S6. Meinshausen M, Nicholls ZRJ, Lewis J, Gidden MJ, Vogel E, Freund M, et al. The shared 
socio-economic pathway (SSP) greenhouse gas concentrations and their extensions to 2500. 
Geoscientific Model Development 2020, 13(8): 3571-3605. 

S7. Danabasoglu G, Lamarque JF, Bacmeister J, Bailey DA, DuVivier AK, Edwards J, et al. The 
Community Earth System Model Version 2 (CESM2). Journal of Advances in Modeling 
Earth Systems 2020, 12(2). 

 


