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REVIEWER COMMENTS 
 
Reviewer #1 (Remarks to the Author): 
 
The manuscript by Hu et al presents the results of longitudinal fecal 16S rRNA gene sequencing of 
MM (n=43), B-ALL (n=23), and B-NHL (n=12) subjects receiving CART therapy (5 time points). 
The authors observed changes in microbiome composition and reduced microbial diversity in MM 
patients after CART therapy, with similar trends in B-ALL and B-NHL. The authors also reported 
differences in microbial composition and predicted function across the time points between MM 
patients with complete response (CR) compared to those with partial response (PR). Microbes 
including Sutterella were reported to be associated with clinical response. Differences in microbial 
composition and predicted function were also reported between mild and severe cytokine release 
syndrome (CRS). 
 
This study is motivated by prior research demonstrating an important role for the gut microbiome 
in modulating immunotherapy response. Extrapolating from this literature, it is probable that the 
microbiome can be affected by CART therapy and that the microbiome (either baseline profiles or 
alterations in response to therapy) could influence response to CART therapy. Hu et al use an 
appropriate strategy to address this important unanswered question: a longitudinal microbiome 
association study of CART recipients with clinical outcome monitoring. The findings of this 
manuscript support the concept that the microbiome could be linked to CART response, which 
would have important implications for the field. However, this study has critical limitations that 
reduce its impact: 
1) Small study size: Most of the results presented in this manuscript are based on the 43 patients 
with MM. This is a modest size for a microbiome study and raises concerns about the robustness 
and reproducibility of the reported findings. In particular, the comparisons of complete responders 
vs. partial responders only utilize 24 and 11 subjects, respectively, and comparisons of grade 1 vs. 
grade 3 CRS utilized 8 and 19 subjects, respectively. With such small numbers, it is likely that the 
differential taxa and predictive models shown by the authors are overfitted and won’t be 
reproducible. 
2) Absence of a validation cohort: Given the great heterogeneity of findings across small 
microbiome studies, it’s important for microbiome association studies to demonstrate the 
reproducibility of key findings in an independent validation cohort. This is particularly critical here 
given the limited number of subjects in the CR vs. PR and CRS grade comparisons. The B-ALL and 
B-NHL subsets could not be used to validate the CR vs. PR analyses as there were only 2 or 3 
subjects with PR, respectively. 
3) Statistical issues: The study utilizes a longitudinal sample collection strategy but none of the 
analyses account for the repeated measures design and thereby inflate significance due to positive 
correlation of the repeated measurements (examples provided under additional comments). Also, 
the manuscript does not give any indication that p-values were adjusted for multiple hypothesis 
testing, which is critical given the large number of microbial taxa and predicted pathways that 
were tested. In addition, none of the analyses were adjusted for covariates (e.g. age, sex, 
antibiotic use before or during treatment, prior autologous stem cell transplantation, etc.) which 
could confound the association of microbiota with outcomes. 
4) 16s sequencing with imputed metagenomics was used rather than shotgun metagenomics 
sequencing: The study would have been strengthened by the use of shotgun metagenomics (as 
has been used in the prominent immunotherapy microbiome studies), which would allow improved 
species and possibly strain level taxonomic assignment as well as more accurate assessment of 
microbiome functional capacity. 
 
Additional comments: 
- It’s not indicated how many samples were collected at each of the five time points from the 
various subgroups. 
- What was the median and distribution of the time after baseline for the FCb, CRSa, CRSb, and 
CRSc stool collections? 
- What sequence depth was achieved by 16S rRNA sequencing (e.g. median and range of the 
number of sequences per sample)? 
- Were all samples sequenced in one batch or were there multiple batches, in which case were 
longitudinal samples from the same patient included in the same batch and what adjustments 



were performed for batch effects? 
- Figs 2-4: It’s not made sufficiently clear from the figure legends (or in the associated Results 
text) that the data shown in the main figures represents just the MM patients rather than the full 
cohort. 
- Fig. 2a, 2d, 2e (also applicable to Supp Fig. 4): the statistical test was mentioned as Wilcoxon 
rank-sum test, but this is for pairwise comparisons whereas the data presented have five time 
points (which results in 10 pairwise combinations). How was this addressed? One standard 
approach for non-parametric testing of repeated measures data would be Friedman’s test with 
post-hoc multiple comparison testing of pairwise combinations. 
- Fig 2c: the order of the stacked bars changed, which makes it harder to follow the longitudinal 
changes in the phyla. 
- Fig 2f: this figure panel shows magnitudes of change across time points with an importance score 
based on a machine learning approach for differentiating time points, but it’s not clear which 
genera had statistically significant shifts across the time points (by one or both of the methods 
used by the authors). This information is only contained within the Supp Tables. It would be 
helpful if statistically significant genera were annotated. 
- Fig 3b: The p-value is misleading as repeated measurements from the same subjects were 
included in this plot, inflating significance due to the positive correlation among repeated 
measurements from the same individual. Repeated measures aware approaches are required, or 
separate significance calculations for CR vs. PR should be performed at each time point. 
- LEfSe analysis shown in Fig 4A and Fig 5A – these figure panels show comparisons of genus and 
predicted pathway abundances at time points before and after CAR-T infusion. However, these 
analyses will inflate significance given the treatment of repeated measurements as independent 
observations. 
- Fig 4h – What time point was used for the statistical comparison of pathway abundances shown 
in this figure panel? 
- Fig 5 – how were the cutoffs of r>0.2 and q<0.2 chosen to identify edges to include in this 
network? 
 
 
Reviewer #2 (Remarks to the Author): 
 
General review for the authors 
The article of Hu et al describes the complex interplay between the gut microbiome and autologous 
BCMA CAR T-cell therapy in MM, ALL and NHL patients. Using a combination of 16S rRNA gene 
sequencing, bioinformatics and multiple statistical analysis, this study investigated the temporal 
changes in the intestinal microbiome during CAR-T cell therapy, the association between microbial 
communities and clinical response as well as cytokine release syndrome severity. While similar 
studies were published in the field of checkpoint blockade immunotherapies and allogeneic 
hematopoietic stem cell transplantation, this study is the first one to decipher the interaction 
between the gut microbiome and CAR T-cell therapy. 
The clinical samples used in this study were obtained from three different patient cohorts, over 
multiple time points, and were analyzed to comprehensively extract, analyze, and correlate 
microbiome-based dataset, common biomarkers, immune cells populations, therapeutic outcome 
and CRS-based adverse events. In that regard, this work could be considered as a resource and 
the first landmark in the field of immuno-oncomicrobiology associated to CAR T-cells. However, as 
many papers published recently in the field, this manuscript remains factual, data oriented and 
lacks mechanistic insights. These insights would be beneficial to specify the mode of action of 
certain key bacteria or group of bacteria, to propose potential therapeutic interventions and would 
render the manuscript accessible/appealing to a broader audience. Nevertheless, it is 
acknowledged the four-way interaction occurring among the gut microbiome, the host immune 
system, the CAR T-cells and cancer cells is not easy to apprehend, and this task remains 
extremely complex and daunting. 
One of the main findings of this paper was the identification of bacterial genera showing 
differences in abundance in CR versus PR groups. Faecalibacterium, Bifidobacterium, Collinsella 
and Sutterella were associated with CR. This finding is reminiscent to earlier works on anti-PD-1 
checkpoint blockade therapy, suggesting a common effect of such taxa across therapeutic 
strategies. In addition, by stratifying bacteria genera abundances in two arms, i.e., before and 
after CAR T-cell therapy, they confidently identified a group of bacteria genera that was enriched 



in CR versus PR, in the two arms. This strongly suggests their association to positive clinical 
outcome of CAR T-cell therapy and put forward their predictive potential. Interestingly, the authors 
further report that high abundance of genus Sutterella was with a prolonged event free survival 
period following CAR-T therapy. While the authors acknowledged this positive correlation was not 
systematically observed across different indications, it is a substantial finding that needs to be 
more extensively discussed and contrasted to former reports to propose a potential mode of 
action. 
The second main finding was the identification of bacterial genera showing differences in 
abundance in mild versus severe CRS. In particular, Bifidobacterium and Leuconostoc were found 
enriched in patient encountering severe CRS. Bifidobacterium and Leuconostoc negatively correlate 
with PB monocyte and positively correlated with ferritin/D-dimer proinflammatory molecules, 
respectively. Again, these are interesting and important findings that unravel a gut microbiome 
signature associated to CRS and warrant extensive discussion in light of recent literature on CAR 
T-cell and CRS. 
 
This manuscript should be improved by considering the comments below: 
 
-The recurring question in the field of immune-oncomicrobiology is: is intestinal dysbiosis a cause 
or a consequence (or both) of immunotherapy. This question remains open in the context of this 
study. In that regard the authors make a strong statement in the title by using the active form: 
“Gut microbiome modulates CRS and therapeutic response to CAR T-cell therapy…”. Because the 
cause-and-effect relationship is not proven, this title should be revised to prevent misleading the 
readers. 
 
-Fig. 1 Illustrates the therapeutic outcome of BCMA CAR T-cell therapy and the grade of CRS 
observed in the three cohorts of patients. However, it does not report any additional treatment 
given to patients to alleviate their CRS symptoms. Does it mean that tocilizumab was not used in 
this study? According to CRS management recommendations by Neelapu et al and Lee et al, 
(doi.org/10.1038/nrclinonc.2017.148, doi.org/10.1182/blood-2014-05-552729, respectively), 
Tocilizumab should be administered to patients undergoing ≥ Grade 2 CRS. It is thus believed that 
some of the Grade 2-3 CRS events documented in this study were managed by Tocilizumab 
(and/or other drugs). Please confirm. As this parameter may affect/bias the dataset (cytokines/cell 
population etc…) obtained at CRS b/c, it should be rigorously documented. This comment holds 
true for other therapeutics used to blunt inflammation, pathogen, and viral infection. 
 
-If I’m not mistaken, the Simpson index measures population diversity (Fig.2) and the Shannon 
measures entropy and thus diversity (Fig. 3). Both indexes are being used to assess the diversity 
of population. Why using both indexes instead of just one in Fig 2 and 3? 
 
-Fig. 2C reports the evolution of the relative abundance of bacterial taxa across therapy stages. 
The clarity of this plot could be improved by organizing bacterial communities from the highest 
(top) to the lowest (bottom) abundant one. 
 
-Fig. 3D (and Sup Fig. 7/8) is hard to understand. This may prevent the reader from quickly 
grasping the take home message. Consider replotting it differently. 
 
-Fig. 4H reports the differential KEGG pathways in CR and PR groups. However, I’m not sure to 
understand the data processing needed to represent such plot. How do you come up with these 
different pathways? From the identification of bacteria with 16S rRNA seq? Please clarify and 
modify the text to ease the comprehension of broad audience readers. This comment holds true 
for Supplementary Fig. 9 and 10. Regarding these two figures, I’m surprised to see that the 
arginine and tryptophan metabolism, two pathways commonly associated with CRS, were not 
identified alongside with the purine/lipoic metabolism and biosynthesis of lipopolysaccharide and 
peptidoglycan. Could you please comment. 
 
-IL-6, IL-1α, IL-1β, M-CSF, MCP-3 and GM-CSF, are key protagonists of CRS 
(doi.org/10.1038/s41577-021-00547-6). I understand that they are missing from Fig. 5D because 
they do not fall within the following specs: “Associations with an absolute value of correlation 
coefficient higher than 0.2 and FDR less than 0.2 were depicted using CytoscapeIs”. While I don’t 



have the proper knowledge to assess the relevance of those specifications, I wonder if they could 
be adapted to illustrate the correlation between these CRS-related cytokines, the gut microbiome 
and immune cells? Adding them in the network would be very informative. 
 
On a similar topic, differentiated macrophages play a key role in CRS initiation/mediation. Have 
you explored the evolution of such immune cell population in your longitudinal analysis? If so, it 
could be very informative to implement this population in the network of Figure 5D. 
 
Furthermore, Bifidobacterium seems to be increased in severe CRS but at the same time, 
negatively correlate with monocytes, a major driver of CRS (doi.org/10.1038/s41577-021-00547-
6, doi: 10.1038/s41591-018-0041-7, doi.org/10.1038/s41591-018-0036-4). Could you please 
elaborate on this negative correlation? 
 
-The experimental details regarding the sample preparation, DNA sequencing, data processing, 
bioinformatics and statistical analysis were thoroughly documented and referenced in the methods 
section. This section will be very helpful for other teams working in the field, could improve the 
consistency in the future dataset generated and could allow for better quality meta-analysis. 
Regarding that last aspect, the data generated in this manuscript (raw and analyzed) must be 
carefully and comprehensively documented in a source file to ease extraction and utilization of raw 
data by the scientific community. 
 
-Typo and word inconsistencies were observed throughout the manuscript. This could be sometime 
misleading (example Line 263, replace decrease by increase). Please thoroughly check the text. 
 
 
 
Reviewer #3 (Remarks to the Author): 
 
In this manuscript, Hu and colleagues describe the microbiome composition in patients with MM, 
ALL, and NHL at multiple timepoints before and during CART cell therapy. The authors reason that 
the gut microbiome has been shown to impact cancer immunotherapy outcomes, yet such studies 
of patients undergoing CART cell therapy have been lacking to date. The authors found that certain 
components of the microbiome were correlated with therapeutic response as well as CART-
associated CRS. Overall, this is an important preliminary study of the associations of certain 
features of the gut microbiome with CART efficacy and toxicities as well as the exploration of 
potential biomarkers based on microbiome composition to predict clinical outcomes. 
 
The reviewer has major and minor issues with this manuscript: 
 
1. The authors should state the date medians and ranges of each of the five time points (FCa, FCb, 
CRSa, CRSb, CRSc), as it seems that there could be a wide variety in timing among patients (eg. 
how many days after CART administration was CRSa taken? Etc). If there is a large variation in 
these timepoints, the authors should discuss how this may impact results. 
2. If there are data available on neurotoxicity, it would be important for the authors to analyze the 
microbiome in relation to neurotoxicity incidence and severity, as it is a major toxicity associated 
with CART cell therapy, and there are currently no reliable predictive biomarkers. 
3. The authors include a paragraph (lines 239-247) about changes in amino acid metabolism. This 
could be expanded further and made into its own section, with more details about the impact on 
microbiome composition on metabolism and how this corresponds to outcomes in immunotherapy. 
4. Again, the authors mention changes in amino acid synthesis and metabolism (lines 270-275) 
and should further explore these observations in relation to CART-associated toxicities. 
5. Were there any significant correlations with microbiome composition and CR/PR status or CRS 
severity when further broken down into subgroups, such as CART cell dose, ASCT status, 
extramedullary disease, etc? 
6. The authors should suggest some potential predictive biomarkers based on their findings and 
outline future validation strategies for these biomarkers in the discussion section. 
 
Minor comments: 
1. Lines 73-76: the authors include different measures for each disease type (eg. 5-year and 



median OS for r/r ALL, CR and median OS for DLBCL, and 1-year OS for MM). The authors should 
provide consistent measures for each disease type for ease of comparison (eg. median OS for ALL, 
DLBCL, and MM). 
2. Lines 226-227: authors mention CR vs PR vs NR for patients with NHL and ALL. Was there no 
NR group in patients with MM? 
3. Some of the sections specify whether associations were found specifically in MM, NHL, or ALL, 
while other sections do not mention the disease type. The authors should state which findings are 
significant to which type of malignancy or if the findings are applicable to all three disease types 
studied (eg. the section “Associations between gut microbiome and CRS” does not state whether 
these associations were relevant to all cancer types studied, or just patients with MM). 
4. Fig. 4B is missing a legend. 
 



Response letter to Reviewers 

 

Response to Reviewer #1 (Remarks to the Author): 

 

The manuscript by Hu et al presents the results of longitudinal fecal 16S rRNA gene 

sequencing of MM (n=43), B-ALL (n=23), and B-NHL (n=12) subjects receiving 

CART therapy (5 time points). The authors observed changes in microbiome 

composition and reduced microbial diversity in MM patients after CART therapy, 

with similar trends in B-ALL and B-NHL. The authors also reported differences in 

microbial composition and predicted function across the time points between MM 

patients with complete response (CR) compared to those with partial response (PR). 

Microbes including Sutterella were reported to be associated with clinical response. 

Differences in microbial composition and predicted function were also reported 

between mild and severe cytokine release syndrome (CRS). 

 

This study is motivated by prior research demonstrating an important role for the gut 

microbiome in modulating immunotherapy response. Extrapolating from this 

literature, it is probable that the microbiome can be affected by CART therapy and 

that the microbiome (either baseline profiles or alterations in response to therapy) 

could influence response to CART therapy. Hu et al use an appropriate strategy to 

address this important unanswered question: a longitudinal microbiome association 

study of CART recipients with clinical outcome monitoring. The findings of this 

manuscript support the concept that the microbiome could be linked to CART 

response, which would have important implications for the field. However, this study 

has critical limitations that reduce its impact: 

 

1) Small study size: Most of the results presented in this manuscript are based on the 

43 patients with MM. This is a modest size for a microbiome study and raises 

concerns about the robustness and reproducibility of the reported findings. In 

particular, the comparisons of complete responders vs. partial responders only utilize 

24 and 11 subjects, respectively, and comparisons of grade 1 vs. grade 3 CRS utilized 

8 and 19 subjects, respectively. With such small numbers, it is likely that the 

differential taxa and predictive models shown by the authors are overfitted and won’t 

be reproducible. 

 

Response: Thanks for your comment. While we generally agree with you that the 

sample size of this study is a modest size, it is still the largest study to date to report 

the relationship between gut microbiome and therapeutic response and cytokine 

release syndrome in the field of CAR-T cell treatment.  More importantly, we have 

added validation sample with a size of 38 into the study and this makes our study 

sample size even much large than those reported ones. The following is a list of those 

reported studies regarding on their sample size and main findings. 

 

Reports No. of patients Main findings 



included in the 

report 

Chaput et al.  

Ann Oncol. 28: 

1368-1379. 

26 Faecalibacterium percentages were 

significantly higher in patients with long-term 

clinical benefit (n=9), while high proportions 

of Bacteroides were present in patients with 

poor clinical benefit (n=17). Microbiota of 

patients prone to develop colitis (n=7) was 

enriched in Firmicutes at baseline, while high 

proportions of Bacteroidetes was observed in 

metastatic melanoma patients who did not 

develop colitis after receiving CTLA-4 

treatment (n=19). 

Dubin et al. 

Nat Commun. 

7: 10391. 

 

34 Taxa within the Bacteroidetes phylum were 

more prevalent in colitis free patient samples 

(n=24) compared to the patients who 

progressed to colitis (n=10) after receiving 

CTLA-4 therapy. 

Gopalakrishnan 

et al. Science. 

359:97-103. 

43 Analysis of patient fecal microbiome samples 

(30 responders, 13 nonresponders) showed 

significantly higher alpha diversity (p<0.01) 

and relative abundance of bacteria of the 

Ruminococcaceae family (p<0.01) in 

responding patients with melanoma 

undergoing anti-PD-1 immunotherapy. 

Matson et al. 

Science. 359: 

104-108. 

42 More abundant Bacterial species in responders 

(n=16) included Bifidobacterium longum, 

Collinsella aerofaciens, and Enterococcus 

faecium. Reconstitution of germ-free mice 

with fecal material from responding patients 

resulted in improved tumor control, 

augmented T cell functions, and greater 

efficacy of anti-PD-1therapy. 

Holler et al.  

Biol Blood 

Marrow 

Transplant. 20: 

640-5. 

31 The mean proportion of enterococci in post-

transplant stool samples was 21% in patients 

who did not develop gastrointestinal (GI) 

graft-versus-host disease (GVHD) compared 

with 46% in those that subsequently 

developed GI GVHD and 74% at the time of 

active GVHD. 

Taur et al.  

Blood. 124: 

1174-82. 

80 Patients who had a lower diversity of gut 

microbiota at the time of HSCT had shortened 

overall survival and higher mortality rates 

(specifically transplant related mortality), 

compared with those with a high diversity of 

gut microbiota. 

 

2) Absence of a validation cohort: Given the great heterogeneity of findings across 

small microbiome studies, it’s important for microbiome association studies to 



demonstrate the reproducibility of key findings in an independent validation cohort. 

This is particularly critical here given the limited number of subjects in the CR vs. PR 

and CRS grade comparisons. The B-ALL and B-NHL subsets could not be used to 

validate the CR vs. PR analyses as there were only 2 or 3 subjects with PR, 

respectively. 

 

Response: As suggested, we validated our main findings in a validation cohort 

comprised of 38 MM patients, which is a completely independent sample. Consistent 

with our previous results, we observed decreased overall Shannon diversity 

(Supplementary Fig. 4C, lines 157-159) and increased abundance of genus 

Enterocuccus across the whole therapy (Supplementary Fig. 4H, lines 185-188). In 

addition, we found that genus Sutterella was significantly differentially abundant 

between the CR and PR group (Supplementary Fig. 5D, lines 243-244).  

 

3) Statistical issues: The study utilizes a longitudinal sample collection strategy but 

none of the analyses account for the repeated measures design and thereby inflate 

significance due to positive correlation of the repeated measurements (examples 

provided under additional comments). Also, the manuscript does not give any 

indication that p-values were adjusted for multiple hypothesis testing, which is critical 

given the large number of microbial taxa and predicted pathways that were tested. In 

addition, none of the analyses were adjusted for covariates (e.g. age, sex, antibiotic 

use before or during treatment, prior autologous stem cell transplantation, etc.) which 

could confound the association of microbiota with outcomes. 

 

Response: Considering repeated measurements, we performed Friedman’s test for 

longitudinal analysis of diversity and bacterial taxa, and updated our corresponding 

Figures 2a, 2c, 2d and 2h. To identify genera and pathways that were associated with 

the treatment outcomes (PR vs. CR) and CRS grades before and after CAR-T therapy, 

we applied generalized linear-mixed models (GLMMs) in our analyses which include 

random effects to account for the within-subject variability. Similarly, we also 

modified Figures 3a, 3b, 4a, 4b, 4h and Fig. S6. For multiple testing, we did FDR 

correction for p values of tests identifying differentially abundant microbial taxa and 

pathways. Further, we also included covariates (i.e., age, sex, number of prior lines of 

therapy, CAR-T cell dose, Autologous stem cell transplantation, Antibiotic use before 

or during treatment) into our analyses but we did not observe any obvious differences 

between different efficacy groups and CRS grade groups. So we did not change our 

results reported in the main text, but we do provide these new analysis results in 

Supplement Materials (Supplementary Tables 1 & 2).    

 

4) 16s sequencing with imputed metagenomics was used rather than shotgun 

metagenomics sequencing: The study would have been strengthened by the use of 

shotgun metagenomics (as has been used in the prominent immunotherapy 

microbiome studies), which would allow improved species and possibly strain level 



taxonomic assignment as well as more accurate assessment of microbiome functional 

capacity. 

 

Response: Thanks for your advice. It is true that the shotgun metagenomic 

sequencing is more informative than the 16S sequencing. As documented in the 

literature, the 16S sequencing can also produce reliable taxonomic profiling results 

(Jovel et al., 2016, Frontiers In Microbiology 7:459). According to previous report 

which compared taxonomic profile of the two methods on the same samples 

(Bokulich et al., 2018, Microbiome, 6(1): 1-17. Clooney et al., 2016, Plos One 11: 

e0148028), the two methods yield very comparable results. On the other hand, the 

16S appears to be more cost-effective and time saving than the metagenomic 

sequencing, which makes it more acceptable and advantageous for clinical 

applications. However, this does not mean we would exclude the shotgun 

metagenomics sequencing from our research. If possible, we will consider the shotgun 

metagenomics sequencing approach in our future research. 

 

Additional comments: 

- It’s not indicated how many samples were collected at each of the five time points 

from the various subgroups.  

 

Response: We have addressed this point in Supplementary Table 3. A description has 

been added in the main text (see page 5, lines 109-111). 

 

- What was the median and distribution of the time after baseline for the FCb, CRSa, 

CRSb, and CRSc stool collections? 

 

Response: Thanks for your helpful suggestion. We have added the relevant part in the 

revised manuscript (page 6, lines 148-151). 

 

- What sequence depth was achieved by 16S rRNA sequencing (e.g. median and 

range of the number of sequences per sample)? 

 

Response: We have addressed this point in Supplementary Table 4 and main text 

(page 5, lines 109-111). 

 

- Were all samples sequenced in one batch or were there multiple batches, in which 

case were longitudinal samples from the same patient included in the same batch and 

what adjustments were performed for batch effects? 

 

Response: All samples were sequenced in one batch. 

 

- Figs 2-4: It’s not made sufficiently clear from the figure legends (or in the associated 

Results text) that the data shown in the main figures represents just the MM patients 

rather than the full cohort. 



 

Response: We have modified the legends for Figures 2-4 to indicate that the results 

were from MM patients. Thanks for pointing this out. 

 

- Fig. 2a, 2d, 2e (also applicable to Supp Fig. 4): the statistical test was mentioned as 

Wilcoxon rank-sum test, but this is for pairwise comparisons whereas the data 

presented have five time points (which results in 10 pairwise combinations). How was 

this addressed? One standard approach for non-parametric testing of repeated 

measures data would be Friedman’s test with post-hoc multiple comparison testing of 

pairwise combinations. 

 

Response: Thanks for your suggestion. We have applied Friedman’s test for repeated 

measures data and Wilcoxon rank-sum test for 10 pairwise comparisons of the five 

timepoints in Figures 2a, 2d, 2e. FDR correction was applied for multiple testing. As a 

result, we observed significant decrease of Shannon index across the whole treatment 

period, which provides further support to our previous Wilcoxon rank-sum test results. 

For comparison of phylum level taxonomy, Firmicutes and Bacteroidetes did not 

reach significant threshold in Friedman’s test, we thus removed these results from our 

revised manuscript.  

 

- Fig 2c: the order of the stacked bars changed, which makes it harder to follow the 

longitudinal changes in the phyla. 

 

Response: As suggested, the stacked bars of Figure 2c was ordered. Thanks. 

 

- Fig 2f: this figure panel shows magnitudes of change across time points with an 

importance score based on a machine learning approach for differentiating time points, 

but it’s not clear which genera had statistically significant shifts across the time points 

(by one or both of the methods used by the authors). This information is only 

contained within the Supp Tables. It would be helpful if statistically significant genera 

were annotated. 

 

Response: As suggested, we have modified the Figure 2f and genera that were 

identified by both machine learning method and Friedman’s test are now bolded and 

underlined. Also, the legend for this figure was modified to illustrate this point. 

 

- Fig 3b: The p-value is misleading as repeated measurements from the same subjects 

were included in this plot, inflating significance due to the positive correlation among 

repeated measurements from the same individual. Repeated measures aware 

approaches are required, or separate significance calculations for CR vs. PR should be 

performed at each time point. 

 

Response: As suggested, we performed PcoA analysis for each stage separately. 

Distance of CRSb stage reached significant (p = 0.047).  



 

- LEfSe analysis shown in Fig 4A and Fig 5A – these figure panels show comparisons 

of genus and predicted pathway abundances at time points before and after CAR-T 

infusion. However, these analyses will inflate significance given the treatment of 

repeated measurements as independent observations. 

 

Response: Thanks for your advice. We have modified the results of Figures 4A & 5A. 

For genera that was identified by maSigPro, we applied generalized linear-mixed 

models (GLMMs) to identify genera differentially abundant before and after CAR-T 

infusion. Genera with FDR<0.05 are presented in the bar plots of Figure 4A and 

Supplementary Table7. Genera that was identified to be differentially abundant by 

LefSe method are marked with red stars. 

 

- Fig 4h – What time point was used for the statistical comparison of pathway 

abundances shown in this figure panel? 

 

Response: Figure 4h compared all fecal samples from CR patients with those from 

PR patients. Considering repeated measurements, we also applied time-course 

differential analysis (maSigPro) to identify pathways that were differentially abundant 

between the CR and PR group. Likewise, time-course differential analysis was 

applied for the differentially abundant pathway analysis concerning CRS grade.  

 

- Fig 5 – how were the cutoffs of r>0.2 and q<0.2 chosen to identify edges to include 

in this network? 

 

Response: The network in Figure 5 was updated. To better illustrate correlation of 

CRS-related cytokines with gut microbiome, we additionally checked association of 

seven CRS-relating cytokines and M1/M2 macrophages with gut microbiome. 

Moreover, considering the repeated measures design, we applied repeated measures 

correlation (rmcorr) analysis and updated the network analysis part to show 

significant correlations of gut microbes with cytokines and immune cells (FDR < 

0.05).  

 

Response to Reviewer 2 (Remarks to the Author): 

 

General review for the authors 

 

The article of Hu et al describes the complex interplay between the gut microbiome 

and autologous BCMA CAR T-cell therapy in MM, ALL and NHL patients. Using a 

combination of 16S rRNA gene sequencing, bioinformatics and multiple statistical 

analysis, this study investigated the temporal changes in the intestinal microbiome 

during CAR-T cell therapy, the association between microbial communities and 

clinical response as well as cytokine release syndrome severity. While similar studies 

were published in the field of checkpoint blockade immunotherapies and allogeneic 



hematopoietic stem cell transplantation, this study is the first one to decipher the 

interaction between the gut microbiome and CAR T-cell therapy. 

 

The clinical samples used in this study were obtained from three different patient 

cohorts, over multiple time points, and were analyzed to comprehensively extract, 

analyze, and correlate microbiome-based dataset, common biomarkers, immune cells 

populations, therapeutic outcome and CRS-based adverse events. In that regard, this 

work could be considered as a resource and the first landmark in the field of immuno-

oncomicrobiology associated to CAR T-cells. However, as many papers published 

recently in the field, this manuscript remains factual, data oriented and lacks 

mechanistic insights. These insights would be beneficial to specify the mode of action 

of certain key bacteria or group of bacteria, to propose potential therapeutic 

interventions and would render the manuscript accessible/appealing to a broader 

audience. Nevertheless, it is acknowledged the four-way interaction occurring among 

the gut microbiome, the host immune system, the CAR T-cells and cancer cells is not 

easy to apprehend, and this task remains extremely complex and daunting. 

 

One of the main findings of this paper was the identification of bacterial genera 

showing differences in abundance in CR versus PR groups. Faecalibacterium, 

Bifidobacterium, Collinsella and Sutterella were associated with CR. This finding is 

reminiscent to earlier works on anti-PD-1 checkpoint blockade therapy, suggesting a 

common effect of such taxa across therapeutic strategies. In addition, by stratifying 

bacteria genera abundances in two arms, i.e., before and after CAR T-cell therapy, 

they confidently identified a group of bacteria genera that was enriched in CR versus 

PR, in the two arms. This strongly suggests their association to positive clinical 

outcome of CAR T-cell therapy and put forward their predictive potential. 

Interestingly, the authors further report that high abundance of genus Sutterella was 

with a prolonged event free survival period following CAR-T therapy. While the 

authors acknowledged this positive correlation was not systematically observed across 

different indications, it is a substantial finding that needs to be more extensively 

discussed and contrasted to former reports to propose a potential mode of action. 

 

The second main finding was the identification of bacterial genera showing 

differences in abundance in mild versus severe CRS. In particular, Bifidobacterium 

and Leuconostoc were found enriched in patient encountering severe CRS. 

Bifidobacterium and Leuconostoc negatively correlate with PB monocyte and 

positively correlated with ferritin/D-dimer proinflammatory molecules, respectively. 

Again, these are interesting and important findings that unravel a gut microbiome 

signature associated to CRS and warrant extensive discussion in light of recent 

literature on CAR T-cell and CRS. 

 

This manuscript should be improved by considering the comments below: 

 

-The recurring question in the field of immune-oncomicrobiology is: is intestinal 



dysbiosis a cause or a consequence (or both) of immunotherapy. This question 

remains open in the context of this study. In that regard the authors make a strong 

statement in the title by using the active form: “Gut microbiome modulates CRS and 

therapeutic response to CAR T-cell therapy…”. Because the cause-and-effect 

relationship is not proven, this title should be revised to prevent misleading the 

readers. 

 

Response: Thanks very much for your positive comments on our paper and valuable 

suggestion. As suggested, we have changed our title to “Gut microbiome correlates 

with cytokine release syndrome and therapeutic response to CAR-T therapy in 

hematologic malignancies” in the revised manuscript. 

 

-Fig. 1 Illustrates the therapeutic outcome of BCMA CAR T-cell therapy and the 

grade of CRS observed in the three cohorts of patients. However, it does not report 

any additional treatment given to patients to alleviate their CRS symptoms. Does it 

mean that tocilizumab was not used in this study? According to CRS management 

recommendations by Neelapu et al (Nat Rev Clin Oncol. 2018, 15:47-62) and Lee et 

al (Blood 2014, 124:188-95), Tocilizumab should be administered to patients 

undergoing ≥ Grade 2 CRS. It is thus believed that some of the Grade 2-3 CRS events 

documented in this study were managed by Tocilizumab (and/or other drugs). Please 

confirm. As this parameter may affect/bias the dataset (cytokines/cell population 

etc…) obtained at CRS b/c, it should be rigorously documented. This comment holds 

true for other therapeutics used to blunt inflammation, pathogen, and viral infection. 

 

Response: Thanks for your helpful suggestion. We have added this content into the 

manuscript (see page 5, lines 123-127). 

 

-If I’m not mistaken, the Simpson index measures population diversity (Fig.2) and the 

Shannon measures entropy and thus diversity (Fig. 3). Both indexes are being used to 

assess the diversity of population. Why using both indexes instead of just one in Fig 2 

and 3? 

 

Response: As suggested, we have changed Simpson index of Figure 2a into Shannon 

index.  

 

-Fig. 2C reports the evolution of the relative abundance of bacterial taxa across 

therapy stages. The clarity of this plot could be improved by organizing bacterial 

communities from the highest (top) to the lowest (bottom) abundant one. 

 

Response: As suggested, the order of taxons in Fig 2c was ordered. 

 

-Fig. 3D (and Sup Fig. 7/8) is hard to understand. This may prevent the reader from 

quickly grasping the take home message. Consider replotting it differently. 

 



Response:  As suggested, we have modified figure 3D, which is a heatmap showing 

longitudinally differentially abundant OTU clusters between the CR and PR group. 

Rows are OTUs and columns are fecal samples of subjects in different time points. 

Heatmap color was proportional to abundance of OTUs, where blue color indicates 

low abundance and yellow to red color indicate high abundance. Block in left dotted 

box was abundance and change patterns of OTUs in the three clusters across all the 

five time points in CR patients. Block in right dotted box was pattern of the three 

clusters in PR patients. Similarly, we also did changes in Supplementary Figures 7 & 

8. 

 

-Fig. 4H reports the differential KEGG pathways in CR and PR groups. However, I’m 

not sure to understand the data processing needed to represent such plot. How do you 

come up with these different pathways? From the identification of bacteria with 16S 

rRNA seq? Please clarify and modify the text to ease the comprehension of broad 

audience readers. This comment holds true for Supplementary Fig. 9 and 10. 

Regarding these two figures, I’m surprised to see that the arginine and tryptophan 

metabolism, two pathways commonly associated with CRS, were not identified 

alongside with the purine/lipoic metabolism and biosynthesis of lipopolysaccharide 

and peptidoglycan. Could you please comment. 

 

Response: We applied PICRUSt2 tool to predict functional abundances based on 16S 

rRNA sequences profiles. PICRUSt2 uses existing annotations of gene content and 

16S copy number from reference bacterial genomes in the IMG (Integrated Microbial 

Genomes) database to predict which gene families are present and then combines 

gene families to estimate the composite of community KEGG functions. The tool 

included more than 40,000 bacterial and archaeal genomes from the IMG database 

and precalculated gene contents for each organism to generate a table of predicted 

gene family abundances for each organism. Microbial community functions could be 

inferred by combining the gene content table and relative abundance of 16S rRNA 

genes in one or more samples (Douglas et al, Nat Biotechnol, 2020, 38: 685–688). We 

have added several sentences to illustrate the method.  

 

As we modified the statistical method to consider repeated measurements, new results 

for pathway analysis (Figure 4H, Supplementary Figures 9 & 10) were summarized in 

Supplementary Figures 9 & 10. As the functional pathways of bacteria community 

were inferred from the bacteria composition, it may not fully represent real bacteria 

pathways. This bias might lead to omission of some significant pathways such as 

arginine and tryptophan metabolism pathway. This is considered to be the weakness 

of 16S rRNA sequencing when comparing with shotgun metagenomic sequencing.  

To further validate metabolic changes in feces, we applied metabolic Liquid 

Chromatography Mass Spectrometry (LC-MS) to quantify concentration of fecal 

metabolites during CRS. The results are summarized in Supplementary Figures 11 & 

12. In differential analysis of metabolites between CRS groups, we identified 



phosphocreatine which annotated to arginine and proline metabolism to be 

differentially abundant.  

 

-IL-6, IL-1α, IL-1β, M-CSF, MCP-3 and GM-CSF, are key protagonists of CRS 

(doi.org/10.1038/s41577-021-00547-6). I understand that they are missing from Fig. 

5D because they do not fall within the following specs: “Associations with an 

absolute value of correlation coefficient higher than 0.2 and FDR less than 0.2 were 

depicted using CytoscapeIs”. While I don’t have the proper knowledge to assess the 

relevance of those specifications, I wonder if they could be adapted to illustrate the 

correlation between these CRS-related cytokines, the gut microbiome and immune 

cells? Adding them in the network would be very informative. 

 

Response: Thanks for your suggestion. To better illustrate correlation of CRS-related 

cytokines with gut microbiome, we referred to the review summarizing CRS-related 

cytokines (Li et al., Signal Transduction and Targeted Therapy, 2021, 6: 1-16) and 

added 7 more cytokines (i.e., MIP-1α, GM-CSF, MCP-1, IL-15, IL-1β, IL-1α, IL-17α) 

into the network analysis. Moreover, considering the repeated measures design, we 

applied repeated measures correlation (rmcorr) analysis and updated the network as 

well. More key protagonists of CRS are presented in the newly generated networks.  

 

On a similar topic, differentiated macrophages play a key role in CRS 

initiation/mediation. Have you explored the evolution of such immune cell population 

in your longitudinal analysis? If so, it could be very informative to implement this 

population in the network of Figure 5D. 

 

Response: We assessed M1 and M2 macrophage by flow cytometry. By associating 

these two differentiated macrophages with gut microbes, no significant association 

was for M1 and M2 macrophage after multiple test correction.  

 

Furthermore, Bifidobacterium seems to be increased in severe CRS but at the same 

time, negatively correlate with monocytes, a major driver of CRS 

(doi.org/10.1038/s41577-021-00547-6, doi: 10.1038/s41591-018-0041-7, 

doi.org/10.1038/s41591-018-0036-4). Could you please elaborate on this negative 

correlation? 

 

Response: No changes are needed as the correlation between Bifidobacterium and 

monocytes was no longer significant after updating statistic method and multiple test 

correction.  

 

-The experimental details regarding the sample preparation, DNA sequencing, data 

processing, bioinformatics and statistical analysis were thoroughly documented and 

referenced in the methods section. This section will be very helpful for other teams 

working in the field, could improve the consistency in the future dataset generated and 

could allow for better quality meta-analysis. Regarding that last aspect, the data 



generated in this manuscript (raw and analyzed) must be carefully and 

comprehensively documented in a source file to ease extraction and utilization of raw 

data by the scientific community. 

 

Response: As requested by the journal, we will submit all relevant data to the public 

database as soon as the paper is being accepted by the journal. 

 

-Typo and word inconsistencies were observed throughout the manuscript. This could 

be sometime misleading (example Line 263, replace decrease by increase). Please 

thoroughly check the text. 

 

Response: We have double checked the paper. Thanks. 

 

Response to Reviewer 3 (Remarks to the Author): 

 

In this manuscript, Hu and colleagues describe the microbiome composition in 

patients with MM, ALL, and NHL at multiple timepoints before and during CART 

cell therapy. The authors reason that the gut microbiome has been shown to impact 

cancer immunotherapy outcomes, yet such studies of patients undergoing CART cell 

therapy have been lacking to date. The authors found that certain components of the 

microbiome were correlated with therapeutic response as well as CART-associated 

CRS. Overall, this is an important preliminary study of the associations of certain 

features of the gut microbiome with CART efficacy and toxicities as well as the 

exploration of potential biomarkers based on microbiome composition to predict 

clinical outcomes. 

 

The reviewer has major and minor issues with this manuscript: 

 

1. The authors should state the date medians and ranges of each of the five time points 

(FCa, FCb, CRSa, CRSb, CRSc), as it seems that there could be a wide variety in 

timing among patients (eg. how many days after CART administration was CRSa 

taken? Etc). If there is a large variation in these timepoints, the authors should discuss 

how this may impact results. 

 

Response: Thanks for your kind reminder. We have added these contents into the 

revised manuscript (see page 6, lines 148-151). 

 

2. If there are data available on neurotoxicity, it would be important for the authors to 

analyze the microbiome in relation to neurotoxicity incidence and severity, as it is a 

major toxicity associated with CART cell therapy, and there are currently no reliable 

predictive biomarkers. 

 

Response: Thanks for your helpful suggestion. In this study, 3 of 43 patients with 

multiple myeloma (7%) developed grade 1 neurotoxicity. Our previous study reported 



that 5 of 61 MM patients (8.2%) experienced reversible neurotoxicities (Zhang et al, 

Clin Cancer Res. 27:6384-6392.).  Due to the small number of cases (n=3), we were 

not able to analyze the microbiome in relation to neurotoxicity incidence and severity. 

Future work with larger samples to explore the relationship between microbiome and 

neurotoxicity after CAR-T cell treatment. 

 

3. The authors include a paragraph (lines 239-247) about changes in amino acid 

metabolism. This could be expanded further and made into its own section, with more 

details about the impact on microbiome composition on metabolism and how this 

corresponds to outcomes in immunotherapy. 

 

Response: Thanks for your suggestion. we have moved functional analysis into a new 

section (see page 11, lines 283-303). To better illustrate association of amino acid 

metabolism with CAR-T therapy, we added Liquid Chromatography Mass 

Spectrometry (LC-MS) to quantify concentration of fecal metabolites and found 

several metabolites of amino acid metabolism to be significant different between CRS 

grade/outcome groups. Moreover, we have added discussions on amino acids and 

immunotherapy in our revised manuscript (see pages 14-15, lines 387-403). 

 

4. Again, the authors mention changes in amino acid synthesis and metabolism (lines 

270-275) and should further explore these observations in relation to CART-

associated toxicities. 

 

Response: To further explore metabolites during CRS, we applied Liquid 

Chromatography Mass Spectrometry (LC-MS) to quantify concentration of fecal 

metabolites and compared difference between different CRS grade/outcome groups. 

The results have been updated in the revised ms (see page 11, lines 295-303). In 

addition, we added sentences in lines 387-403 to discuss amino acids and CART-

associated toxicities. 

 

5. Were there any significant correlations with microbiome composition and CR/PR 

status or CRS severity when further broken down into subgroups, such as CART cell 

dose, ASCT status, extramedullary disease, etc? 

 

Response:  Thanks for your helpful suggestion. We did not break down into 

subgroups for further analysis because of the limited number of samples in each 

subgroup. We summarized subgroups information in the following table. For example, 

there are only 2 PR subjects in non-extramedullary disease subgroup.  

 

 

 

CR 

N=24(%) 

VGPR 

N=6(%) 

PR 

N=11(%) 

CAR-T cell 

dose(×106/kg) 

Median 

 Range 

 

 

4.65 

1.2-6.9 

 

 

4.03 

2.5-6.2 

 

 

4.4 

1.3-5.8 



Autologous stem 

cell transplantation 

No 

Yes 

 

 

17(70.8) 

7(29.2) 

 

 

2(33.3) 

4(66.7) 

 

 

5(45.5) 

6(54.5) 

Extramedullary 

disease 

No 

Yes 

 

 

14(58.3) 

10(41.7) 

 

 

2(33.3) 

4(66.7) 

 

 

2(18.2) 

9(81.8) 

 

 

6. The authors should suggest some potential predictive biomarkers based on their 

findings and outline future validation strategies for these biomarkers in the discussion 

section. 

 

Response: In this paper, we observed significant correlation of gut microbiome with 

treatment outcome and CRS grade of CAR-T therapy. To further demonstrate the 

correlation and investigate underline mechanism(s), more wet-lab experiments need to 

be conducted, which is beyond of the scope of this report. Germ-free mice would be 

helpful model to validate function of gut microbiome. For example, fecal microbiota 

transplantation (FMT) from CR and PR patients into germ-free mice to construct 

mouse colonized by donor microbiota. Then physiological and biochemical response 

of these FTM-treated mice to myeloma cells and CAR-T cells could be surveyed. 

Moreover, gut microbiota could be damaged by antibiotic treatment and rescued by 

FMT, which could help to validate the function of gut microbiome in immunotherapy. 

On the other hand, genus Sutteralla was found to be important biomarkers for therapy 

outcome.  Further study should demonstrate the predictive role of Sutteralla in larger 

cohort of myeloma and explore its predictive capacity in CAR-T therapy of other 

types of tumors.  To study correlation genus Bifidobacterium with CRS grade, 

probiotic supplement of Bifidobacterium species to myeloma or CAR-T mouse 

models could help to reveal immune responses caused by Bifidobacterium. Other oral 

supplement strategies include bacterial metabolites, such as amino acids, fatty acids, 

cytotoxin, could be used to demonstrate mechanism underlying effect of gut microbes. 

These points have been added in the revised ms (see page 15, lines 404-421). 

 

Minor comments: 

1. Lines 73-76: the authors include different measures for each disease type (eg. 5-

year and median OS for r/r ALL, CR and median OS for DLBCL, and 1-year OS for 

MM). The authors should provide consistent measures for each disease type for ease 

of comparison (e.g., median OS for ALL, DLBCL, and MM). 

 

Response: Thanks for your suggestions. We have revised our manuscript accordingly 

(see page 3-4, lines 74-78). 

 

2. Lines 226-227: authors mention CR vs PR vs NR for patients with NHL and ALL. 

Was there no NR group in patients with MM? 



 

Response: Yes, there was no NR group in patients with MM in this study. 

 

3. Some of the sections specify whether associations were found specifically in MM, 

NHL, or ALL, while other sections do not mention the disease type. The authors 

should state which findings are significant to which type of malignancy or if the 

findings are applicable to all three disease types studied (eg. the section “Associations 

between gut microbiome and CRS” does not state whether these associations were 

relevant to all cancer types studied, or just patients with MM). 

 

Response: We have revised the manuscript and specified disease type in both Figure 

legends (see Figures 1-5) and the main text (see page 6, line 153; page 8, lines 197, 

217-218; page 10, line 268).  

 

4. Fig. 4B is missing a legend. 

 

Response:  Sorry, the legend for this figure has been added. Thanks for your careful 

checking our work.  



REVIEWER COMMENTS 
 
Reviewer #1 (Remarks to the Author): 
 
The revised manuscript has been significantly improved. The authors have strengthened the 
conclusions with the addition of a validation cohort of MM patients as well as fecal metabolomics 
data and addressed some of the concerns about the statistical methodology. The current draft still 
requires further revision to address remaining statistical questions and better incorporate the new 
data from the MM validation cohort: 
1. The Abstract doesn’t currently mention the validation cohort or which findings were validated (in 
particular, lower alpha diversity and higher Enterococcus after CART and higher Sutterella in CR 
vs. PR). This would be important to include in the Abstract to convey the most robust findings from 
this study given the small sample size. 
2. The new LC-MS data is interesting but not currently integrated with the sequencing analyses. 
Was there functional overlap in differentially abundant metabolites between CR and PR during CRS 
and differentially abundant predicted pathways? The Results text mentioned phosphonate 
metabolism but didn’t go into this any further or discuss other potentially concordant findings (e.g. 
phenylalanine metabolism was differentially abundant between CR and PR in Fig. S9 and 
phenylalanine was increased in CR vs. PR in Fig. S11). Pathway enrichment analysis for the 
metabolomics data and/or correlation analysis between metabolites and predicted pathway 
abundances could be considered. The results of such analyses would also inform the Discussion, 
which currently refers to the functional effects of microbes in a general manner (alluding to amino 
acid metabolism based on predicted metagenomics). 
3. Actinomyces was increased after CART in the MLL, NHL, and ALL cohorts. Was this finding 
validated in the additional 38 MM subjects? These data should be shown regardless as Actinomyces 
is the only genus besides Enterococcus that was consistently affected by CART in the three original 
cohorts. 
4. Was Friedman’s test for repeated measures used in Fig S4D-G? 
5. Was the difference in alpha diversity between PR and CR shown in Fig. 3A validated in the 38 
additional MM patients? 
6. In Fig 3C-D, was significance of these OTUs determined using a FDR-adjusted threshold as 
would be appropriate given the large number of features tested? The Figure legend indicates 
p<0.05. This question also applies to Figs. S7 and S8. 
7. Fig 4A appears to show nominal p-values for the maSigPro results. The authors should use FDR-
adjusted values (q-values) or provide a line indicating a q-value threshold for significance (e.g. 
q<0.05) so that it’s clear which taxa were significant by maSigPro after adjusting for multiple 
hypothesis testing. The same comment applies to Fig. 5A, Fig. S9B, and Fig. S10B. 
8. In Fig 4B, what was the color code for the three groups shown at each CART timepoint? 
9. In Fig. 4C-D, it’s unclear what “value” refers to on the y-axis. The Figure legend indicates log 
transformed relative abundance, but this should result in negative values; -log 10 would result in 
higher values representing lower abundance. This same question applies to Fig 4B. Also, what do 
the red and blue colors signify (do they represent CR and PR)? 
10. Currently the manuscript validates differences in Sutterella between CR vs. non-CR in the 38 
additional MM subjects (Fig S5D). Was Sutterella the only genus that was assessed using this 
validation cohort? What about the other genera that were suggested by RF analysis as contributing 
to differentiation of CR vs. PR at baseline and post-chemotherapy (e.g. Prevotella, Collinsella, 
Bifidobacterium)? Also, why was CR vs. non-CR used instead of CR vs. PR as in the primary 
analysis? 
11. The authors mention multiple genera that were differentially abundant between CR and PR and 
contributed to RF classifier accuracy. How was Sutterella selected for the PFS tertile analysis 
shown in Fig 4G? 
12. In Fig 5B, it’s not explained what groups the three colors correspond to (presumably different 
CRS grades). 
13. Did the authors compare Bifidobacterium and Leuconostoc abundances before and during CRS 
in the 38 additional MM subjects to validate the results in Fig. 5B? 
14. The Results section should clarify whether PICRUSt analysis was only performed for the MM 
cohort. 
15. The PICRUSt findings should be validated using the 38 additional MM subjects to identify which 
among the many predicted functional shifts were reproducible. 



16. Fig. S11 legend needs proofreading (“differentially abundance between the CR and CR 
groups”). 
17. The title of Fig. 13S should be changed (it does not show correlation of gut microbes). Also the 
figure legend should clarify which response groups are represented by the two colors. 
18. The Results section (line 323) refers to “multiple inflammatory markers” but lists bacteria; 
could the authors clarify this? 
19. Additional proofreading is required for the new content as multiple typographical errors are 
present. 
 
 
Reviewer #2 (Remarks to the Author): 
 
Review of NCOMMS-21-27883A 
The initial review from reviewer #2, the author’s answers and the comment to author’s answers 
appear in black, blue and red, respectively. 
 
Response to Reviewer 2 (Remarks to the Author): 
General review for the authors 
The article of Hu et al describes the complex interplay between the gut microbiome 
and autologous BCMA CAR T-cell therapy in MM, ALL and NHL patients. Using a 
combination of 16S rRNA gene sequencing, bioinformatics and multiple statistical 
analysis, this study investigated the temporal changes in the intestinal microbiome 
during CAR-T cell therapy, the association between microbial communities and 
clinical response as well as cytokine release syndrome severity. While similar studies 
were published in the field of checkpoint blockade immunotherapies and allogeneic 
hematopoietic stem cell transplantation, this study is the first one to decipher the 
interaction between the gut microbiome and CAR T-cell therapy. 
The clinical samples used in this study were obtained from three different patient 
cohorts, over multiple time points, and were analyzed to comprehensively extract, 
analyze, and correlate microbiome-based dataset, common biomarkers, immune cells 
populations, therapeutic outcome and CRS-based adverse events. In that regard, this 
work could be considered as a resource and the first landmark in the field of immuno- 
oncomicrobiology associated to CAR T-cells. However, as many papers published 
recently in the field, this manuscript remains factual, data oriented and lacks 
mechanistic insights. These insights would be beneficial to specify the mode of action 
of certain key bacteria or group of bacteria, to propose potential therapeutic 
interventions and would render the manuscript accessible/appealing to a broader 
audience. Nevertheless, it is acknowledged the four-way interaction occurring among 
the gut microbiome, the host immune system, the CAR T-cells and cancer cells is not 
easy to apprehend, and this task remains extremely complex and daunting. 
One of the main findings of this paper was the identification of bacterial genera 
showing differences in abundance in CR versus PR groups. Faecalibacterium, 
Bifidobacterium, Collinsella and Sutterella were associated with CR. This finding is 
reminiscent to earlier works on anti-PD-1 checkpoint blockade therapy, suggesting a 
common effect of such taxa across therapeutic strategies. In addition, by stratifying 
bacteria genera abundances in two arms, i.e., before and after CAR T-cell therapy, 
they confidently identified a group of bacteria genera that was enriched in CR versus 
PR, in the two arms. This strongly suggests their association to positive clinical 
outcome of CAR T-cell therapy and put forward their predictive potential. 
Interestingly, the authors further report that high abundance of genus Sutterella was 
with a prolonged event free survival period following CAR-T therapy. While the 
authors acknowledged this positive correlation was not systematically observed across 
different indications, it is a substantial finding that needs to be more extensively 
discussed and contrasted to former reports to propose a potential mode of action. 
The second main finding was the identification of bacterial genera showing 
differences in abundance in mild versus severe CRS. In particular, Bifidobacterium 
and Leuconostoc were found enriched in patient encountering severe CRS. 
Bifidobacterium and Leuconostoc negatively correlate with PB monocyte and 
positively correlated with ferritin/D-dimer proinflammatory molecules, respectively. 



Again, these are interesting and important findings that unravel a gut microbiome 
signature associated to CRS and warrant extensive discussion in light of recent 
literature on CAR T-cell and CRS. 
This manuscript should be improved by considering the comments below: 
-The recurring question in the field of immune-oncomicrobiology is: is intestinal 
dysbiosis a cause or a consequence (or both) of immunotherapy. This question 
remains open in the context of this study. In that regard the authors make a strong 
statement in the title by using the active form: “Gut microbiome modulates CRS and 
therapeutic response to CAR T-cell therapy...”. Because the cause-and-effect 
relationship is not proven, this title should be revised to prevent misleading the 
readers. 
Response: Thanks very much for your positive comments on our paper and valuable 
suggestion. As suggested, we have changed our title to “Gut microbiome correlates 
with cytokine release syndrome and therapeutic response to CAR-T therapy in 
hematologic malignancies” in the revised manuscript. 
Thank you for this important adjustment. 
-Fig. 1 Illustrates the therapeutic outcome of BCMA CAR T-cell therapy and the 
grade of CRS observed in the three cohorts of patients. However, it does not report 
any additional treatment given to patients to alleviate their CRS symptoms. Does it 
mean that tocilizumab was not used in this study? According to CRS management 
recommendations by Neelapu et al (Nat Rev Clin Oncol. 2018, 15:47-62) and Lee et 
al (Blood 2014, 124:188-95), Tocilizumab should be administered to patients 
undergoing ≥ Grade 2 CRS. It is thus believed that some of the Grade 2-3 CRS events 
documented in this study were managed by Tocilizumab (and/or other drugs). Please 
confirm. As this parameter may affect/bias the dataset (cytokines/cell population 
etc...) obtained at CRS b/c, it should be rigorously documented. This comment holds 
true for other therapeutics used to blunt inflammation, pathogen, and viral infection. 
Response: Thanks for your helpful suggestion. We have added this content into the 
manuscript (see page 5, lines 123-127). 
Thank you for implementing this information into the results section. The use of antibiotics, if any, 
should also be documented in the text. 
How does Toci and corticosteroid affect the results and conclusions drawn out of this study? This 
point should be discussed. 
 
-If I’m not mistaken, the Simpson index measures population diversity (Fig.2) and the 
Shannon measures entropy and thus diversity (Fig. 3). Both indexes are being used to 
assess the diversity of population. Why using both indexes instead of just one in Fig 2 
and 3? 
Response: As suggested, we have changed Simpson index of Figure 2a into Shannon 
index. 
Please add the statistics between FCa and CRSb cohort as documented in the first version 
-Fig. 2C reports the evolution of the relative abundance of bacterial taxa across 
therapy stages. The clarity of this plot could be improved by organizing bacterial 
communities from the highest (top) to the lowest (bottom) abundant one. 
Response: As suggested, the order of taxons in Fig 2c was ordered. 
Thank you. Nothing to add 
-Fig. 3D (and Sup Fig. 7/8) is hard to understand. This may prevent the reader from 
quickly grasping the take home message. Consider replotting it differently. 
Response: As suggested, we have modified figure 3D, which is a heatmap showing 
longitudinally differentially abundant OTU clusters between the CR and PR group. 
Rows are OTUs and columns are fecal samples of subjects in different time points. 
Heatmap color was proportional to abundance of OTUs, where blue color indicates 
low abundance and yellow to red color indicate high abundance. Block in left dotted 
box was abundance and change patterns of OTUs in the three clusters across all the 
five time points in CR patients. Block in right dotted box was pattern of the three 
clusters in PR patients. Similarly, we also did changes in Supplementary Figures 7 & 
8. 
Thank you. Nothing to add 
 



-Fig. 4H reports the differential KEGG pathways in CR and PR groups. However, I’m 
not sure to understand the data processing needed to represent such plot. How do you 
come up with these different pathways? From the identification of bacteria with 16S 
rRNA seq? Please clarify and modify the text to ease the comprehension of broad 
audience readers. This comment holds true for Supplementary Fig. 9 and 10. 
Regarding these two figures, I’m surprised to see that the arginine and tryptophan 
metabolism, two pathways commonly associated with CRS, were not identified 
alongside with the purine/lipoic metabolism and biosynthesis of lipopolysaccharide 
and peptidoglycan. Could you please comment. 
Response: We applied PICRUSt2 tool to predict functional abundances based on 16S 
rRNA sequences profiles. PICRUSt2 uses existing annotations of gene content and 
16S copy number from reference bacterial genomes in the IMG (Integrated Microbial 
Genomes) database to predict which gene families are present and then combines 
gene families to estimate the composite of community KEGG functions. The tool 
included more than 40,000 bacterial and archaeal genomes from the IMG database 
and precalculated gene contents for each organism to generate a table of predicted 
gene family abundances for each organism. Microbial community functions could be 
inferred by combining the gene content table and relative abundance of 16S rRNA 
genes in one or more samples (Douglas et al, Nat Biotechnol, 2020, 38: 685–688). We 
have added several sentences to illustrate the method. 
As we modified the statistical method to consider repeated measurements, new results 
for pathway analysis (Figure 4H, Supplementary Figures 9 & 10) were summarized in 
Supplementary Figures 9 & 10. As the functional pathways of bacteria community 
were inferred from the bacteria composition, it may not fully represent real bacteria 
pathways. This bias might lead to omission of some significant pathways such as 
arginine and tryptophan metabolism pathway. This is considered to be the weakness 
of 16S rRNA sequencing when comparing with shotgun metagenomic sequencing. 
To further validate metabolic changes in feces, we applied metabolic Liquid 
Chromatography Mass Spectrometry (LC-MS) to quantify concentration of fecal 
metabolites during CRS. The results are summarized in Supplementary Figures 11 & 
12. In differential analysis of metabolites between CRS groups, we identified 
phosphocreatine which annotated to arginine and proline metabolism to be 
differentially abundant. 
This additional LC-MS dataset is appreciated and helps to consolidate/expand the dataset with an 
orthogonal technic. 
-IL-6, IL-1α, IL-1β, M-CSF, MCP-3 and GM-CSF, are key protagonists of CRS 
(doi.org/10.1038/s41577-021-00547-6). I understand that they are missing from Fig. 
5D because they do not fall within the following specs: “Associations with an 
absolute value of correlation coefficient higher than 0.2 and FDR less than 0.2 were 
depicted using CytoscapeIs”. While I don’t have the proper knowledge to assess the 
relevance of those specifications, I wonder if they could be adapted to illustrate the 
correlation between these CRS-related cytokines, the gut microbiome and immune 
cells? Adding them in the network would be very informative. 
Response: Thanks for your suggestion. To better illustrate correlation of CRS-related 
cytokines with gut microbiome, we referred to the review summarizing CRS-related 
cytokines (Li et al., Signal Transduction and Targeted Therapy, 2021, 6: 1-16) and 
added 7 more cytokines (i.e., MIP-1α, GM-CSF, MCP-1, IL-15, IL-1β, IL-1α, IL-17α) 
into the network analysis. Moreover, considering the repeated measures design, we 
applied repeated measures correlation (rmcorr) analysis and updated the network as 
well. More key protagonists of CRS are presented in the newly generated networks. 
Thank you for considering our suggestion. It was important to present correlation that includes the 
main protagonists of the CRS. 
On a similar topic, differentiated macrophages play a key role in CRS 
initiation/mediation. Have you explored the evolution of such immune cell population 
in your longitudinal analysis? If so, it could be very informative to implement this 
population in the network of Figure 5D. 
Response: We assessed M1 and M2 macrophage by flow cytometry. By associating 
these two differentiated macrophages with gut microbes, no significant association 
was for M1 and M2 macrophage after multiple test correction. 



OK 
Furthermore, Bifidobacterium seems to be increased in severe CRS but at the same 
time, negatively correlate with monocytes, a major driver of CRS 
(doi.org/10.1038/s41577-021-00547-6, doi: 10.1038/s41591-018-0041-7, 
doi.org/10.1038/s41591-018-0036-4). Could you please elaborate on this negative 
correlation? 
Response: No changes are needed as the correlation between Bifidobacterium and 
monocytes was no longer significant after updating statistic method and multiple test 
correction. 
OK 
-The experimental details regarding the sample preparation, DNA sequencing, data 
processing, bioinformatics and statistical analysis were thoroughly documented and 
referenced in the methods section. This section will be very helpful for other teams 
working in the field, could improve the consistency in the future dataset generated and 
could allow for better quality meta-analysis. Regarding that last aspect, the data 
generated in this manuscript (raw and analyzed) must be carefully and 
comprehensively documented in a source file to ease extraction and utilization of raw 
data by the scientific community. 
Response: As requested by the journal, we will submit all relevant data to the public 
database as soon as the paper is being accepted by the journal. 
OK 
-Typo and word inconsistencies were observed throughout the manuscript. This could 
be sometime misleading (example Line 263, replace decrease by increase). Please 
thoroughly check the text. 
Response: We have double checked the paper. 
The same effort should be done in the revised version as multiple typos remain. 
 
The effort to flesh out the discussion is appreciated. The recently published work of Smith et al 
(https://doi.org/10.1038/s41591-022-01702-9) should be mentioned, contrasted and discuss even 
though the dataset was acquired from a CD19 CART cell treated cohort of patients. 
 
 
 
Reviewer #3 (Remarks to the Author): 
 
The authors have adequately addressed my concerns and comments 



Response letter to Reviewers 
 
Response to Reviewer #1 (Remarks to the Author): 
 
The revised manuscript has been significantly improved. The authors have strengthened the 
conclusions with the addition of a validation cohort of MM patients as well as fecal metabolomics 
data and addressed some of the concerns about the statistical methodology. The current draft still 
requires further revision to address remaining statistical questions and better incorporate the new 
data from the MM validation cohort: 
 
1. The Abstract doesn’t currently mention the validation cohort or which findings were validated 
(in particular, lower alpha diversity and higher Enterococcus after CART and higher Sutterella in 
CR vs. PR). This would be important to include in the Abstract to convey the most robust findings 
from this study given the small sample size. 
 
Answer: Thanks for your valuable suggestion. As suggested, we have added the findings 
from our validation cohort in the Abstract of this revised manuscript. 
 
2. The new LC-MS data is interesting but not currently integrated with the sequencing analyses. 
Was there functional overlap in differentially abundant metabolites between CR and PR during 
CRS and differentially abundant predicted pathways? The Results text mentioned phosphonate 
metabolism but didn’t go into this any further or discuss other potentially concordant findings 
(e.g. phenylalanine metabolism was differentially abundant between CR and PR in Fig. S9 and 
phenylalanine was increased in CR vs. PR in Fig. S11).  
 
Answer: As suggested, we have compared concordant findings between LC-MS data and 
PICRUSt-predicted pathways, see lines 337-342 for details.  
 
Pathway enrichment analysis for the metabolomics data and/or correlation analysis between 
metabolites and predicted pathway abundances could be considered. The results of such analyses 
would also inform the Discussion, which currently refers to the functional effects of microbes in a 
general manner (alluding to amino acid metabolism based on predicted metagenomics). 
 
Answer: As suggested, we carried out pathway enrichment analysis for metabolites data 
which is presented in Supplementary Fig. 15. The results from these new analyses have been 
incorporated into the revised paper (see lines 342-348 in Results section and lines 444-450 in 
Discussion section). We further performed correlation analysis between LC-MS-based 
metabolites and PICRUSt-based predicted pathway abundances during CRS (see the 
following Fig. 1). However, the results were less conclusive. Considering the two approaches 
(i.e., pathway enrichment analysis and correlation analysis) suggested by the reviewer serve 
very similar purpose, we decided to report the results only from the pathway enrichment 
analysis.  
 
 



 
Figure 1: Correlation between LC-MS-based metabolites and PICRUSt-based predicted 
pathway abundances during CRS in the 38 MM validation cohort. Significance was tested by 
Spearman correlation analysis. Correlations with FDR < 0.05 were retained. Red and blue color 
indicate positive and negative correlations, respectively. * FDR < 0.05, ** FDR < 0.01, *** FDR 
< 0.001.  
 
3. Actinomyces was increased after CART in the MLL, NHL, and ALL cohorts. Was this finding 
validated in the additional 38 MM subjects? These data should be shown regardless as 
Actinomyces is the only genus besides Enterococcus that was consistently affected by CART in 
the three original cohorts. 
 
Answer: We examined the change of Actinomyces during CAR-T therapy in the 38 MM 
cohorts with Friedman’s test (see Supplementary Fig. 4H) and found the the abundance of 
Actinomyces increased marginally at CRSc stage comparing with that of FCa and FCb (see 
line 197; p = 0.064).  
 
4. Was Friedman’s test for repeated measures used in Fig S4D-G?  
 
Answer: For Figure S4D, we used Friedman’s test on subjects who had complete data at all 
five timepoints (N = 10). The overall significances for Firmicutes and Bacteroidetes were 
0.18 and 0.1, respectively (see updated Fig. S4D).  

For Figure. S4E, in order to identify genus-level bacteria that was affected by CAR-T 
therapy in MM patients, we applied both longitudinal analysis (Fig. 2D) and Friedman’s test 
(Fig. 2E) in our data analyses. Figure S4E showed the trends of significant genera from 
longitudinal analysis among all 43 patients. The results of Friedman’s test on all patients 
who had complete data at all five timepoints (N = 10) were presented in Fig. 2E. 

For Figures S4F & 4G, we could not apply Friedman’s test because there were only 1 
and 2 subjects who had complete data for all five timepoints in the NHL (see below Table 1) 
and ALL (Table 2) cohort, respectively. 
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subject (NHL) FCa FCb CRSa CRSb CRSc 

1 Yes Yes -- Yes Yes 

2 -- Yes -- Yes -- 

3 Yes Yes -- Yes Yes 

4 Yes Yes -- Yes Yes 

5 -- -- Yes -- -- 

6 -- Yes -- Yes Yes 

7 Yes Yes -- Yes Yes 

8 -- -- -- Yes Yes 

9 Yes Yes Yes Yes Yes 

10 Yes Yes -- Yes Yes 

11 -- Yes -- Yes Yes 

12 Yes Yes Yes -- -- 

 
Table2 

Subject (ALL) FCa FCb CRSa CRSb CRSc 

1 -- Yes -- Yes Yes 

2 Yes Yes -- Yes Yes 

3 -- Yes Yes Yes Yes 

4 Yes Yes -- Yes Yes 

5 Yes Yes -- Yes Yes 

6 Yes Yes -- Yes Yes 

7 -- Yes -- Yes Yes 

8 Yes Yes -- Yes Yes 

9 Yes Yes -- Yes Yes 

10 -- -- -- Yes Yes 

11 -- Yes Yes Yes Yes 

12 Yes -- -- Yes Yes 

13 -- Yes -- Yes Yes 

14 -- Yes -- Yes Yes 

15 -- Yes -- Yes Yes 

16 Yes Yes -- Yes Yes 

17 Yes Yes -- Yes Yes 

18 Yes Yes Yes Yes Yes 

19 Yes Yes -- Yes Yes 

20 -- Yes -- Yes Yes 

21 Yes Yes -- Yes Yes 

22 Yes Yes Yes Yes Yes 

23 Yes Yes -- Yes Yes 

 
5. Was the difference in alpha diversity between PR and CR shown in Fig. 3A validated in the 38 
additional MM patients? 
 



Answer: In the 38 MM validation cohort, Shannon diversity difference between CR and PR 
group was not significant (see Supplementary Fig. 5G, lines 260-261). 
 
6. In Fig 3C-D, was significance of these OTUs determined using a FDR-adjusted threshold as 
would be appropriate given the large number of features tested? The Figure legend indicates 
p<0.05. This question also applies to Figs. S7 and S8.  
 
Answer: For Figure 3D, we summarized number of OTUs with raw p value less than 0.05 
given only a limited number of OTU reaches the threshold FDR < 0.05. For Figures 3D, S7 
and S8, we did use FDR-adjusted threshold. We have updated the corresponding legend for 
these figures. 
 
7. Fig 4A appears to show nominal p-values for the maSigPro results. The authors should use 
FDR-adjusted values (q-values) or provide a line indicating a q-value threshold for significance 
(e.g. q<0.05) so that it’s clear which taxa were significant by maSigPro after adjusting for multiple 
hypothesis testing. The same comment applies to Fig. 5A, Fig. S9B, and Fig. S10B. 
 
Answer: Sorry for confusion. We did consider the issue related to multiple comparisons and 
all identified genera by maSigPro were indeed significant after correction for multiple tesing 
(FDR < 0.05). However, because of our inaccurate labels for x-axis in Fig. 4A and Fig. 5A, it 
led to confusion and sorry for this. We have updated these figures in the revised manuscript. 
The labels for Fig. S9B (Fig. S10 in revised version) and Fig. S10B (Fig. S11 in revised 
version) were right in the previous version.  
 
8. In Fig 4B, what was the color code for the three groups shown at each CART timepoint? 
 
Answer: Different colors represent different response (CR, VGPR and PR). Legend has 
been added to Fig. 4B. Thanks. 
 
9. In Fig. 4C-D, it’s unclear what “value” refers to on the y-axis. The Figure legend indicates log 
transformed relative abundance, but this should result in negative values; -log 10 would result in 
higher values representing lower abundance. This same question applies to Fig 4B. Also, what do 
the red and blue colors signify (do they represent CR and PR)?  
 
Answer: The “value” in Fig. 4C-D indicates log2(percentage+1). A pseudo 1 was added to 
make all the transformed values positive. Red and blue color represent CR and PR, 
respectively. We have also updated legend for Figure 4. 
 
10. Currently the manuscript validates differences in Sutterella between CR vs. non-CR in the 38 
additional MM subjects (Fig S5D). Was Sutterella the only genus that was assessed using this 
validation cohort? What about the other genera that were suggested by RF analysis as contributing 
to differentiation of CR vs. PR at baseline and post-chemotherapy (e.g. Prevotella, Collinsella, 
Bifidobacterium)?  
 



Answer: Thanks for your suggestion. In the discovery MM samples, we revealed a total of 
four bacteria (i.e., Sutterella, Prevotella, Collinsella and Bifidobacterium) was significantly 
different between CR and PR groups, with both differential analysis and RF analysis at 
baseline and post-chemotherapy. Considering the purpose of validation sample, we only 
wanted to replicate those significant findings in replication sample. Thus, in the 38 
validation MM subjects, we validated differences of Prevotella, Collinsella and 
Bifidobacterium between CR vs. non-CR (Supplementary Figure 5D). These changes have 
been added into the main text (see lines 261-268). 
 
Also, why was CR vs. non-CR used instead of CR vs. PR as in the primary analysis? 
 
Answer: Given the limited number of PR patients (N = 7) in the 38 validation MM cohort, 
we merged PR and VGPR (N = 7) group into non-CR group. 
 
11. The authors mention multiple genera that were differentially abundant between CR and PR 
and contributed to RF classifier accuracy. How was Sutterella selected for the PFS tertile analysis 
shown in Fig 4G? 
 
Answer: We chose Sutterella because it was identified to be differentially abundant between 
CR and PR at multiple stages by multiple methods (Fig. 4A). Also, it was identified as a top 
biomarker that discriminated CR from PR by Random Forest procedure at both FCa and 
FCb stage. In addition, from the boxplot in Fig. S5A, we could see that abundance of 
Sutterella in CR group was stably higher than that in PR at different stages, indicating that 
correlation of Sutterella with therapitic response might be more robust. Thus, we chose 
Sutterella and checked its association with PFS.  
 
12. In Fig 5B, it’s not explained what groups the three colors correspond to (presumably different 
CRS grades). 
 
Answer: Yes, different colors represent different CRS grades. Figure legend has been added 
in Fig. 5B. 
 
13. Did the authors compare Bifidobacterium and Leuconostoc abundances before and during 
CRS in the 38 additional MM subjects to validate the results in Fig. 5B?  
 
Answer: No significance was observed for Bifidobacterium or Leuconostoc in the 38 
validation MM patients (see Supplementary Fig. 9, lines 297-299). 
 
14. The Results section should clarify whether PICRUSt analysis was only performed for the MM 
cohort. 
 
Answer: We have clarified this point as suggested in lines 303 and 307 of the revised 
manuscript. 
 



15. The PICRUSt findings should be validated using the 38 additional MM subjects to identify 
which among the many predicted functional shifts were reproducible.  
 
Answer: As suggested, we added differential analysis on PICRUSt predicted pathways of the 
38 validation subjects (see Supplementary Fig. 12) and compared with that of the discovery 
MM cohort. Description of the results were updated in the main text (see lines 313-327). 
 
16. Fig. S11 legend needs proofreading (“differentially abundance between the CR and CR 
groups”). 
 
Answer: Fig. S11 refers to Fig. S13 in the revised manuscript. The grammar has been 
corrected.  
 
17. The title of Fig. 13S should be changed (it does not show correlation of gut microbes). Also 
the figure legend should clarify which response groups are represented by the two colors. 
 
Answer: Fig. S13 refers to Fig. S16 in the revised manuscript. Title and figure legend for this 
figure have also been updated. 
 
18. The Results section (line 323) refers to “multiple inflammatory markers” but lists bacteria; 
could the authors clarify this? 
 
Answer: Sorry for the mistake here. What we showed in the paper were indeed those 
bacteria that correlated significantly with cytokine release syndrome. We have modified the 
sentence in the revised manuscript (see line 367). 
 
19. Additional proofreading is required for the new content as multiple typographical errors are 
present. 
Answer: Thanks for your kind reminder, we have double checked the paper. 
 
Response to Reviewer #2 (Remarks to the Author): 
Review of NCOMMS-21-27883A 
The initial review from reviewer #2, the author’s answers and the comment to author’s answers 
appear in black, blue and red, respectively. 
 
Response to Reviewer 2 (Remarks to the Author): 
General review for the authors 
The article of Hu et al describes the complex interplay between the gut microbiome 
and autologous BCMA CAR T-cell therapy in MM, ALL and NHL patients. Using a 
combination of 16S rRNA gene sequencing, bioinformatics and multiple statistical 
analysis, this study investigated the temporal changes in the intestinal microbiome 
during CAR-T cell therapy, the association between microbial communities and 
clinical response as well as cytokine release syndrome severity. While similar studies 
were published in the field of checkpoint blockade immunotherapies and allogeneic 



hematopoietic stem cell transplantation, this study is the first one to decipher the 
interaction between the gut microbiome and CAR T-cell therapy. 
The clinical samples used in this study were obtained from three different patient 
cohorts, over multiple time points, and were analyzed to comprehensively extract, 
analyze, and correlate microbiome-based dataset, common biomarkers, immune cells 
populations, therapeutic outcome and CRS-based adverse events. In that regard, this 
work could be considered as a resource and the first landmark in the field of immuno- 
oncomicrobiology associated to CAR T-cells. However, as many papers published 
recently in the field, this manuscript remains factual, data oriented and lacks 
mechanistic insights. These insights would be beneficial to specify the mode of action 
of certain key bacteria or group of bacteria, to propose potential therapeutic 
interventions and would render the manuscript accessible/appealing to a broader 
audience. Nevertheless, it is acknowledged the four-way interaction occurring among 
the gut microbiome, the host immune system, the CAR T-cells and cancer cells is not 
easy to apprehend, and this task remains extremely complex and daunting. 
One of the main findings of this paper was the identification of bacterial genera 
showing differences in abundance in CR versus PR groups. Faecalibacterium, 
Bifidobacterium, Collinsella and Sutterella were associated with CR. This finding is 
reminiscent to earlier works on anti-PD-1 checkpoint blockade therapy, suggesting a 
common effect of such taxa across therapeutic strategies. In addition, by stratifying 
bacteria genera abundances in two arms, i.e., before and after CAR T-cell therapy, 
they confidently identified a group of bacteria genera that was enriched in CR versus 
PR, in the two arms. This strongly suggests their association to positive clinical 
outcome of CAR T-cell therapy and put forward their predictive potential. 
Interestingly, the authors further report that high abundance of genus Sutterella was 
with a prolonged event free survival period following CAR-T therapy. While the 
authors acknowledged this positive correlation was not systematically observed across 
different indications, it is a substantial finding that needs to be more extensively 
discussed and contrasted to former reports to propose a potential mode of action. 
The second main finding was the identification of bacterial genera showing 
differences in abundance in mild versus severe CRS. In particular, Bifidobacterium 
and Leuconostoc were found enriched in patient encountering severe CRS. 
Bifidobacterium and Leuconostoc negatively correlate with PB monocyte and 
positively correlated with ferritin/D-dimer proinflammatory molecules, respectively. 
Again, these are interesting and important findings that unravel a gut microbiome 
signature associated to CRS and warrant extensive discussion in light of recent 
literature on CAR T-cell and CRS. 
This manuscript should be improved by considering the comments below: 
-The recurring question in the field of immune-oncomicrobiology is: is intestinal 
dysbiosis a cause or a consequence (or both) of immunotherapy. This question 
remains open in the context of this study. In that regard the authors make a strong 
statement in the title by using the active form: “Gut microbiome modulates CRS and 
therapeutic response to CAR T-cell therapy...”. Because the cause-and-effect 
relationship is not proven, this title should be revised to prevent misleading the 



readers. 
Response: Thanks very much for your positive comments on our paper and valuable 
suggestion. As suggested, we have changed our title to “Gut microbiome correlates 
with cytokine release syndrome and therapeutic response to CAR-T therapy in 
hematologic malignancies” in the revised manuscript. 
 
Thank you for this important adjustment. 
 
Answer (R2): Thanks for your acknowledgement. 
 
-Fig. 1 Illustrates the therapeutic outcome of BCMA CAR T-cell therapy and the 
grade of CRS observed in the three cohorts of patients. However, it does not report 
any additional treatment given to patients to alleviate their CRS symptoms. Does it 
mean that tocilizumab was not used in this study? According to CRS management 
recommendations by Neelapu et al (Nat Rev Clin Oncol. 2018, 15:47-62) and Lee et 
al (Blood 2014, 124:188-95), Tocilizumab should be administered to patients 
undergoing ≥ Grade 2 CRS. It is thus believed that some of the Grade 2-3 CRS events 
documented in this study were managed by Tocilizumab (and/or other drugs). Please 
confirm. As this parameter may affect/bias the dataset (cytokines/cell population 
etc...) obtained at CRS b/c, it should be rigorously documented. This comment holds 
true for other therapeutics used to blunt inflammation, pathogen, and viral infection. 
Response: Thanks for your helpful suggestion. We have added this content into the 
manuscript (see page 5, lines 123-127). 
Thank you for implementing this information into the results section. The use of antibiotics, if 
any, should also be documented in the text. 
How does Toci and corticosteroid affect the results and conclusions drawn out of this study? This 
point should be discussed. 
 
Answer (R2): Thanks for your helpful suggestion. We have added these contents into the 
revised manuscript (see page 5, lines 127-134; pages 16, lines 426-429). 
 
-If I’m not mistaken, the Simpson index measures population diversity (Fig.2) and the 
Shannon measures entropy and thus diversity (Fig. 3). Both indexes are being used to 
assess the diversity of population. Why using both indexes instead of just one in Fig 2 
and 3? 
Response: As suggested, we have changed Simpson index of Figure 2a into Shannon 
index. 
Please add the statistics between FCa and CRSb cohort as documented in the first version. 
 
Answer (R2): As suggested, we have added statistics between FCa and CRSb in Figure 2a. 
 
-Fig. 2C reports the evolution of the relative abundance of bacterial taxa across 
therapy stages. The clarity of this plot could be improved by organizing bacterial 
communities from the highest (top) to the lowest (bottom) abundant one. 



Response: As suggested, the order of taxons in Fig 2c was ordered. 
Thank you. Nothing to add 
 
Answer (R2): Thanks for your acknowledgement. 
 
-Fig. 3D (and Sup Fig. 7/8) is hard to understand. This may prevent the reader from 
quickly grasping the take home message. Consider replotting it differently. 
Response: As suggested, we have modified figure 3D, which is a heatmap showing 
longitudinally differentially abundant OTU clusters between the CR and PR group. 
Rows are OTUs and columns are fecal samples of subjects in different time points. 
Heatmap color was proportional to abundance of OTUs, where blue color indicates 
low abundance and yellow to red color indicate high abundance. Block in left dotted 
box was abundance and change patterns of OTUs in the three clusters across all the 
five time points in CR patients. Block in right dotted box was pattern of the three 
clusters in PR patients. Similarly, we also did changes in Supplementary Figures 7 & 
8. 
Thank you. Nothing to add 
 
Answer (R2): Thanks for your acknowledgement. 
 
-Fig. 4H reports the differential KEGG pathways in CR and PR groups. However, I’m 
not sure to understand the data processing needed to represent such plot. How do you 
come up with these different pathways? From the identification of bacteria with 16S 
rRNA seq? Please clarify and modify the text to ease the comprehension of broad 
audience readers. This comment holds true for Supplementary Fig. 9 and 10. 
Regarding these two figures, I’m surprised to see that the arginine and tryptophan 
metabolism, two pathways commonly associated with CRS, were not identified 
alongside with the purine/lipoic metabolism and biosynthesis of lipopolysaccharide 
and peptidoglycan. Could you please comment. 
Response: We applied PICRUSt2 tool to predict functional abundances based on 16S 
rRNA sequences profiles. PICRUSt2 uses existing annotations of gene content and 
16S copy number from reference bacterial genomes in the IMG (Integrated Microbial 
Genomes) database to predict which gene families are present and then combines 
gene families to estimate the composite of community KEGG functions. The tool 
included more than 40,000 bacterial and archaeal genomes from the IMG database 
and precalculated gene contents for each organism to generate a table of predicted 
gene family abundances for each organism. Microbial community functions could be 
inferred by combining the gene content table and relative abundance of 16S rRNA 
genes in one or more samples (Douglas et al, Nat Biotechnol, 2020, 38: 685–688). We 
have added several sentences to illustrate the method. 
As we modified the statistical method to consider repeated measurements, new results 
for pathway analysis (Figure 4H, Supplementary Figures 9 & 10) were summarized in 
Supplementary Figures 9 & 10. As the functional pathways of bacteria community 
were inferred from the bacteria composition, it may not fully represent real bacteria 



pathways. This bias might lead to omission of some significant pathways such as 
arginine and tryptophan metabolism pathway. This is considered to be the weakness 
of 16S rRNA sequencing when comparing with shotgun metagenomic sequencing. 
To further validate metabolic changes in feces, we applied metabolic Liquid 
Chromatography Mass Spectrometry (LC-MS) to quantify concentration of fecal 
metabolites during CRS. The results are summarized in Supplementary Figures 11 & 
12. In differential analysis of metabolites between CRS groups, we identified 
phosphocreatine which annotated to arginine and proline metabolism to be 
differentially abundant. 
This additional LC-MS dataset is appreciated and helps to consolidate/expand the dataset with an 
orthogonal technic. 
 
Answer (R2): Thanks for your acknowledgement. 
 
-IL-6, IL-1α, IL-1β, M-CSF, MCP-3 and GM-CSF, are key protagonists of CRS 
(doi.org/10.1038/s41577-021-00547-6). I understand that they are missing from Fig. 
5D because they do not fall within the following specs: “Associations with an 
absolute value of correlation coefficient higher than 0.2 and FDR less than 0.2 were 
depicted using CytoscapeIs”. While I don’t have the proper knowledge to assess the 
relevance of those specifications, I wonder if they could be adapted to illustrate the 
correlation between these CRS-related cytokines, the gut microbiome and immune 
cells? Adding them in the network would be very informative. 
Response: Thanks for your suggestion. To better illustrate correlation of CRS-related 
cytokines with gut microbiome, we referred to the review summarizing CRS-related 
cytokines (Li et al., Signal Transduction and Targeted Therapy, 2021, 6: 1-16) and 
added 7 more cytokines (i.e., MIP-1α, GM-CSF, MCP-1, IL-15, IL-1β, IL-1α, IL-17α) 
into the network analysis. Moreover, considering the repeated measures design, we 
applied repeated measures correlation (rmcorr) analysis and updated the network as 
well. More key protagonists of CRS are presented in the newly generated networks. 
Thank you for considering our suggestion. It was important to present correlation that includes the 
main protagonists of the CRS. 
 
Answer (R2): Thanks for your acknowledgement. 
 
On a similar topic, differentiated macrophages play a key role in CRS 
initiation/mediation. Have you explored the evolution of such immune cell population 
in your longitudinal analysis? If so, it could be very informative to implement this 
population in the network of Figure 5D. 
Response: We assessed M1 and M2 macrophage by flow cytometry. By associating 
these two differentiated macrophages with gut microbes, no significant association 
was for M1 and M2 macrophage after multiple test correction. 
OK 
 
Answer (R2): Thanks for your acknowledgement. 



 
Furthermore, Bifidobacterium seems to be increased in severe CRS but at the same 
time, negatively correlate with monocytes, a major driver of CRS 
(doi.org/10.1038/s41577-021-00547-6, doi: 10.1038/s41591-018-0041-7, 
doi.org/10.1038/s41591-018-0036-4). Could you please elaborate on this negative 
correlation? 
Response: No changes are needed as the correlation between Bifidobacterium and 
monocytes was no longer significant after updating statistic method and multiple test 
correction. 
OK 
 
Answer (R2): Thanks for your acknowledgement. 
 
-The experimental details regarding the sample preparation, DNA sequencing, data 
processing, bioinformatics and statistical analysis were thoroughly documented and 
referenced in the methods section. This section will be very helpful for other teams 
working in the field, could improve the consistency in the future dataset generated and 
could allow for better quality meta-analysis. Regarding that last aspect, the data 
generated in this manuscript (raw and analyzed) must be carefully and 
comprehensively documented in a source file to ease extraction and utilization of raw 
data by the scientific community. 
Response: As requested by the journal, we will submit all relevant data to the public 
database as soon as the paper is being accepted by the journal. 
OK 
 
Answer (R2): Thanks for your acknowledgement. 
 
-Typo and word inconsistencies were observed throughout the manuscript. This could 
be sometime misleading (example Line 263, replace decrease by increase). Please 
thoroughly check the text. 
Response: We have double checked the paper.  
The same effort should be done in the revised version as multiple typos remain. 
 
Answer (R2): Thanks for your kind reminder, we have double checked the paper. 
 
The effort to flesh out the discussion is appreciated. The recently published work of Smith et al 
(https://doi.org/10.1038/s41591-022-01702-9) should be mentioned, contrasted and discuss even 
though the dataset was acquired from a CD19 CART cell treated cohort of patients. 
 
Answer (R2): Thanks for your helpful suggestion. We have added this work into the revised 
manuscript (see page 15, lines 395-401). 
 



REVIEWERS' COMMENTS 
 
Reviewer #1 (Remarks to the Author): 
 
The authors have addressed my concerns and comments in their revised manuscript. 
 
 
Reviewer #2 (Remarks to the Author): 
 
The authors have addressed all my coments. 
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