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1 HMM state detection

A general overview of the HMM methodology used in this study will be provided. First, dimer conformations
are extracted from MD trajectories from user defined parameters that will be described in detail below. These
structures are clustered and subsequently divided into HMM observables that describe the energy landscape. The
HMM observables are then used to define hidden states and optimize parameters that define the model. The states
are then used in additional calculations to determine curvature preference of specific dimer subpopulations from
their dynamic redistribution (curvature-coupled redistribution, CCR). A graphical summary of the steps in the
HMM/CCR method is shown in Figure 1, and a list of terms is presented in Table S1.

Term Meaning
Approach complex A single instantaneous configuration of two lipids with centers separated by less than

Rpair = 14 Å. A limited set of atoms of the approach complex are used to compute
mean-squared-displacements (MSDs)

Similarity function The criteria for judging the similarity of two approach complexes by weighting RMSD
and hydrogen-bonding patterns. These are labeled as S, with subscripts indicating
function parameters.

Similarity center A representative configuration from an ensemble of similar approach complexes. Deter-
mined by K-Medoid clustering [1]. The “center” of the cluster.

Similarity cluster The set of approach complexes more similar to a particular similarity center than to any
other similarity center. These are the observables of the HMM.

Pair trajectory The time-ordered sequence of similarity cluster that is assigned to a pair of lipids.
HMM state The target state of a lipid-lipid complex: A lipid pair possibly rich with structural and

curvature-sensitive features, but which is identified only by the time sequence of
its assigned similarity cluster. Determined by optimizing a HMM. The HMM state
is computed by applying the HMM to a pair trajectory.

Hidden Markov model The kinetic model of inter-conversion between hidden Markov states, and the probabilities
of observing any HMM state as a member of a similarity cluster.

Table S1: Terms used to describe the configurations and models for developing the HMM.
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1.1 Using an HMM to extract states

For example, PSM approach complexes are identified using five headgroup atoms from each PSM molecule (10
atom positions from each dimer). The atoms are { OF, C1F, HNF, O3, HO3 }. For a complete list of atoms used to
define approach complexes in each system analyzed, refer to Table S1. These atom positions are used to calculate
the distance between molecules using the center of geometry. Pairs of lipids within Rpair = 14 Å were considered
approach complexes. Atom positions are also used to calculate MSD between different approach complexes (used for
scoring in K-medoid clustering).

We used approximately 15,000 approach complexes per simulation to define a pool from which the similarity
centers were extracted. The set was extracted by traversing the trajectory uniformly, taking all complexes within
Rpair. The quantity was limited by increasing the amount of trajectory skipped. Our software was able to efficiently
determine similarity centers when the pool was less than 20,000.

Additional considerations must be made when identifying ion-mediated approach complexes. When processing
simulations to extract this class of approach complex, an ion type and distance cutoff must be specified in the
processing input file. When searching for the bridging ion, first the approach complex center (based on the specified
atoms) is calculated. Then the distances from this point and the ions proximal to the approach complex are calculated
to find the closest ion. If distance from the ion is then compared to the maximum radial distance (4 Å), this ion is
taken as the bridging ion.

Construction of the HMM

K-medoid clustering [1] was used to reduce the complexity of the extracted approach complexes and identify HMM
observable states. This method uses both the mean-square-displacement (MSD) between approach complexes (fol-
lowing rotational and translational alignment) and a heuristic hydrogen bond matching scheme to rank similarity
between approach complexes. The unweighted MSD between two approach complexes with a matching hydrogen
bond were reduced by ε+ Å2 for each bond, where ε+ is a tunable parameter. If a hydrogen bond was present
in one of the approach complexes but not the other, the MSD was penalized by ε− Å2. An exception was made
for the amide-amide sphingolipid hydrogen bond. Penalties were applied that restricted members of a similarity
cluster to have this bond (or the lack thereof) in common. The identity of one approach complex’s 1 and 2 were
swapped during the comparison, and the smaller MSD was selected, yielding a process independent of 1/2 ordering.
The function applied by the K-medoid clustering to compare two pairs is called a similarity function, and any one
function is denoted as S, with ε± parameters indicated in the subscript. The final value of the similarity function is
denoted ∼χ2. For each similarity function, the number of medoid centers was set to 52, defining similarity centers
labeled { A-Z, a-z }.

The data was then processed to describe the time evolution of the approach complexes using the similarity centers
determined through K-medoid clustering.This is done by reiterating through the MD trajectory in order to assign
individual approach complexes to specific similarity clusters throughout the simulation. When processing the MD
trajectory to build the HMM, the same spacing used for extracting approach complexes was used. An approach
complex was assigned the letter code of the medoid center with which it had the lowest ∼χ2. This yields many
distinct series of similarity cluster observables, stored as simple character strings. These distinct series (called a pair
trajectory) describe the evolution of independent approach complexes. The pair trajectories are then used to build
the kinetic portion of the HMM.

Finally, we have to determine the “hidden” states used in our HMM, which will will refer to as HMM states.
The model defines Ns = 6 states. There is no correct number of states no more than there is a correct model for
any physical system. Rather, if “too many” states are selected, an interesting state may be split into two states that
interchange rapidly, but which exchange slowly with the other states. If “too few” states are selected, features of
interest can not sort cleanly into states. Quotes here indicate that these are qualitative judgments. Once states are
determined, all approach complexes are then classified using the HMM states and used for further analysis, such as
the curvature preference calculations described below.

2 PIP2: protonated on the 4- or 5-phosphate

Figure S2 shows the curvature coupling of PIP2 protonated on the 4-phosphate (left) and the 5-phosphate (right).
While there are differences between the two states, results for each protonation state are consistent with the obser-
vation that PIP2-Ca2+-POPC induces strong negative curvature.
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Training the Hidden Markov Model (HMM)

Molecular dynamics (MD) simulation: {2µs
310KPSM436Å×97Å

30% }∗

PSM/PSM approach complex search
Detect hydrogen bonds

See §“PSM-PSM approach complexes”

15k approach
complexes

K-Medoid clustering
using similarity function Sǫ+=X,ǫ−=Y

See §“K-medoid clustering”

52 similarity
centers

(HMM observables)

Encode pair trajectories
using similarity function

See §“HMM: Observables”

Train HMM
See §“HMM: States”

Analysis using the HMM

MD simulations
{2µs

310KPSM439Å×98Å
10% }

{2µs
310KPSM437Å×97Å

20% }
{2µs

310KPSM436Å×97Å
30% }

Encode pair trajectories
using similarity function

Assign hidden state

State lifetimes
State frequencies

State assignment
for redistribution analysis

to determine pair curvature
See §“Fourier analysis”

Includes repeated
approach complex
search operation

{}∗ simulation
used for training
and analysis

Figure S1: A flowchart showing the process of dimer discovery and assignment via a hidden Markov model (HMM).
The training (left side) and analysis (right side) steps are distinguished by color.
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Figure S2: PIP2 protonated on the 4-phosphate (left) and the 5-phosphate (right).
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Figure S3: PIP2 spontaneous curvature, but now with interactions bridged by Mg2+instead of Ca2+. PIP2 is
protonated either on the 4-phosphate (left) or the 5-phosphate (right).

State P value Pair Composition
Dimer (no HBond) to Dimer (HBond) 0.000077

DOPE to DOPEDimer (no HBond) to Additive 0.025
Dimer (HBond) to Additive 0.21
Dimer (no HBond) to Dimer (HBond) 0.0011

DOPE to DOPCDimer (no HBond) to Additive 0.082
Dimer (HBond) to Additive 0.73
Dimer (no HBond) to Dimer (HBond) 0.000083

DOPE to DOPSDimer (no HBond) to Additive 0.0068
Dimer (HBond) to Additive 0.40

Table S2: Results from Students T-test comparison of experienced curvatures determined from the
DOPE/DOPC/DOPS simulations.

3 PIP2: Calcium vs. magnesium ions

Figure S3 shows the same curvature-dependent dimers now coupled by Mg2+instead of Ca2+. Results for Mg2+are
consistent with the mechanism that it is the cation-mediated interaction with neighboring generic phospholipid (here,
POPC) that induces strong negative curvature.

State P value Pair Composition
Dimer to Additive 0.15 PIP2-PIP2
Dimer (No Calcium) to Dimer (Calcium) 0.15

PIP2− Ca2+ − PIP2Dimer (No Calcium) to Additive 0.085
Dimer (Calcium) to Additive 0.040
Monomer to Heterodimer 0.00039

PIP2− Ca2+ − POPC
Heterodimer to Additive 0.0093

Table S3: Results from Students T-test comparison of experienced curvatures determined from the PIP2/POPC
simulations.
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State P value Pair Composition
Dimer (no HBond) to Dimer (HBond) 0.19

10% PSMDimer (no HBond) to Additive 0.094
Dimer (HBond) to Additive 0.75
Dimer (no HBond) to Dimer (HBond) 0.070

20% PSMDimer (no HBond) to Additive 0.021
Dimer (HBond) to Additive 0.71
Dimer (no HBond) to Dimer (HBond) 0.0038

30% PSMDimer (no HBond) to Additive 0.0029
Dimer (HBond) to Additive 0.061

Table S4: Results from Students T-test comparison of experienced curvatures determined from the PSM simulations.

4 P values for comparisons of experienced curvatures

5 Softening theory for complex bilayers

With c = c1 + c2, where c1 and c2 are the two principal curvatures,

HHC =
κb
2

(c1 + c2 − c0)2 + κ̄c1c2, (S1)

the total elastic curvature energy is:

EHC =
κb
2

∫
A

dSHHC, (S2)

To account for the preferred curvature ∆c0 = c0,p − c0,background of a lipid (c0,p) in a background spontaneous
curvature (c0,background), the energy density is modified by

Hc =
κmAp

2

∫
dS
[

(c− c0,p)
2 − (c− c0,background)

2 ]
, (S3)

Here we do not include the Gaussian curvature modulus κ̄ as we assume all lipids have equivalent κ̄, and the integral
of the Gaussian curvature does not vary with fluctuations.

For simplicity, the membrane surface, and thus its form in Eqs. S2 and S3, is parameterized in the linearized Monge
gauge, a simplified surface parameterization capable of describing nearly planar configurations. The parameterization
is r(x, y) = {x, y, h(x, y)} and linearization imposes a quadratic order cut-off [2, 3] that is accurate for thermal (here,
weak) fluctuations:

EH [h(r)] =

∫
A

dS
κb
2

[
∇2h(r)

]2
(S4)

In Fourier space:

h(r) =
1

A

∑
q

hqeıq · r (S5)

hq =

∫
A

drh(r)e−ıq · r. (S6)

For a real space function f(r) the relation fq = f∗−q applies to the Fourier transform coefficients. The coefficients
are not independent. Furthermore, terms that must be real are real only if q and −q are considered simultaneously.
In recognition of this we sum over q using the shorthand {q > 0},

{q > 0} ≡ {qx, qy} (S7)

such that {
0 < qx < qmax for qy = 0

−qmax < qx < qmax for qy > 0
,
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yielding two independent functions, fq,a and fq,b:

fq,a(r) = 2Re fq cos(q · r)

fq,b(r) = 2Im fq sin(q · r) (S8)

Henceforth we use the cos function’s coefficient fq,a = 2Re fq as the independent variable. Implicitly, the same
derivations apply to the b-component, hq,b.

The Fourier coefficients { hq,a } of the height (with hq,b defined analogously to fq,b) are energetically uncoupled:

EH ({hq,a}) =
κb
2A

∑
{q>0}

q4h2q,a (S9)

with all other cross-terms energetically uncoupled at this order. Given a bilayer with a mole fraction χ of one lipid
and 1− χ background lipids, the energy of a density fluctuation is given by

Eρ ({pq,a}) =
∑
{q>0}

kBT (p2q,a)

2Aρ0 (1− χ)

=
∑
{q>0}

ApkBT (p2q,a)

4Aχ (1− χ)
(S10)

Where pq,a are Fourier coefficients for the distribution of particles (with a and b subscripts analogous to fq,a/fq,b
above), and ρ0 = 2χ

Ap
, with the factor of two representing the contribution from each leaflet. See derivation below.

The impact of the distribution of lipids with spontaneous curvature difference ∆c0,p is now introduced using the
lipid density ρ(r) which is convoluted with the spatial extent w(r) to account for the change in curvature energy
density in Eq. S3:

Ec [h(r), ρ(r)] =
κm
2

∫
L2

drp

∫
L2

drρ(rp)w(r − rp)×[ (
∇2h(r)− c0,p

)2 − (∇2h(r)
)2 − c0,background]

=
Apκm

2

∫
L2

drρ(r)× (S11)[ (
∇2h(r)− c0,p

)2 − (∇2h(r)
)2 − c0,background]

Here Eq. S12 uses w(r − rp) = Apδ(r − rp) as justified by the observed locality of PC, PE, and PS [4].
Performing the Fourier transform of Eq. S11 yields the particle-distribution/undulation coupling:

Ec ({hq,a} , {pq,a}) = −
∑
{q>0}

Ap∆c0,pκmq
2pq,ahq,a

A
. (S12)

with pq,a the Fourier coefficient for the density of lipid with spontaneous curvature differ ∆c0,p = c0,p− c0,background.
Combining Eqs. S9, S10, and S12, the total energy is

Ea = EH ({hq,a}) + Eρ ({pq,a}) + Ec ({hq,a} , {pq,a}) . (S13)

The expectation of h2q,a is determined by

〈h2q,a〉 = Z−1
∫

dhq,adpq,ah
2
q,ae−βEa , (S14)

where

Z =

∫
dhq,adpq,ae−βEa . (S15)

For a single-component membrane (χ = 0 or ∆c0,p = 0), integration leads to

〈h2q,a〉 =
AkBT

κbq4
(single component), (S16)
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from which the bending rigidity can be determined. For the two-component mixture, the expectation of h2q,a is now:

〈h2q,a〉 =
AkBT

κbq4
(1 +

∆c20,pApκbχ (1− χ)

2kBT
+O[∆c30,p]) (S17)

Thus, a bilayer with a symmetric or asymmetric mixture of lipids (with unequal spontaneous curvatures) will expe-
rience apparent softening according to

κapparent = κb

(
1− ∆c20,pApκbχ (1− χ)

2kBT

)
= κb (1− α) . (S18)

where α is the same as in Eq. 2 of the main text.

5.1 Fourier amplitudes of variations in lipid density

The derivation for the free-energy/entropic variation of the Fourier amplitudes of the density modes follows below.
Consider a bilayer with mol fraction χ of lipid A and 1−χ of background lipids. Break the bilayer into M narrow

strips that are long in y with length Ly and narrow in x with width d. There are N lipids in each strip. The expected
number of lipid A, 〈nA〉 in each narrow strip is χN . Given random fluctuations, the variance of nA is χ(1 − χ)N
according to the binomial distribution. For convenience define the density fluctuation function ρA(i) as:

∆nA(i) = nA(i)− χN (S19)

If the number of lipids in bin i, nA(i) is independent of nA(j), the autocorrelation function of ∆nA(i), rnn(j − i)
is

rnn(j − i) =

{
χ(1− χ)N : j = i

0 : j 6= i
(S20)

By the Wiener-Kninchin theorem, the power spectral density S(f) is

S(f) =

∞∑
k=−∞

rnn(k)e−i2πfk

= χ(1− χ)N, (S21)

that is, S(f) is independent of f ; it is “white noise.” Given the power spectral density S(f) in Eq. S21, discrete
variables can be translated to the continuous case of interest: the Fourier transform of the lateral distribution of
lipid A density, pq. Dividing by the bin area dLy, transforming from f to q with f = qLx

2π , and multiplying by 2 π
(by the convention in which the factor of (2π)−1 is in the inverse transform) yields:

S(q) = (2π)
Lx
2π

1

dLy
S(f) (S22)

= LxρA(1− χ) (S23)

Where here ρA = Nχ
dLy

is the number of lipids per unit area. Instead of restricting analysis to x, performing the

two-dimensional Fourier analysis with q = {qx, qy} yields

S(q) = (1− χ)AρA (S24)

Given a sufficiently large bilayer, we now substitute a normal distribution with matching variance. The probability
pr(pq) of observing density fluctuation pq is given by

pr(pq) ∝ exp(−
p2q,a + p2q,b
(1− χ)AρA

) (S25)

where Ap is the area of the lipid, pq,a and pq,b are defined as for hq,a/hq,b above. The expectation value 〈p2q〉:

〈|pq|2〉 = Z−1
∫ ∞
−∞

∫ ∞
−∞

dpq,adpq,b(p
2
q,a + p2q,b)e

−
p2q,a + p2q,b
(1− χ)AρA (S26)

= (1− χ)AρA (S27)
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with

Z =

∫ ∞
−∞

∫ ∞
−∞

dpq,adpq,be
−
p2q,a + p2q,b
(1− χ)AρA (S28)

has yielded the correct variance.

6 Tabulated simulation details

System/composition Ions Dimensions Duration

30% DOPE, 25% DOPC, 45% DOPS
125 Cl−

697 Na+ 429×95×86 Å3 4 × 600 ns

10% PIP2

(half protonated on P4,

half on P5) 90% POPC
82 Cl−

129 Ca2+ 125×125×84 Å3 1×2 µs

10% PIP2

(half protonated on P4,

half on P5) 90% POPC

82 Mg2+

129 Ca2+ 125×125×84 Å3 1×2 µs

10% PSM 90% POPC none 432×98×95 Å3 1×1.1 µs

20% PSM 80% POPC none 423×98×97 Å3 1×1.1 µs

30% PSM 70% POPC none 415×98×98 Å3 1×1.1 µs

Table S5: Key descriptors of the simulations analyzed in this work.
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