
10. Supplemental Information
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Figure S1: Infrastructure-as-Grad-Student vs Infrastructure-as-Code., Related to
Figure 2. A. Local processing via IaGS requires a number of time-consuming steps from the
user (hardware setup, software installation and maintenance, etc.) before any analyses are run.
Then typically analyses of large datasets are run serially (due to resource constraints), leading
to longer processing times. Troubleshooting related to misconfiguration of infrastructure can
cause massive delays. On NeuroCAAS, user interaction is only required at the beginning
of the analysis (to upload the data), then NeuroCAAS processes the data using large-scale
parallel compute resources, leading to faster overall processing times. User storage contains
separated input and output areas where users can maintain datasets for re-analysis, or keep
intermediate analysis results as convenient for subsequent jobs. From data in user storage,
users can analyze multiple datasets in parallel. While errors may occur, users can delegate
debugging to developers, as issues are guaranteed not to be due to infrastructure configuration.
B. On NeuroCAAS, some costs are incurred with each analysis run: the user must upload the
datasets (incurring a small job monitor cost), and then each dataset incurs some compute cost.
The cost of using these analyses is directly proportional to analysis duration and the type of
cloud resources used to construct the relevant infrastructure stack (see Table S7). For local
processing, the bulk of the costs are paid upfront, in purchasing hardware; then additional
labor costs are incurred for maintenance, support, and usage of limited local resources. If the
per-dataset costs are low and the total number of datasets to be processed is limited then
NeuroCAAS can lead to significantly smaller total costs than local processing §2.6.
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{
"PipelineName":"ncapexamplepipeline",
"REGION":"region of service for users",
"Lambda":{

"CodeUri":"Codebase for \ncap Compute",
"Handler":"Module for \ncap Compute",
"Launch":"Whether or not to launch new pipelines. ",
"LambdaConfig":{

"AMI":"AMI id of the developer-configured instance",
"INSTANCE_TYPE": "virtualized hardware instance id. ",
"REGION": "us-east-1",
"SECURITY_GROUPS":"network configuration",
"IAM_ROLE":"permissions to launch new immutable analysis

environments",
"KEY_NAME":"permissions to access immutable analysis

environments",
"WORKING_DIRECTORY":"immutable analysis environment code",
"COMMAND":"code to run to initiate processing",
"SHUTDOWN_BEHAVIOR":"destroy immutable analysis environment

after processing terminates",
"CONFIG":"location of additional configuration parameters",
"MISSING_CONFIG_ERROR":"We need a config file to analyze

data.",
"EXECUTION_TIMEOUT":"Additional parameters for \ncap Compute",
"SSM_TIMEOUT":"Additional parameters for \ncap Compute",
"LOGDIR":"Parameters for \ncap interface",
"OUTDIR":"Parameters for \ncap interface",
"INDIR":"Parameters for \ncap interface",
"LAUNCH":"Launching new pipelines",
"LOGFILE":"Logging location for diagnostic information",
"DEPLOY_LIMIT":"Maximum number of concurrent instances to

deploy",
"MONITOR":"Enable or disable detailed monitoring"

}
},
"UXData":{
"Affiliates":[

{
"AffiliateName":"examplegroup1",
"UserNames":["ian","shreya","taiga"],
"UserInput":true,
"ContactEmail":"The email we should notify regarding

processing status."
},
{

"AffiliateName":"examplegroup2",
"UserNames":["liam","john"],
"UserInput":true,
"ContactEmail":"The email we should notify regarding

processing status."
}

]
}

}

Figure S2: NeuroCAAS blueprint template declaring all relevant resources. Related
to STAR methods. Immutable Analysis Environments can be defined from Variables in the
Lambda.LambdaConfig field, the job manager protocol is defined in Lambda.CodeUri and
Lambda.Handler. Users and permissions are defined in UXData.
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Figure S3: Analyses on NeuroCAAS are reproducible. Related to Table 1. Figure
shows fifteen independent runs of two analysis algorithms- CaImAn on the left, and Ensemble
DeepGraphPose on the right, run from di↵erent geographic locations and versions of the
NeuroCAAS platform. The first five runs were performed by an author in the United States.
The second five runs were performed by an independent researcher in India. The following four
were performed by an independent researcher in Switzerland, and the last was run on a totally
independent version of the NeuroCAAS platform. Each independent run uses the same data
and configuration files, and assumes that all data is already uploaded to NeuroCAAS. Images
show di↵erences in the actual analysis outputs between runs. For CaImAn, we quantify the
Jaccard Distance between detected spatial components (A), and the Average RMSE between
detected temporal components (B). Analysis results are identical across all runs. For Ensemble
DGP, we quantify the Average RMSE between body part traces produced by the same network
(C). The average RMSE never exceeds order 1e-7. Given that these traces are given in units
of pixels, these di↵erences are negligible.
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Figure S4: Analyses on NeuroCAAS are reproducible. Related to Table 1. Figure
shows same fifteen independent runs of two analysis algorithms as in Figure S3. Images show
the time taken to complete di↵erent parts of the analysis- in green is the time taken to set up
analysis infrastructure after a request. In orange, we show the time between the successful
setup of analysis infrastructure, and the production of the analysis’s final output. In blue, we
show the time required to take apart infrastructure after analysis is complete. Overall, across
di↵erent runs di↵erences in runs are small. These results emphasize the di↵erence between
our platform and others which o↵er public compute via cluster resources, where wait times in
queues would a↵ect such quantifications.
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Figure S5: NeuroCAAS Design Diagram. Related to STAR Methods. NeuroCAAS is
built with an Infrastructure-as-Code design, meaning that we first write a source repo (top)
specifying all of the actual resources we will use to carry out data processing (bottom). The
source repo (top) contains three main types of code: User Profiles, specifying relevant user
data; Analysis Blueprints, describing individual analyses on NeuroCAAS, and Protocols, giv-
ing rules that describe NeuroCAAS job manager function. Each user and each analysis in
NeuroCAAS has a dedicated code document, as specified by indices (u, b). All parts of the
source repo can independently be deployed, automatically provisioning and configuring the in-
frastructure resources specified therein. Deployment comprehensively generates the resources
necessary to run analyses on NeuroCAAS. Notably, most parts of infrastructure stacks (bot-
tom right) are not persistent, but rather are instantiated every time users request an analysis
job, specified as a combination of datasets and parameter configurations (bottom left). Job
managers deploy one set of infrastructure for each dataset in a requested job, as specified by
the index j. The contrib and interface repo assist in the deployment of resources from the
source repo, and and the management of resulting resources. New users were registered by fill-
ing in a corresponding user profile with code from the interface repo, which was then deployed
with the source repo to automatically generate storage space, dedicated login credentials, and
permissions to use analyses for the user. The user profile is similar in format to the UXData
segment of the blueprint as given in Figure S2, and can be found in the NeuroCAAS codebase
online. Section numbers refer to relevant parts of the main text.
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Figure S6: Overview of NeuroCAAS Developer Workflow. Related to STAR
Methods. Left indicates the developer’s experience; right indicates the work that Neu-
roCAAS performs. The developer begins by downloading the developer package https:
//github.com/cunningham-lab/neurocaas_contrib and building an immutable analysis en-
vironment script on their local machine. After determining workflow and optionally installing
analysis software into an IAE, the developer locally tests that sample data and config files
yield expected logs and results. Once satisfied, the developer updates a blueprint with IAE
specifications. Next, developers configure system and hardware settings by setting up their
IAE, complete with sample data and parameters, on hardware from the NeuroCAAS resource
bank. Configuration and updates to an IAE are done identically to initial local build, allowing
for IAEs custom-built for powerful cloud resources. Finally, developers simulate NeuroCAAS
user accounts and trigger analyses with their blueprint to ensure that their analysis functions
as intended end-to-end before publishing their blueprint for use.
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Figure S7: Alternative cost quantification of local infrastructure as cluster. Related
to Figure 7. Because the instances o↵ered on AWS are not wholly analogous to either personal
hardware or cluster resources, we o↵er additional comparisons that span the range of prices.
Cluster pricing was calculated with the AWS TCO calculator https://calculator.aws/. We
calculated the cost of infrastructure as a subset of the TCO provided by AWS. In particular,
we calculated xlocal as the total server hardware cost (undiscounted) and acquisition cost
of NAS storage, and the cost of a GPU, with additional yearly recurring costs cs(n) given
by storage administration cost, server hardware maintenance cost, and IT Labor costs. We
then calculated the LCC and LUC from these quantities as described in §2.6, 9.3. A) provides
Local Cost Crossover Crossover for these resources priced as cluster compute resources, priced
according to Amazon AWS’s TCO calculator. B) provides the same for Local Utilization.
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Calcium Imaging

Algorithm Name Publication Software

Version

Package

Version

OS config Batch

Scripting

Other

Processes

Storage Memory GPU CPU

CaImAn Giovannucci et al.

2017

X X X X X X

CNMF-E Zhou et al. 2018 X X X X X X X

Suite2p Pachitariu et al.

2017

X X X X X X

ABLE Reynolds et al.

2017

X X X X X X

SCALPEL Petersen et al.

2018

X X X X X X X

Min1PIPE Lu et al. 2018 X X X X X X

SamuROI Rueckl et al. 2017 X X X X X X X X

Romano Romano et al.

2017

X X X X X X X

FISSA Keemink et al.

2018

X X X X X X

OASIS Friedrich et al.

2017

X X X X X X X

Percentage Supporting 100% 90% 0% 50% 0% 0% 0% 0% 0%

Table S1: Infrastructure support for Calcium Imaging Algorithms. Related to Figure
1. See STAR methods, 9.3 for details on evaluation.
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Behavioral Quantification.

Algorithm Name Publication Software

Version

Package

Version

OS config Batch

Scripting

Other

Processes

Storage Memory GPU CPU

DeepLabCut Mathis et al. 2018 X X X X X X

DeepFly3D Günel et al. 2019 X X X X X X X

JAABA Kabra et al. 2012 X X X X X X X

Ctrax Branson et al.

2009

X X X X X X

DeepPoseKit Graving et al. 2019 X X X X X X X X

Ethovision —- X X X X X X X

APT —- X X X X X X

bonsai Lopes et al. 2015 X X X X X X X X

Miceprofiler de Chaumont et al.

2012

X X X X X X X

LEAP Pereira et al. 2018 X X X X X X X

Percentage Supporting 90% 90% 20% 10% 0% 0% 0% 0% 0%

Table S2: Infrastructure support for Behavioral Quantification Algorithms. Related
to Figure 1. See STAR methods, 9.3 for details on evaluation.
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NeuroCAAS IAEs
Analysis Name Paper Subfield Description
DeepLabCut (dev,
public, 2.X)

(Mathis et al., 2018) Pose Track-
ing

Markerless pose estimation of user-defined features
with deep learning for all animals, including humans.

DeepGraphPose (Wu et al., 2020) Pose Track-
ing

DGP is a semi supervised model which can run on
top of other tracking algorithms, such as DLC.

Ensemble DGP N/A Pose Track-
ing

Ensemble DGP independently trains N di↵erent
DeepGraphPose models that di↵er only in the se-
quence of minibatches that they see, and generates
a consensus prediction from them.

DLC Tracking
(Polleux)

N/A Pose Track-
ing

(Custom) Markerless pose estimation with postpro-
cessing to quantify freezing behavior.

DLC Tracking
(Carcea)

N/A Pose Track-
ing

(Custom) Markerless pose estimation with postpro-
cessing to quantify social behavior.

Labeling GUI N/A Pose Track-
ing

Labeling GUI for a variety of pose tracking algo-
rithms.

BehaveNet /
Partitioned-
subspace VAE

(Batty et al., 2019)
(Whiteway et al.,
2021)

Behavioral
Video Anal-
ysis

Nonlinear embedding and Bayesian neural decoding
of behavioral videos.

CaImAn (dev, pub-
lic)

(Giovannucci et al.,
2019)

Calcium
Imaging

Integrated python toolbox for large scale Calcium
Imaging data Analysis and behavioral analysis.

LocaNMF (Saxena et al., 2020) Widefield
Imaging

Region-based Decomposition for Widefield Calcium
Imaging Data.

PMD (Buchanan et al., 2018) Functional
Imaging

Penalized Matrix Decomposition for Denoising and
Compression of Functional Imaging Data.

WFCI Pipeline Couto et al. (2021) Widefield
Imaging

Full data pipeline to work with widefield imaging
data equipped with GUI

1-photon compres-
sion

N/A Functional
Imaging

GUI based compression of imaging data.

1-photon motion
correction

N/A Functional
Imaging

GUI based motion correction of imaging data.

1-photon demixing N/A Functional
Imaging

GUI based demixing of imaging data.

BarDensr (Chen et al., 2020) Spatial
Transcrip-
tomic Imag-
ing

BarDensr (BARcode DEmixing through Non-
negative Spatial Regression) for demixing spatial
transcriptomic imaging data.

YASS (Lee et al., 2017) Spike Sort-
ing

YASS is a spike sorting pipeline developed for high-
firing rate, high-collision rate retinal recordings.

Latent Factor Anal-
ysis for Dynamical
Systems: LFADS

(Sussillo et al., 2016) Probabilistic
Inference on
Time Series

Deep learning method to infer latent dynamics from
single-trial neural spiking data.

Kalman
Filter/Smoother-
Linear Dynamical
System Inference.

(Minka, 1999) Probabilistic
Inference on
Time Series

Time-invariant model for tracking a single object in
a continuous state space.

Emergent Property
Inference

(Bittner et al., 2019) Likelihood
Free Infer-
ence

A method for learning parameter distributions on
models constrained to produce certain desirable phe-
nomena in their output.

Table S3: List of existing analyses currently implemented on NeuroCAAS through

IAEs. Related to Figure 2. Parentheses indicate di↵erent individual IAEs for a single analysis,
corresponding to analysis versions or development stages.
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Dataset Details
Analysis Format Size (Small) Dim (Small) Size (Medium) Dim

(Medium)
Size (Large) Dim (Large)

CaImAn zipped
ti↵

8.39GB 8000 ⇥ 512 ⇥
5121

35.84GB 41000⇥458⇥
4771

78.70GB 90000⇥463⇥
4722

DeepLabCut mpeg 5⇥ 214.8MB 5 ⇥ 36000 ⇥
340⇥ 4203

10⇥ 214.8MB 10 ⇥ 36000 ⇥
340⇥ 4203

15⇥ 214.8MB 15 ⇥ 36000 ⇥
340⇥ 4203

PMD + Lo-
caNMF

numpy
array

1⇥ 20.1GB [500 ⇥ 600 ⇥
1697, 1697 ⇥
8979]4

3⇥ 20.1GB [500 ⇥ 600 ⇥
1697, 1697 ⇥
8979];
[500 ⇥ 600 ⇥
1652, 1652 ⇥
9000];
[500 ⇥ 600 ⇥
2298, 2298 ⇥
8988]4

5⇥ 20.1GB [500 ⇥ 600 ⇥
1697, 1697 ⇥
8979];
[500 ⇥ 600 ⇥
1652, 1652 ⇥
9000];
[500 ⇥ 600 ⇥
2298, 2298 ⇥
8988];
[500 ⇥ 600 ⇥
2304, 2304 ⇥
8992];
[500 ⇥
600 ⇥ 1910,
1910⇥ 8952]4

1 [Time ⇥ X ⇥ Y] at 7 hz Giovannucci et al. (2019)
2 [Time ⇥ X ⇥ Y] at 30 hz Giovannucci et al. (2019)
3 [Batch ⇥ Time ⇥ X ⇥ Y ] at 30 hz
4 [X ⇥ Y ⇥ Rank, Rank ⇥ Time] at 30 Hz

Table S4: Details of the datasets used to benchmark performance. Related to Figure
7. Sizes given for the three datasets tested for each pipeline shown. Dataset dimension labels
are included in footnotes provided.
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NeuroCAAS Benchmarked Analyses
Analysis
Name

Storage Memory GPU CPU
count

OS Job Mon-
itor

Resource
Usage

Version
Control

Packages

CaImAn 500 GB
SSD

275 GB N/A 64
vCPU1

Ubuntu
16.04
(Linux
HVM)

stdout CPU Uti-
lization

Github pip
require-
ments
file

DeepLabCut 200 GB
SSD

65 GB Nvidia
Tesla
K80

4
vCPU2

Ubuntu
16.04
(Linux
HVM)

stdout CPU Uti-
lization

Github conda
environ-
ment file

PMD 75 GB
SSD

275 GB N/A 64
vCPU1

Ubuntu
18.04
(Linux
HVM)

stdout CPU Uti-
lization

Github Conda
Package

LocaNMF 75 GB
SSD

65 GB Nvidia
Tesla
V100

8
vCPU3

Ubuntu
16.04
(Linux
HVM)

stdout CPU Uti-
lization

Github Conda
Package

1 Intel Xeon Platinum 8000 series (Skylake-SP)
2 Intel Broadwell (AWS)
3 Intel Xeon E5-2686v4

Table S5: Infrastructure details for benchmarked algorithms. Related to Figure 7.
Job Monitor refers to the mechanisms used to track the status of ongoing jobs. Resource
Usage refers to the hardware diagnostics tracked by NeuroCAAS. Version Control refers to
the version control mechanisms used to maintain fidelity of core analysis code. Packages refers
to the mechanisms used to handle analysis dependencies.
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NeuroCAAS Local Simulation
Analysis
Name

Storage Memory GPU CPU
count

OS Job Mon-
itor

Resource
Usage

Version
Control

Packages

CaImAn 500 GB
SSD

17 GB N/A 4
vCPU1

Ubuntu
16.04
(Linux
HVM)

stdout None github Pip
require-
ments
file

DeepLabCut 200 GB
SSD

65 GB Nvidia
Tesla
K80

4
vCPU2

Ubuntu
16.04
(Linux
HVM)

stdout None github Conda
Package

PMD 75 GB
SSD

131 GB N/A 16
vCPU3

Ubuntu
18.04
(Linux
HVM)

stdout None Github Conda
Package

LocaNMF 75 GB
SSD

65 GB Nvidia
Tesla
K80

4
vCPU2

Ubuntu
16.04
(Linux
HVM)

stdout None github Conda
Package

1 AMD EPYC 7000 Series
2 Intel Broadwell (AWS)
3 Intel Xeon E5 Broadwell Processors

Table S6: Details of infrastructure used to simulate local processing. Related to
Figure 7. The column labels mirror those in Table S5.
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Pricing List
Resource Metrics Rate
EC2 (Compute) Time Hardware Depen-

dent, Fluctuates
Lambda
(Workflow)1

Data Size ⇥ Time $1.66667⇥1e�5 per
GB-second

S3 (Data Transfer
Out)2

Data Size $0.09 per GB

1 AWS Lambda is also priced for number of requests, but this is a
negligible cost for a single analysis run.

2 Data Transfer is only priced out of Amazon Web Services, i.e. in
returning results to the end user.

Table S7: Pricing details for implemented algorithms. Related to Figure 7. The
virtualized hardware underlying a hardware instance can be provisioned at several di↵erent
prices. We used AWS EC2 Spot Instance pricing to reduce costs, having known beforehands
how long the analyses would take. At the moment, we depict prices based on spot instance
availability in September 2019. Empirically, we observe that spot instance price fluctuations
give standard deviations on the order of cents over a period of months (see source repo for
experiments). The duration of NeuroCAAS Compute and Local analysis time was recorded
automatically with cloud native resource monitoring tools (AWS Lambda, AWS Cloudwatch
Events, and AWS S3). These tools automatically recorded the creation and destruction of
instances, and recorded the relevant timestamps at millisecond resolution. These monitoring
tools were also managed via NeuroCAAS blueprints, and their design can be found in the
same blueprint codebase. The same tools were used to calculate the usage data shwon in
Figure 3. We do not disclose user data at an individual level, but developers can generate the
same figures for users of their own analysis by using the NeuroCAAS contrib repo (specific
instructions are given in the source repo’s README file).
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Cost (Local)
Algorithm Name vCPU

count
GPU Memory Storage

Capacity
Workstation Price,
US Dollars (Esti-
mated Price Tag
Cost)

Cluster Price, US
Dollars (Estimated
Price Tag Cost
from Amazon TCO
Calculator)

CaImAn 4 N/A 16 GiB 500 GB 16182 1499+1000
DeepLabCut 4 Tesla

K80
61GiB 200 GB 31203 1701+400+15555

PMD + LocaNMF 1 16 Tesla
K80

122 GiB 150 GB 54364 10836+300+15555

1 Hardware cost for a local instance that can account for processing done on all analyses.
2 CaImAn Hardware Price
3 DeepLabCut Hardware Price
4 PMD+LocaNMF cost
5 Cluster Price

Table S8: Instance and hardware cost details for local cost comparisons. Related to
Figure 7. Estimated Price tag prices as of May 3rd, 2020. Price tag estimation of workstation
style hardware was based on market prices chosen to reflect the infrastructure implementation
as given in Table S6, in particular, CPU make. Estimation of cluster style hardware cost was
based on the AWS TCO calculator (https://awstcocalculator.com), as of January 25th,
2020, incorporating the total server hardware cost (undiscounted) and acquisition cost of
SAN storage.
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