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Abstract: During meiosis, crossover rates are not randomly distributed along the chromosome
and their location may have a strong impact on the functioning and evolution of the
genome. To date, the broad diversity of recombination landscapes among plants has
rarely been investigated and a formal comparative genomic approach is still needed to
characterized and assess the determinants of recombination landscapes among
species and chromosomes. We gathered genetic maps and genomes for 57 flowering
plant species, corresponding to 665 chromosomes, for which we estimated large-scale
recombination landscapes. We found that the number of crossing-over per
chromosome spans a limited range (between one to five/six) whatever the genome
size, and that there is no single relationship across species between genetic map
length and chromosome size. Instead, we found a general relationship between the
relative size of chromosomes and recombination rate, while the absolute length
constrains the basal recombination rate for each species. At the chromosome level, we
identified two main patterns (with a few exceptions) and we proposed a conceptual
model explaining the broad-scale distribution of crossovers where both telomeres and
centromeres play a role. These patterns globally correspond to the underlying gene
distribution, which affects how efficiently genes are shuffled at meiosis. These results
raised new questions not only on the evolution of recombination rates but also on their
distribution along chromosomes.
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Response to reviewers 

Dear editor, 

We thank you and the three anonymous reviewers for giving us the 
opportunity to improve and resubmit our manuscript and we are pleased to submit a 
revised version of our manuscript. 

The reviewers have contrasted views. Reviewers 2 and 3 are very positive, 
and we thank them for their positive feedback. In contrast, reviewer 1 doesn’t call 
into question the validity of our results but has concerns about the general interest 
and originality of the work, and the lack of clear questions addressed in the 
manuscript. Although we disagree with her/him about the lack of novelty and interest 
(see also reviewers 2 and 3), we acknowledge that we didn’t stress and explain it 
sufficiently and that the work was framed in a somewhat too loose way. Most of 
reviewer 1’s concerns were already addressed or partly addressed in the manuscript 
but not clearly enough for the reader. In this revised version we thus pay particular 
attention to be more explicit on hypotheses, to clearly stress the novelty of the 
dataset, approach, and results, and to sharpen and streamline the text. 

About the novelty of work, we would like to insist on the originality and the 
quality of the dataset compared to what was done so far. First, we almost doubled 
the number of species compared to Haenel et al. 2018 (which was the largest 
dataset in plants before). Second, we started from raw data (genetic and physical 
distance between markers) to rebuild Marey maps and inferred recombination maps 
with the same standardised pipeline. So our work is a new analysis using published 
datasets but not a meta-analysis as in Haenel et al. 2018, where heterogeneous 
information was collected and combined, and mostly inferred from figures (“For the 
vast majority of species (>90%), CO information suitable to this study was available 
in graphical form only.”, p2483). Third, by an extensive literature survey, we also 
gathered cytological information to more precisely locate centromeres. This allowed 
us to perform detailed analyses that were not carried out before (ex: identifying 
patterns, testing the different models, measuring genetic shuffling). We briefly stress 
this in the introduction: “So far, the number of studied species remained limited and, 
as plant genomes are highly diverse in many ways (Pellicer et al., 2018; Soltis et al., 
2015), the expected diversity in recombination landscapes may have been 
overlooked (Gaut et al., 2007). In addition, previous studies where meta-analyses 
combining heterogeneous datasets (ex: mix of inferred data from graphics, final 
processed data and only a few raw datasets in Haenel et al. 2018) without a 
standard way to infer recombination maps, which prevented detailed comparison 
among many species.” 

In this revised version, we also address the reproducibility issues raised by 
reviewer 3 and consider all specific comments of the three reviewers, especially to 

Response to Reviewers



improve the clarity of the method and results sections and the aesthetics and 
readability of figures. 

With this revised version we hope that we have addressed all comments and 
issues raised by the three reviewers and that the manuscript is now suitable for 
publication in PLoS Genetics. Below we provide detailed answers to reviewers’ 
comments. 

 

Thomas Brazier and Sylvain Glémin 

 

 

Reviewer #1 
 

It is now possible to analyse genetic and physical maps of organisms, as the 
literature now contains suitable data from multiple species. This manuscript analyses 
such data from larger numbers of plant species than previous studies (55 species, 5-
26 chromosomes per species), and describes results for the broad-scale 
recombination landscapes. However, it does not actually use the analyses to ask 
interesting questions, which I had hope to see. Some questions might include the 
following. 

We respectfully disagree with the general comments that we didn’t address 
some of the interesting questions listed below. However we acknowledge that 
we didn’t clearly stress them and framed the work with sufficiently clearly 
identified questions. We have extensively rewritten the introduction to make 
them appear clearly and below we answer each specific question. 

 

Do chromosome arms have an obligate crossover? How often do chromosome arms 
have multiple crossovers, versus a single one (as I believe is the case in C. 
elegans)? 

We already answered these questions in the previous version in figure 1A, 
figure 2B and through the formal model selection (Figure 6; Table 1). We also 
discussed them in the discussion about the species basal recombination rate, 
that the smallest chromosome of the genome had between one and two CO, 
independently of its genomic size. However we agree that it could have 
appeared diluted among other results. In the current version, (i) we directly ask 
the question in the introduction: “What is the range of COs per chromosome 
observed in plants?”, (ii) we annotated the number of COs on isolines in 



Figure 1A, and (iii) we more explicitly describe the results “Less than 2% of 
chromosomes had less than one CO (n = 11). 234 chromosomes had between 
one and two COs, suggesting that a single CO per chromosome is sufficient, 
though 419 chromosomes had more than two COs.” 

Do related species differ (this is an important question, as it relates to the question of 
whether genetic recombination is sometimes selectively favoured, leading to higher 
crossover numbers than required for correct segregation, and for repair mechanisms 
to occur). This question is discussed near the very end of the text, but is not 
mentioned as a question earlier, making it appear that the ms is entirely descriptive. 
The ms does not seem to mention that some of the species studied are close 
relatives, and that this can be helpful in studying such questions. 

We discussed the potential selective advantage of recombination by raising 
the question of the potential advantage to recombine more in gene-rich 
regions and what would be the optimal distribution of COs along the 
chromosome. However, we preferred not to introduce it as a main question of 
the article as the dataset and the approach is not appropriate to study it 
properly. We have too few closely related species to properly test for the 
evolution of recombination rates. At the angiosperms scale, we showed that 
the phylogenetic effect is mainly due to the differences of chromosome size 
between species (the phylogenetic model did not perform better than the 
mixed effect model with a species random effect without phylogenetic 
structure). We precise it in the results section “the introduction of 
phylogenetic covariance did not improve the mixed model thus we did not 
retain a phylogenetic effect”. In general, closely related species do not differ in 
recombination rates but they do not differ in chromosome size either. 

How large are pericentromeric regions with low recombination rates in plants, and 
how much do they differ between related species? 

We answered the first question in figure 4 and figure S2. And as said above, 
we do not have an appropriate sampling to properly analyse differences 
among related species. 

Do selfers have higher recombination rates per physical length of chromosome than 
closely related outcrossers? 

As for previous questions, our dataset is not appropriate for this specific 
question. We would need either more pairs of closely related selfing and 
outcrossing species or a larger dataset to perform an angiosperm wide 
phylogenetic regression analysis. Actually, out of curiosity we had already 
done this analysis before and the effect was not significant. As it was a side 
analysis and because we already had many results we decided not to present 
it.  



Are recombination rates the same in male versus female meiosis? This is finally 
mentioned in line 574, but it is not made clear until then that the data analysed are 
sex-averaged rates. 

It is indeed a really interesting question. Unfortunately, as discussed line 596 
(first draft version), we do not have enough sex-specific data to study it  (in 
general, only sex-averaged genetic maps are provided). We indicated more 
clearly in the introduction and results that we have only sex-averaged genetic 
maps: “we have estimated the sex-averaged rate of COs along chromosomes. 
(…) We retrieved publicly available data for sex-averaged linkage maps” 

Instead, the ms presents rather dull statistical analyses. The results have value, but 
they appear mainly to confirm findings that were already well established, and the 
ms does not make very clear what new findings now emerge, or show what we can 
now understand from the results that was not already known. More than once in the 
text “new insights” are claimed, but it is difficult to find them, partly because of the 
length of the text, which is also long-winded and repetitive in several places. These 
problems could be ameliorated by outlining in the Introduction what questions the 
authors set out to study. As written, this section gives the impression that their aims 
were purely descriptive, which is not an encouragement to read the text. The ms also 
tries to interest the reader by making claims to novelty, rather than describing some 
interesting questions. For example, I feel that it is too strong to say that “the broad 
diversity of recombination landscapes among plants has rarely been investigated… 
and the diversity of the resulting landscapes among species and chromosomes still 
need[s] to be assessed“, although a formal comparative genomic approach may be 
new and valuable. A further value from analysing more species is that exceptions to 
accepted generalisations may be detected, and this study did produce a few 
examples of such exceptions. Overall, I doubt that readers need a length 
Introduction to tell them that recombination patterns are interesting in relation to 
evolution, including evolution of patterns in genomes, such as regions with different 
repetitive sequence density, and consequently gene density, and with differences in 
GC content. A shorter Introduction could give a better idea of what is new from this 
study. 

As mentioned above, we agree that the novelty and the strength of this work 
could have been diluted in the manuscript. So we streamlined the introduction 
(for ex we removed some general statements) and now stress the main 
questions addressed in this study: “Thanks to this dataset we addressed the 
following questions. What is the range of COs per chromosome observed in 
plants? Is the distribution of COs shaped by genome structure (i.e. 
chromosome size, telomeres, centromeres) and if so is there a universal 
pattern? Since recombination hotspots have been found in gene regulatory 
sequences so far, are recombination landscapes generally associated with 
gene density? What are the consequences of recombination heterogeneity on 
the extent of genetic shuffling? Overall, we found that recombination 



landscapes in plants are more diverse and more complex than initially 
thought.” We also tried to be clearer on what is novel and what is 
confirmatory.  

At least several of the conclusions are just confirmations of what was already known. 
The following examples illustrate this problem, and my comments also include some 
other issues for some of them (a recurring problem throughout the text is poor 
writing, including long-winded writing that makes the meaning hard to understand, 
and I provide some examples in my ‘Minor comments’ below, but these are still 
important comments that require revisions of the text, … 

We extensively revised the text to simplify the writing and we hope it is clearer 
now. 

…including a suggestion that some species may have too little information to be 
used. It would be helpful to show the numbers or markers mapped in Figure 4. In 
addition, if the numbers are small, presumably the total genetic map lengths are 
unreliable, and it is not explained prominently whether any attempt was made to 
check for this problem. 

During dataset assembly, we checked the coverage of linkage maps with the 
difference between raw total linkage map length and the corrected total linkage 
map length. We estimated the corrected total linkage map length with two 
different methods: Chakravarti et al. (1991) and Hall and Willis (2005) and 
chose to report only the more sophisticated method of Hall and Willis (2005) in 
the manuscript. We added our conclusions to the Results: “Corrected linkage 
map length didn’t change the total linkage map length (mean difference = 1.19 
cM, max difference = 5.62 cM), giving confidence in the coverage of the linkage 
map”. 

Moreover, we used different metrics to assess the quality of Marey maps 
during the filtering step (e.g. marker density, mean interval between markers, 
largest gap, percentage of the total chromosome size covered by the linkage 
map, genome coverage, i.e. the difference between map length in Mb and 
chromosome size from the fasta file) and they were useful to automatically 
reject a large proportion of dataset (57 dataset retained among 120 dataset 
gathered; 52 % of dataset discarded). We did not keep every chromosome of a 
dataset and discarded 17 chromosomes among the retained dataset. The 
quantitative criteria were adjusted by iterative trials until we found a consistent 
dataset, and finally their values were: 

- Exclude chromosomes with less than 50 markers 

- At least one marker every 4 cM on average 



- Exclude maps with gaps larger than 20 cM, as they could be falsely 
detected as recombination peaks (the value seems large, but smaller 
values were extremely stringent) 

- Final visual assessment to exclude undetected suspicious maps  (11 
chromosomes among 6 species) or to make the choice to keep maps 
outside criteria (19 chromosomes among 9 species). 

Moreover, it is important to note the strong qualitative improvement of our 
dataset compared to Haenel et al. (2018). They kept chromosomes with at least 
20 markers (50 for us with a few exceptions at 30, so 50% to 150% higher) . As 
explained above, they mixed Marey maps with recombination landscapes, 
hence mixing different methods of estimation. Many of their linkage maps or 
recombination maps were figures that were digitised to interpolate an 
approximate markers’ positions or recombination rates in segments, 
potentially limiting their spatial resolution (in both cM and Mb). They mixed 
sex-averaged maps with sex-specific ones (or an average of them). On the 
contrary, we made the effort to search only for tabular data to get the exact 
genetic and physical position of markers, and we had to ask many authors to 
provide their maps (as they were not always in supplementary materials). We 
did the effort of mapping markers on reference genomes as much as possible 
(if physical positions were not provided or if a more recent assembly version 
was available, when we had the markers’ sequences). We mapped markers’ 
positions on a reference genome for 14 datasets. We implemented a pipeline 
for the Marey map approach to get as much as possible consistent and 
reproducible estimates (e.g. automatic tuning of smoothing, bootstrapped 
confidence interval) so they could be compared between species, despite the 
inherent heterogeneity of our dataset. 

References 
Hall, M. C. & Willis, J. H. Transmission Ratio Distortion in Intraspecific Hybrids 
of Mimulus guttatus. Genetics 170, 375–386 (2005). 
Chakravarti, A. A graphical representation of genetic and physical maps: The 
Marey map. Genomics 11, 219–222 (1991). 

 

1. “We observed that the bias towards the periphery was not ubiquitous across 
species“ and “Only a subset of species, especially those with larger chromosomes, 
exhibited a clear bias”. These conclusions are quite similar to that of Haenel et al. 
(2018) that a distal bias is “universal for chromosomes larger than 30 Mb” (note the 
incorrect English “concluded to a distal bias”). The main advance seems to be that 
this study finds that Nelumbo nucifera and Camellia sinensis are exceptions to this 
pattern, with the highest recombination rates found in the middle of their 
chromosomes. 



We corrected the English “concluded” by “assessed”. 

Though we get similar conclusions, we did more than identifying two 
exceptions. We identified a second pattern that Haenel et al. didn’t detect. 
Haenel et al. (2018) described and conceptualised only the distal pattern (34  
species in our study) but they didn’t suggest anything for species not 
following this pattern. Thus we identified 22 species as exceptions to the 
Haenel et al. model  (16 species sub-distal and 7 species as exceptions).  We 
classified N. nucifera and C. sinensis in the sub-distal instead of distal, despite 
their large chromosome size, thus suggesting that the Haenel model is not so 
universal, as they claimed. We also stated that a fraction of species do not 
follow any of the two patterns we described (7 species, e.g. A. thaliana or C. 
rubella), suggesting that the diversity of patterns may be more important than 
we thought (and there is room for a more extended sampling in the future). 

The result is described in a rather unhelpful manner, without taking chromosomes 
morphology into account. The text states that, for larger chromosomes, crossovers 
tend to occur (not “accumulate”) at the ends of chromosome, while the central 
regions have less. However, this would be correct only for metacentrics, and the 
centres of chromosome presumably means centromeric and pericentromeric 
regions, but this is not made clear. It is also not made clear that these are completely 
recombination-free regions. 

We changed “accumulate” by “occur”. 

Most chromosomes in our dataset are metacentric or sub-metacentric, which 
make it difficult to discern a difference between the physical centre (midpoint) 
and the centromere. When we used the term centre/central, we meant the 
midpoint of the chromosome. Otherwise we used centromeric/pericentromeric 
where appropriate. 

We stated in the results that the centromere was a recombination free region 
(line 384 in the original draft). “When the centromere position was known, we 
qualitatively observed that the centromeres had an almost universal local 
suppressor effect (Figure 3). In small and medium-sized chromosomes, the 
recombination was often suppressed in short restricted centromeric regions 
(several Mb) displaying drastic drops in the recombination rates, whereas the 
rest of the map did not seem to be affected. In larger chromosomes, the 
suppression of recombination extends to large regions upstream and 
downstream of the physical centre of the chromosome (approximately 80-90% 
of the chromosome; Figure 4).” 

We discussed more the limits of having mostly metacentric chromosomes: 
“this work suggests that centromeres do not only have just a local effect but 
they also influence the symmetry of recombination landscapes over long 
distances, though a large proportion of our sample is metacentric, which might 



limit the detection of an effect. (…) However, how centromeres (especially non-
metacentric ones) may affect CO distribution at larger scales still needs to be 
determined.” 

The extent of a larger pericentromeric region (meaning, the extent of the wider 
region surrounding or adjacent to the centromere) is known to vary greatly between 
species, but it is not well described in the ms, and only examples are shown, with 
rather subjective criteria to define the different regions. It would, in principle, be 
possible to define them less subjectively, though this might not be easy. At least, it 
would be good to mention whether this was attempted. A further problem is that 
regions are shown in figures, rather than tables giving estimates of genome region 
sizes and recombination rates, and as relative sizes are often used, it is difficult to 
understand what sizes of pericentromeric regions (for example) are found in plants. 

We mainly provide figures in the main text as we think it is clearer for the 
reader to get the main results.  However, we also provide many quantitative 
data in tabular form in supplementary material. We also provide scripts and all 
Marey maps that will be available on the MareyMap online website. So it should 
be easy to retrieve quantitative information if needed. 

It is also not a new discovery that low recombination regions tend to have low gene 
density. The Discussion acknowledges this, but it is strange to first describe this as if 
it is a new result, only to later mention that it is not. If the Introduction had laid out 
some questions, this could be avoided. Problems like this also make the text longer 
than necessary. 

We hope we now go more directly to the point. In the introduction we ask: 
“Since recombination hotspots have been found in gene regulatory sequences 
so far, are recombination landscapes generally associated with gene density?”  
We also mention in the results section that we follow previous studies: “At a 
fine scale, it has been shown in a few species that COs preferentially occur in 
gene promoters. The scale of 100 kb used here is too large to directly test 
whether this is a common pattern shared among angiosperms. Instead, like in 
Haenel et al. (2018), we assessed whether recombination increased with gene 
density.”  

 

2. Recombination is unevenly distributed in genomes. Therefore one should not write 
that “We showed that” this is the case. Once can write “We confirmed that” (or 
something similar). This text also uses vague terminology “how genetic variation is 
shuffled during meiosis”, but the word recombination already exists, so it would be 
better to be precise. If at some point the meaning is gene conversion, this should be 
used. However, I think that the text mentions conversion only in passing, and it is not 
considered seriously. 

We changed “showed” by “confirmed”. 



We don’t clearly see the point here. We think that it is pretty clear that we are 
studying crossover rates, and we have no data to analyse gene conversion. In 
addition gene conversion cannot shuffle genes except in the close vicinity to 
recombination points. Following Veller et al. 2019 we measured the effect of a 
CO on gene shuffling at the whole chromosome scale. However, we are open 
to suggestions to improve the message if we have misunderstood this 
comment. 

In line 538, I am not sure why thw word “prediction” is used (In addition to the role of 
centromeres, we also observed a departure from the prediction that recombination 
rates should decrease with the distance to the tip of the chromosome, showing that 
the distal model is not generally found among plants). Is this really a prediction, or 
are you trying to say that you did not confirm the view that this pattern is shared by 
all plants? If so, references are needed to assertions that all plants share this 
pattern. 

We removed the word “prediction” and used a more clear statement: “In 
addition to the role of centromeres, we also observed that recombination rates 
do not always decrease  monotonically with the distance to the tip of the 
chromosome…” 

The Discussion section need not repeat so much of the results. It might also mention 
that recombination rates vary between individuals of the same species, including 
from the effects of rearrangements, especially inversions, so it would be good to 
mention that the data are currently often from just a single maternal and paternal 
parental individual of each species (for selfers, perhaps just a single parental 
individual). Hotspots should also be mentioned, if only to make clear that this study 
did not attempt to detect them. 

 

474 It is proposed that in angiosperms crossovers may be initiated in gene 
regulatory sequences, and it is suggested that this “sheds new light on the evolution 
of recombination landscapes”, but without saying what new light is shed, other than 
this suggestion. The suggestion is not evaluated further, and I did not understand if it 
is a speculation, based on the correlation between recombination and gene density 
mentioned in this paragraph (or on some other observations). However, based on 
later text (line 613), I suspect that the intended meaning is that the results are 
consistent with such a proposal that was already published by others. 

We rewrote the sentence in a more explicit way: “This sheds new light on the 
evolution of recombination landscapes and whether the distribution of COs is 
optimal for the efficacy of genetic shuffling.” We hope it is clearer now. [Note 
that the complete sentence was “This sheds new light on the efficacy of 
genetic shuffling and the evolution of recombination landscapes.” so we 
already mentioned the efficacy of genetic shuffling]  



However, as the correlation must be strongly affected by the lower gene densities in 
genome regions with low recombination rates, which lead to accumulation of 
transposable elements and other repetitive sequences, it would seem difficult to 
disentangle this from the suggested mechanism. Line 628 states that “The positive 
association of COs and gene regulatory sequences, including fine-scale correlations, 
appears more robust”, which is too vague. It seems unlikely that the effect is stronger 
than the very marked and consistent effect of low recombination rates on repetitive 
sequence density (although of course different elements are involved in different 
cases). 

We removed this statement. “The positive association of COs and gene 
regulatory sequences, including fine-scale correlations, appears more robust 
(Choi et al., 2013; He et al., 2017; Marand et al., 2019), but cCausality 
mechanisms of these multiple interactions still need to be clarified.” 

Regions with high recombination rates may, however, allow patterns in crossover 
localisation to be detectable, and I believe that this has been studied, for example in 
maize (e.g. papers by Dooner and colleagues) and also in Mimulus guttatus (see the 
paper by Hellsten et al. cited above). Line 621 finally mentions the problem of other 
correlated factors. I think that the authors should revise their text so that it does not 
first set up an untestable idea and then mention that it is untestable. Instead, it will 
be preferable to set up some interesting questions early in the text, tell readers what 
is currently known, and then describe analyses that help understand things better 
than before. 
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(2002). Molecular characterization of meiotic recombination across the 140-kb 
multigenic a1-sh2 interval of maize. Proceedings of the National Academy of 
Sciences of the USA, 99, 6157-6162. 

Tenaillon, M. I., Sawkins, M. C., Anderson, L. K., Stack, S. M., Doebley, J. F., & 
Gaut, B. S. (2002). Patterns of diversity and recombination along chromosome 1 of 
maize (Zea mays ssp. mays L.). Genetics, 162, 1401-1413. 

We think that even in regions with high recombination rate it can be difficult to 
identify the precise locations of CO with the Marey map approach, especially in 
large genomes as in maize, unless the size of the genetic mapping population 



is very large as in the recent study in A. thaliana. Otherwise LD maps should 
be more appropriate. 
To be more constructive and less vague on this point, we now add that the use 
of recombination maps at finer scale will help resolving the role of genic 
regions in shaping recombination landscapes: “Causality mechanisms of 
these multiple interactions still need to be clarified. The use of fine scale 
recombination maps (using very large mapping populations or LD maps) 
should help identifying the respective role of genic regions (especially the role 
of promoters) and transposable elements (or other genomic features)”. 

Another comment that applies throughout the text is that recent papers are cited for 
concepta and understanding that are not new. In such cases, the text should make 
clear that the citation is to a review paper. For example, the text gives the impression 
that Marand et al. (2019) discovered that gene density and recombination rates are 
both correlated with transposable elements (meaning densities of transposable 
elements). This has been known for a long time, and was reviewed in 1994 by 
Charlesworth et al. (Nature, 371, 215-220. doi:10.1038/371215a0). 

Citations have been changed accordingly. 

In first mentioning heterochiasmy, it seems strange not to mention whether the 
papers cited refer to plants or just to studies in animal species. It is explained later 
that Melamed-Bessudo et al. (2016) showed that it is not universal in plants, but the 
text does not explain what the term might mean in plants, and that hermaphrodites 
may have different crossover patterns in male and female meiosis, so readers may 
be puzzled. 

We rephrased to indicate when we were talking specifically of plants, and 
when we were referring to a more universal pattern shared by plants and 
animals. We also define heterochiasmy when we first used the word. 

3. Similarly, I was surprised to read that “We were intrigued to notice that [within 
species] the chromosome-wide recombination rate is proportional to the relative size 
of the chromosome”. I was under the impression that this was already known. 

We changed the wording: “Chromosome length drives the basal 
recombination rate for each species, though but we were intrigued to notice 
that within species the chromosome-wide recombination rate was proportional 
to the relative size of the chromosome”. 

However, we think it was not already known that the size effect was species 
specific (this is why it’s the relative size effect that seems to be general). We 
obtained this result because we gathered a dataset of chromosome-scale 
recombination landscapes, analysed them on a per chromosome level and 
modelled a species random effect; it has not been done before to our 
knowledge. In the two previous meta-analyses, Stapley et al. (2017) data were 
restricted to genome-wide recombination rates, and Haenel et al. (2018) 



averaged their chromosome-wide recombination rates to a genome-wide level 
in similar analyses (one point per chromosome). 

It is illustrated in Figure 2D, which shows the new results, which are potentially 
interesting, as they relate to the question of how often arms have multiple 
crossovers. This figure analyses the excess of crossovers, defined as the linkage 
map length minus the 50 cM expected if one crossover per arm is obligate), and 
shows that it correlates positively with the chromosome’ physical sizes divided by the 
average chromosome size for the species, which they term the “relative 
chromosome size”. Such an effect is not a new result. 

As explained above, what we think is novel is that there is no single 
relationship between absolute chromosome size and CO but possibly a single 
and general one with the relative chromosome size. So the qualitative pattern 
was known but we think that its quantification was not. We added this 
precision in the corresponding result part: “More concretely, it means that two 
chromosomes having the same ratio of size will have the same ratio of excess 
of recombination rate, whatever the species and the genome size”. 

In the discussion, we also tried to better explain this point: “However, there is 
no universal relationship between the absolute size of a chromosome and its 
mean recombination rate. Although the average recombination rate of a 
species is well predicted by its average chromosome size, the recombination 
rates of each chromosome separately are not well predicted by their absolute 
chromosome size. Instead, variation within species is much better explained 
by the relative chromosome size, and surprisingly, this relationship seems to 
be roughly the same among species (see Figures 1 and 2).” 

However, as I understand it, an obligate crossover is expected on each arm. If so, 
the number of excess crossovers, in addition to this one, should be analysed per 
arm. Even if my recollection about this is incorrect, the text should make clear what 
is known from previous studies, and why the present study uses chromosome, not 
arm, lengths. Line 136 mentions that the centromeric index was known for the 
chromosomes of 37 species, but then it remains unclear how these data were used, 
and also whether results can be used from the species where no such data were 
available. Line 285 mentions that recombination rates were negatively correlated 
with the distance to the nearest telomere, which seems to suggest that metacentrics 
may have been analysed as such, but I could not see this clearly explained. 

We explained earlier in the main text that one CO seems to be sufficient (at 
least for some species) [“Less than 2% of chromosomes had less than one CO 
(n = 11). 234 chromosomes had between one and two COs, suggesting that a 
single CO per chromosome is sufficient, though 419 chromosomes had more 
than two COs”] so we think it’s clearer why we used linkage map length minus 
50 cM. In addition we showed later that the model with one mandatory CO per 
arm is not well supported statistically. 



Line 300 states that that (in my wording) the centromere regions almost universally 
showed low recombination rates, but this is not completely clear in Figure 4, where 
large low recombination rate regions in several species, for example Vigna 
unguiculata, appear not to overlap the centromeres. If this is a real biological 
observation, the statement seems incorrect. 

We completed the statement with new results quantifying this effect “Ninety 
percent of chromosomes (388 chromosomes) had significantly less 
recombination than the chromosome average at the centromeric index (n = 
425, resampling test, 1,000 bootstraps, 95 % confidence interval). 81 
chromosomes (19 %) were completely recombination-free in the centromere. 
However, the transposition of centromere position from cytological data to 
genomic data may be imprecise or wrongly oriented for some chromosomes. 
After orienting chromosomes to map the centromeric index, 16 %  of 
chromosomes (70 over 425) had a recombination rate higher in the inferred 
centromere position than on the opposite side, thus a centromere potentially 
mapped on the wrong side. Of these 70 chromosomes, the difference between 
inferred and opposite centromere position was less than 1 cM/Mb for 64 % of them 
(n = 45). ” 

Given these possible problems with the data, I was not convinced of the value of the 
formal modelling analysis of the effect of the centromere in suppressing 
recombination, and the comparison with less simple models that suggest that 
telomeres may also affect patterns. Such effects are plausible, but I feel that some of 
these plant data do not add valuable and solid support. 

We feel that this criticism is somewhat unfair. The initial simple telomere-led 
model has been proposed on the basis of visual observations based on 
species average and on the correlation between periphery-bias ratio and 
chromosome length on 16 animal and 11 plant species. This is a very useful 
starting point but it was clearly proposed as a conceptual model by the 
authors (their Figures 3 and 4). Here we think we go beyond this by formally 
testing the model and proposing alternative ones with a much larger dataset 
and taking individual chromosome patterns into account. We are aware of the 
possible noise in the data but if some centromeres are not correctly located 
(opposite size for example) this should go against model 3 and removing those 
chromosomes didn’t change the results. So we think our results are robust. 

Another weakness is the lack of any mention of differences between male and 
female meiosis, and another is the lack of any mention of outcrossing rates. 

In  the first version we already discussed the difference between male and 
female meiosis.  We made it clearer that we have only sex-averaged genetic 
maps and that we didn’t analysed sex-specific maps. Note that in the recent 
paper of Sardell and Kirkpatrick (Am Nat 2020, sex differences in the 
recombination landscapes), only five plant species are available. However we 



kept the idea in the discussion as it is indeed an interesting hypothesis to 
explain the observed patterns. 

As explained above, the dataset is not appropriate to test for the effect of the 
mating system. 

I wondered why these papers were not cited, or other papers about Arabidopsis 
lyrate or helleri, which may have genetic map information. 

Hellsten, U., Wright, K. M., Jenkins, J., Shu, S., Yuan, Y., Wessler, S. R., . . . 
Rokhsar, D. S. (2013). Fine-scale variation in meiotic recombination in Mimulus 
inferred from population shotgun sequencing. Proceedings of the National Academy 
of Sciences of the United States of America, 110(48), 19478–19482. 
doi:10.1073/pnas.1319032110 

Kawabe, A., Hansson, B., Forrest, A., Hagenblad, J., & Charlesworth, D. (2006). 
Comparative gene mapping in Arabidopsis lyrata chromosomes 6 and 7 and A. 
thaliana chromosome IV: evolutionary history, rearrangements and local 
recombination rates. Genetical Research, 88, 45-56. 

Hansson, B., Kawabe, A., Preuss, S., Kuittinen, H., & Charlesworth, D. (2006). 
Comparative gene mapping in Arabidopsis lyrata chromosomes 1 and 2 and the 
corresponding A. thaliana chromosome 1: recombination rates, rearrangements and 
centromere location. Genetical Research, 87(2), 75-85. 
doi:10.1017/S0016672306008287 

They are interesting papers. However the first one focuses on fine-scale 
crossover patterns and CO hotspots, especially around genic regions and 
does not provide a chromosome scale map (actually not possible with the 
method they used). The others could have been used but they did not match 
our filtering criteria. 

Minor problems with the English, or vague wording or unclear statements 

 

1. In English, it should be “correlated with” (not “to”). 

Corrected. 

2. The word ‘drive’ should be avoided, as it is very vague. For example, the meaning 
is not clear in the phrase “Chromosome length drives the basal recombination rate 
for each species” 

We changed to “Chromosome length constrains the basal recombination rate 
for each species” 

3. In line 182, it should read “regression lines for species with at least 5 
chromosomes mapped, 5-26 chromosomes per species, 55 species). 



Corrected according to the reviewer’s comment. 

4. Line 232 Genomic distances (Mb) were scaled between 0 and 1 (divided by 
chromosome size) to compare chromosomes with different sizes. 

We are sorry but we don’t understand what is the issue here. 

5. It is difficult to make out the meaning of the text starting in line 247. I think it 
means the following: “Each chromosome was divided in (it should read “into”) ten 
bins, each one 10th of the chromosome’s total physical size.” The relative 
recombination rate is the log-transformed ratio of the expected relative genetic length 
(one tenth, presumably of the total genetic length) divided by the observed relative 
genetic length of the bin (presumably meaning the proportion of the total genetic 
length represented by the physical region in question. Values below zero correspond 
to recombination rates lower than expected under a random distribution of 
crossovers across the physical chromosome. Also difficult to understand 
“Chromosome sizes (Mb) on the left correspond to each broken stick chromosome” 
— maybe it means “each chromosome”. Also (in line 244) “Relative recombination 
rates along the chromosome were estimated in ten bins using the broken stick 
model. 

To avoid confusion, we used another representation by dividing chromosomes 
in ten bins of equal genomic size, computing the average recombination rate in 
each bin and dividing by the mean recombination rate to get a relative 
measure. We also reordered the species as a function of chromosome size 
instead of recombination heterogeneity. 

6. In English, one needs to say “divided into” (not “in”). Also “pooled into” (although 
this reads awkwardly in English, and line 140 might be better as “the Spearman rank 
correlation coefficient correlation between the values for 1 Mb windows and those for 
the 100 kb windows within them was ….”. 

Corrected according to the reviewer’s comment. 

7. The work “linkage” in genetics means that the variants are linked. It should be 
distinguished from “linkage disequilibrium” (LD), which refers to associations 
between two or more liked variants. Line 57 should be corrected, as the text refers to 
the latter, but uses the former (“Recombination…. breaking the linkage between 
neighbouring sites and creating new genetic combinations”). The sites remain linked, 
but not in LD. The sentence is also confusing by adding “upon which selection can 
act”, because selection acts on single variants, and the authors are trying to say that 
new genetic combinations might be more (or less) favoured by selection than the 
non-recombinant combinations (in other words, the different variants may interact in 
their effect on fitness). 

We changed “breaking the linkage” into “breaking linkage disequilibrium”. 



We also write now: “making selection more efficiently” to avoid possible 
confusion. 

8. It is a sweeping statement to say that “Plant genomes contain large regions with 
suppressed recombination”, depending strongly on how many plants have good data 
on physical and genetic maps, so line 92 ought to mention the number on which this 
is based, and give readers at least a rough idea of what is meant by “large”. There is 
no need to add the obvious remark that this impacts genomic averages ( in addition 
“impact” is the wrong word, as the meaning is that it affects the average — of course 
the average depends on the values in all genome regions that are included in the 
data, so it is not worth saying explicitly). 

As genome sizes vary over many orders of magnitude in plants (10 to > 1000 
Mb), “large” is very species dependent. It varies from a few Mb in smaller 
genomes (genomes between 10 and 30 Mb) to hundreds of Mb in larger 
genomes (500-1000 Mb), and the proportion of genome without recombination 
ranges from a few percent to 80%. We clarified the sentence (added the range 
of values and proportions) “Plant genomes contain large regions with 
suppressed recombination in various proportions (from a few Mb to hundreds 
of Mb, > 1-75 %),…”. 

We suppressed the statement about the average recombination rate. 

9. Phrases that are unnecessary (such as “it seems that” in line 93, should be 
pruned out, so that the text is easier to read. There are quite a few such instances, 
and I do not comment on all of them. The beginning of the Results section, for 
example, could be written more briefly and clearly. 

We retrieved publicly available data for linkage maps and genome assemblies, to 
obtain genetic map distances and physical distances. We used linkage maps with 
marker positions in chromosome-level genome assemblies (except for Capsella 
rubella, which had a high-quality scaffold-level assembly of pseudo-chromosomes). 
After filtering based on the marker numbers, densities, and genome coverage, and 
after filtering out the outlying markers (maybe meaning outlier markers by a criterion 
that needs to be explained), we produced 665 Marey maps (reference needed) for 
57 species (2-26 chromosomes per species); marker numbers per chromosome (or 
perhaps the authors mean per species, in which case perhaps some species have 
too little information to be used) ranged from 31 to 49,483. 

We thank you for this example of paragraph and we tried to follow this advice 
throughout the manuscript. Note that the minimum of markers is 30 per 
chromosome and not per species as mentioned above. 

 

  



Reviewer #2 
In this paper, the authors seek to decipher genomic patterns of recombination across 
a large (57 species) dataset of sequenced plant genomes coupled with genetic 
maps. Their meta-analyses lead to several novel observations. 

I thoroughly enjoyed reading this manuscript, and I congratulate the authors on a 
really fine paper. It will be, in my view, a very welcome addition to the literature. In 
the surest sign of flattery, I’m a jealous that I did not think of doing such a neat 
analysis. 

We thank reviewer 2 for this very positive comment. 

Accordingly, I have only minor comments that the authors may wish to address in 
revision. Most of the comments are very minor, indeed. They are offered both as an 
attempt to clarify the few areas of the text that I found difficult to digest and probably 
out of an abundance of enthusiasm for this work. I leave it to the authors to decide if 
my suggestions offer improvements or are better ignored… 

Minor Comments: 

- Line 48 – Unlike most of the rest of the paper, I found this sentence hard to read 
and digest. Reword, rework or shorten? Btw I’d use “in” instead of “to” (“in the 
production”) 

We splitted the sentence for clarity. 

- Line 79 – This last sentence of the paragraph is really indirect and therefore pretty 
tough to read. I’m not really sure what manipulations are being considered here… 
Rewrite? 

We rewrote the sentence: “The characterization of recombination landscapes also 
has practical interests as variation in meiotic genes could be used to experimentally 
manipulated CO patterns for advantageous purposes, such as redirecting 
recombination towards regions of interest for crop breeding (Kuo et al., 2021)”.  

- Line 100 – as a reader, I found that a better link between the two sentences on this 
line could have been helpful. Maybe something as simple as “Haenel et al. 
considered chrosomome length, found blah blah blah and suggested a simpler 
telomere-led model. That model included a universal bias…” 

We rewrote it more directly: “They found that larger chromosomes have low 
crossover rates in their centre and suggested a simple telomere-led model 
with a universal bias of COs towards the periphery of the chromosome, 
positively driven by chromosome length.” 

- Line 118 – I’d use “about” instead of “on” 

Changed for “about” 



- Line 125 – If this is reasonable, I’d love to see the filter characteristics hinted at 
here, even though there is a good description in the methods. That is something like 
“… marker density (at least 50 per chromosome), genome coverage (blah blah)” 

To avoid weighting the main text too much we preferred referring to the 
method part for details. However, we can add more details here if needed.  

- Line 701 – I’m a bit confused by the what was done when marker sequences were 
not available and also how many species fell into this category. I’m not concerned at 
all – this is a careful study – but it’d be nice understand better. 

When marker sequences were not available for mapping on the most recent 
genome assembly, genomic positions were those of the original publication 
(precisions now added to the M&M). “We remapped markers on the reference 
genome for 14 species for which genomic positions were not known or were 
mapped to an older assembly”. 

- Figure 2 – It might be helpful to have X-axis say “Mean chromosome size” where 
appropriate (e.g., Figure 2C and B). The legend is very clear, though. 

The X-axis has been changed accordingly. 

- I love Figure 3. It blows my mind how consistent the patterns are between the 
dashed lines (genome wide) and an individual chromosome. It is bizarre and neat 
and thought provoking. It might be nice to report mean chromosome size (in the 
legend or in the figure), given that the species are ordered in that matter. It just 
makes me curious… 

Mean chromosome size has been added to the title of each figure.  

- Figure 4, since patterns seem to correlated with mean chromosome size, would it 
be worth adding that value after each species name? As a reader, it would help me 
to see the pattern and better digest the text from ~lines 213 to 227 and figure 5a, 
etc). 

We added the mean chromosome size after species name and colored each 
species as the function of three patterns identified later. We also reordered 
species as a function of mean chromosome size.  

- Figure 5A – this may make the graph too crowded, but it’d be nice to be able to 
compare dots in 5A to figure 4. So, it’d be nice to have the dots labelled. If that is too 
much, the authors might want to consider labelling a few species (e.g., the six in 
figure 3 or some of the species mentioned in lines 220 to 227). Personally, I’d love to 
know what the outliers are in this graph! 

Figure 5A has been annotated with a subset of species (the 6 in figure 3 and a 
few species mentioned in lines 220 to 227 or seen as outliers). 



- Lines 284 and following. It’d be nice to cite Figure 6A and Figure 6B separately 
after the word descriptions of the patterns. 

We added references to Figure 6A and Figure 6B in the text. 

- Line 296. I could not figure out what the “species correlation” referred to. Sorry if I 
missed this, but it’s worth another look to be sure it is clear. 

We changed the formulation: “the correlation between recombination and the 
distance to the nearest telomere was significantly higher for species with 
larger chromosomes”. 

- I’m kind of shocked that M3 is favored over M2, as isn’t one CO per arm necessary 
for mechanism? Hence, I’d a priori predict M2 > M3. I don’t think this contrast is 
explicitly discussed in the Discussion (e.g., lines 523 to 536), but I think it should be. 

To our knowledge, it was not very clear if one CO per arm or per chromosome 
was necessary. It seems that CO assurance imposes one CO per chromosome, 
not per arm, in many species. For example, a recent study by Dukic and 
Bomblies in Arabidopsis arenosa observed a large proportion of 
chromosomes undergoing a single CO, while only 25/30% of bivalents 
contained at least two COs. Indeed, we observed less than two COs in many 
chromosomes, especially the smaller chromosomes within species (Figure 1). 
Besides, even if M2 fit well for a bunch of chromosomes (7 species over 37 
species support M2), the model is not applicable for many other chromosomes 
just because at least one arm has less than 1 CO (length < 50 cM). To mitigate 
this effect, we subset only species with chromosomes having at least one CO 
per arm (26 species over 37) and M3 was still a better model than M2. However 
we must say that we do not have the perfect sampling to categorically exclude 
M2 or M3, because most of our chromosomes are metacentric, thus a low 
power to distinguish M2-M3. 

- Figure 8: It’d be nice if the legend clearly stated which graph is which. I think Figure 
8b is the distal recombination pattern, but I’m not 100% sure. It’d be great to have 
sample sizes on the graph too (n = 34 or 16 species, I think). 

We now give an explicit legend;  (a) distal pattern vs (b) sub-distal pattern. We 
also added to the figure sample sizes and an annotation for distal/sub-distal 
patterns  

- It’s pretty clear in the M&M, but on line 419, it might be nice to mention that rintra is 
a single value per chromosome. On my first reading, I was thinking it was some sort 
of transformation of cM between genes… 

We now explicitly mention that rintra is a single value per chromosome: “The 
rintra  gives, for a chromosome, a measure of the probability of a random pair of 
loci to be shuffled by a crossover.” 



- The analysis of gene distances is very thought provoking! 

Thanks! 

- Line 488 – What the heck is going on with fungi and animals! It’s certainly not 
necessary, but can the authors provide a quick description or explanation. They have 
piqued my curiousity. 

Indeed this statement was not very clear; we removed this comparison with 
animals and fungi as it was not important to discuss our results. For your 
information, we were referring to the fact that linkage map length does not 
depend on the absolute chromosome size (Figure 2A). Stapley et al. (2017) 
showed that genome-wide linkage map length does not depend on total 
genome size in plants, in contrast to fungi and animals. It is possible that CO 
interference is stronger in plants than in animals and fungi, as it would explain 
why linkage map length remain stable across a large span of genome sizes, 
though it is not very clear to make the link with our results because Stapley et 
al. (2017) relies on genome-averaged values. 

Again, I do not consider any of my comments to be critical for publication, and I want 
to again congratulate the authors on a thorough and interesting study.  



Reviewer #3 
This manuscript by Brazier and Glémin uses a comparative approach to investigate 
variation in recombination landscapes in flowering plants. Their study used genetic 
map data from 665 chromosomes in 57 species of angiosperms. At the whole 
chromosomal level, they found a negative correlation between chromosome size and 
recombination rate (cM/Mb) with a strong species-specific effect. They also found 
that CO excess on chromosomes was more correlated with their relative size to 
other chromosomes in the genome rather than their absolute size, and that this 
effect was consistent across species. When investigating crossover landscapes, they 
found that landscapes were similar within species but strongly varied between 
species. CO rates were not uniform across chromosomes and were often more likely 
to occur at the distal ends of the chromosomes, with larger chromosomes tending to 
have a higher “periphery bias” of COs. However (as with most things in nature), this 
general pattern did have a number of exceptions. The authors then investigated the 
joint effect of telomeres and centromeres on CO distribution, finding the strongest 
support for a model that incorporated the effects of the telomere, centromere and 
one CO per chromosome. The authors found that recombination rate increased with 
gene density. Finally, the authors showed that genetic shuffling was positively 
correlated with linkage map length, and that there was a small negative effect of the 
periphery-bias ratio. These effects were slightly higher when modelling genetic 
shuffling in terms of gene distances. Whilst the investigations here are largely 
correlative rather than revealing mechanisms, this study provides a useful foundation 
for further investigation of broad drivers of recombination rate and landscape 
variation across a wide range of taxa. 

 

This paper is the most comprehensive and well analysed that I have read on this 
topic, and generally it is well-written and well structured, particularly the introduction 
and discussion. I’m impressed by the sheer breadth of analyses. 

We thank reviewer 3 for his/her very positive comment. 

Nevertheless, there are parts of the methods & results that lack clarity, which in 
turn leads to issues with reproducibility. In particular, a lot of the statistical models 
are not well described – model structures should be made explicit in the methods 
and/or results, rather than providing a general text for statistical analyses at the end 
of the methods. I would emphasise that providing code and data (where possible) 
would improve these issues. 

Thank you for pointing this out. We addressed this issue by providing more 
information in the results and M&M sections. The chosen statistical models are 
explicitly written. Besides, the R code used for statistical analysis will be freely 
available in a public github repository. Marey maps will be available in the 



same github repository and in an updated version of the MareyMap Online 
database. 

I had many comments and suggestions - those marked ** should be addressed by 
the authors in a revised version. 

 

ABSTRACT/INTRODUCTION 

 

Lines 32-33: The authors should be clearer what they mean by “relative size” here 
(i.e. relative to the rest of the genome) and why this result is interesting. 

 We substantially modified this part of the abstract and hope it is clearer now: 
“We found that the number of crossing-over per chromosome spans a limited 
range (between one to five/six) whatever the genome size, and that there is no 
single relationship across species between genetic map length and 
chromosome size. Instead, we found a general relationship between the 
relative size of chromosomes and recombination rate, while the absolute 
length constrains the basal recombination rate for each species”. We also 
substantially rewrote the rest of the abstract and hope it clarifies and sharpens 
the message. 

Lines 48-52: In the first sentence, I would add the term “crossing-over” or “crossover” 
here to set up the rest of the introduction. In the second sentence, I would briefly 
define landscape (i.e. variation in recombination rate along the chromosomes) 

Crossover and the definition of recombination landscapes have been added to 
the first sentences. 

Lines 61 – 63: Indicate that you are defining assurance in this sentence. 

Crossover assurance has been added to the sentence. “at least one CO per 
chromosome is mandatory (i.e. crossover assurance) to achieve proper 
segregation and to avoid deleterious consequences of nondisjunction” 

Line 73: Can the authors briefly mention how recombination landscapes shape the 
distribution of TEs? 

We mentioned “the accumulation of TEs in regions of low recombination” 

**Lines 98 – 100: I found this statement confusing, as I can’t understand how 
independence between linkage map length and genome size means that 
recombination rates will be higher in smaller genomes. I also can’t make the link 
between this statement and the Stapley paper – I think they found that linkage map 
lengths were smaller in smaller genomes, but also that chromosome number 
explained more variation (i.e. increased chromosome number lead to longer maps 



due to a higher minimum bound of recombination due to crossover assurance). 
Perhaps I am wrong, but regardless, it might be worth double-checking this 
statement and explaining it more clearly. 

“Recombination rates are supposed to be higher in smaller genomes because 
the linkage map length is independent of genome size”. Since the total linkage 
map length do not depend on the total genome size, we can assume that 
smaller genomes will have roughly the same linkage map length as larger 
genomes, thus the same number of COs is distributed among a smaller 
genomic size (Mb) and recombination rate is higher (cM.Mb-1). Stapley et al. 
(2017) made a similar statement in Box 1. “Following the observation that 
linkage map length was similar across eukaryotes despite large variation in 
genome size, it was proposed that larger genomes have several orders of 
magnitude lower recombination rates.” In their Figure 3 Stapley et al. show 
that linkage map length increases linearly with genome size, though in plants 
the best fit was a quadratic function. Accordingly, in plants, larger genomes 
have roughly the same linkage map length than smaller ones. Indeed, they 
also stated that chromosome number explained more variation than genome 
size. 

We rephrased the statement accordingly to the reviewer’s comment: assertion 
is true in plants, not other eukaryotes, and the number of chromosomes is 
more important than genome size: 

“In plants, contrary to other eukaryotes, recombination rates are supposed to 
be higher in smaller genomes because the linkage map length is independent 
of genome size and the number of chromosomes explain more variation than 
genome size (Stapley et al., 2017).” 

Line 100: on recombination rate, or landscape? Or both? 

Actually, both. We added to the phrase: “existence of a major broad-scale 
determinant of CO distribution and frequency” to be more explicit. 

**Line 102: Based on your argument here, it is not clear how chromosome length 
links to biases of CO towards the peripheries – please clarify. 

We clarified the argument. “Haenel et al. (2018) found that larger chromosomes 
have low crossover rates in their centre and suggested a simple telomere-led 
model with a universal bias of COs towards the periphery of the chromosome, 
positively driven by chromosome length” 

Line 117: Briefly define genetic shuffling and why it’s interesting – could even be 
mentioned earlier e.g. around lines 56 – 58. 

We added precision on the expected effect of CO patterns on genetic shuffling 
in line 117. “how CO patterns affect the extent of genetic shuffling” 



We modified lines 56-58 to define genetic shuffling. “creating new genetic 
combinations transmitted to the next generation upon which selection can act, 
i.e. genetic shuffling” 

We added explicit precisions in results. “In most cases, genetic shuffling were 
slightly higher when gene distances were used instead of base pairs (Figure 
10; mean = 0.22 for base pairs; mean = 0.26 for gene distances; Wilcoxon rank 
sum test with continuity correction, p < 0.001), implying that the genetic 
shuffling was more efficient among coding regions than than among regions 
randomly sampled in the genome” 

 

RESULTS 

 

**Lines 130 – 132: I don’t think this is described in the methods. Is there information 
on the number of progeny? I was curious about this but couldn’t find the information 
in the supplementary tables. 

We added a new column with the number of progeny (retrieved in the original 
publication of the genetic map) in supplementary table S1 Dataset Metadata. 

Line 143: This header could be interpreted that smaller chromosomes have more 
crossover events rather than more crossovers per unit length. Perhaps “Smaller 
chromosomes have higher recombination rates than larger ones”? 

The header was modified accordingly. 

**Lines 153 – 169: Where are the methods for this LMER and what is the model 
structure? Is this what is being described in lines 831 – 850 of the methods? 
Throughout the paper, it needs to be clearer what models were run and what their 
fixed & random effect structures were in order to better interpret them. 

Models’ equations are now explicitly mentioned in the results section for each 
model presented. 

Line 155: Does this mean that there is no/low phylogenetic signal of recombination 
rate? 

We do not have a proper sampling to study the evolution of recombination 
rates along the phylogeny, with uneven sampling amongst angiosperms (many 
close relatives in monocots, sister species in Brassica sp., Oryza sp. or 
Arachis sp.). Though the phylogenetic mixed model (pglmm, phyr package, 
see method for details) assessed a phylogenetic signal (34% of the variance 
explained by random effects was due to a phylogenetic signal), we suspect it 
was mainly attributed to differences of chromosome size between monocots 
and eudicots (monocots with mainly large genome and eudicots with a higher 



proportion of small genomes) and uneven sampling. When we add both 
phylogenetic effect and chromosome size, we saw that the phylogenetic mixed 
model did not perform better than a more parsimonious linear mixed model 
with a species effect without phylogenetic covariation (Table S5). 

Figure 1: This figure is busy. A suggestion for panel A: perhaps the dashed lines 
could be fit from axis to axis, to visually demarcate the 1 – 4CO expectations a bit 
better? For panel B, since this is the same data plotted twice, perhaps only the 
regression lines need to be visualised here rather than all of the points. 

We modified the figure to improve its readability. We hope it is better now: 

Figure 1A. Dashed lines are now solid thin lines, going axis to axis and more 
easily identified. Lines were identified by the expected number of CO directly 
on the figure. Regions with less than one CO or more than four COs were 
labelled. 

Figure 1B. We removed points, according to the reviewer's comment, for better 
visualisation of regression lines. 

**Figure 2: I found this figure confusing. Some suggested edits: 

Panel A could be wider to allow discerning of the slopes. I also struggled to 
understand what the isolines on the graph are showing even after reading several 
times. When using isolines, perhaps there is a need to define their values (as in 
Figure 1) – or perhaps they can be removed if making things too busy. 

Panel B: I cannot interpret what this is showing – are there really lines in panel A that 
have intercepts of less than zero? 

Panels B & C: I am very curious to see the error on these estimates. 

Panels B & C: maybe these panels might be better suited in the supplementary? 

Panel D: Again, very busy. Perhaps use of transparency of points or lines could 
make things clearer. 

We understand the confusion on figure 2. Panel B has been removed since it 
did not support important findings. Panel C has been moved to supplementary 
materials (Figure S4). Panel A is now wider. We added transparency to points 
to make regression lines more distinguishable. 

The genome wide recombination rate (cM/Mb) has been annotated on isolines. 
They tend to show that within species recombination rates are roughly similar 
among chromosomes despite differences in absolute chromosome size 
(because regression lines are parallel to their closest isoline). 

**Figure 4: Accessibility issue for colour-blindness - the red dots may not be visible 
on the green background. The visual scale for the chromosome size is a unclear, 



particularly as appears to be log – could there be line traces instead of colours here? 
Also – perhaps I have misunderstood – but if the chromosomes were split into ten 
bins, then why does the resolution of recombination rate estimation look to be much 
higher than 1/10th of the chromosome on the horizontal lines? 

Thank you for pointing this out. Centromere position is now more visible, 
represented by black and white diamonds (higher contrast). 

The visual scale of chromosome size is now clearer, with the height of bar 
plots corresponding to chromosome size. The scale is now linear instead of 
log. We also ordered species by mean chromosome size. Following reviewer 
1’s suggestion we also used another way to visualise the results to avoid 
possible confusion. Chromosomes are now splitted into ten bins of equal 
genomic sizes, not genetic length. We hope it eases the reading. 

**Line 282 – 298: It seems that chromosome size was a strong correlate of 
recombination pattern, but I was curious if the authors tested other factors to rule out 
potential artefacts (e.g. differences in marker density) or to identify other biological 
correlates, such as ploidy? Was there a phylogenetic signal of this distal vs subdistal 
pattern? 

We tested several factors, such as number of markers, marker density (cM & 
Mb) or number of progeny, that had no effect. Out of curiosity we also 
previously checked for possible effects of ploidy, lifespan and mating 
systems. None was significant. Note that our sampling is not appropriate to 
properly test these effects (see answer to reviewer 1). If required we can add 
such analyses in supplementary material. 

Figure 6: There is a lot of text to wade through in the legend - it would help the 
reader to put annotations, sample sizes, key on the figures to allow for faster 
interpretation. For example, putting A: Distal pattern, N = XX, B: Subdistal pattern, N 
= XX on the panels make it easier to interpret. The dashed lines for the unclassified 
patterns are very distracting – why not include this as another panel, or put it in the 
supplementary material? Panel C is tiny and needs a key, or at least x-axis labels. I 
like the schematics of the crossover distributions but it’s so tiny – perhaps include 
this as its own figure as it explains the model really well. 

Annotations were added to the figure to reduce the legend (i.e. pattern, sample 
size). Unclassified patterns were removed, since they are specific patterns and 
they are also directly accessible in supplementary Figure S6. 

X-axis labels were added to panel C. 

Figure 6 was splitted. Figure 6D was moved to a new figure. 

Figure 7: A & B. There needs to be a higher contrast between the colours as it’s 
difficult to see the differences between blue and black. C. What do the colours 



represent here? Adjusting the point transparency and slight x jitter may improve the 
visualisation here. 

Figure 7A & B. The contrast was increased. 

Figure 7C. We removed colours because they are not informative on this graph 
and do not contribute to the main message. Colours represented species (each 
species had its own relationship recombination rate ~ gene count) but it was 
difficult to distinguish them. The distribution of specific relationship 
recombination rate ~ gene count is already presented in Figure 7A. We added a 
slight jitter. 

Figure 8: Same as Figure 6 – annotating the panels would be helpful. 

We annotated the panels with the pattern name and the sample size (number of 
species). We removed the dashed lines for exceptions. 

**Line 414 – I think it’s important for the authors to briefly define what genetic 
shuffling is and why it’s interesting to look at from an evolutionary perspective. 

We added a short definition of genetic shuffling. “Genetic shuffling 
participates to the random reassortment of genes between parental 
homologous chromosomes. To quantify how much the genetic shuffling 
depends on the distribution of COs, we estimated its intrachromosomal 
component, rintra ,  as described in equation 10 in Veller et al. (2019).” 

Line 419: On the same chromosome 

Same answer as for reviewer 2. We explicitly mentioned that rintra is a single 
value per chromosome. “The rintra  gives, for a chromosome, a measure of the 
probability of a random pair of loci to be shuffled by a crossover.” 

Line 422: less efficient = resulted in less genomic shuffling? 

The sentence was modified according to the reviewer’s suggestion, to be more 
explicit on the effect of COs. “COs clustered in distal regions are supposed to 
generate less genetic shuffling than COs evenly distributed in the 
chromosome.” 

Figure 9: see comments on Figure 7. 

We guess the comment applies better to Figure 10. The contrast was increased 
by changing the blue colour. 

 

DISCUSSION 

 



Lines 477 – 488: I’m a little puzzled by some of the statements here, so perhaps 
clarification is needed. I think it could be mentioned that crossover assurance will 
give a basal rate per chromosome of 50cM regardless of size, and then the authors 
can expand how the findings outlined here add to this established fact. Furthermore, 
I believe that in animals, larger chromosomes do have lower recombination rates 
within species… if I have misinterpreted this, perhaps the authors need to clarify 
their point better. 

Indeed this statement was not very clear (see the same comment above); we 
removed this comparison with animals and fungi as it was not important to 
discuss our results. 

Line 519: clarify what “association” means here… does chromosome pairing begin at 
the telomeres? 

Yes it does. The phrase was changed to be more explicit (association replaced 
by chromosome pairing). “the early chromosome pairing beginning in 
telomeres is thought to favour distal COs ” 

Line 570: put “beam-film” in inverted commas and indicate that you are about to 
describe it. 

We put ‘beam-film’ in inverted commas. We indicated that we describe the 
conclusions of Zhang et al. (2014), we do not have results about the ‘beam-
film’. “Zhang et al. (2014) assessed that the ‘beam-film’ model is able (…) If 
clamping is assumed, the model predicts that mechanical stress culminates 
(…)” 

Line 582 – 583: It depends on the number of gametes measured and how many 
were male and female, which is easily done in dioecious species. I think authors 
should specify here “in angiosperms” and iterate here why heterochiasmy is difficult 
to investigate for the less plant-literate reader. 

We are not sure to clearly understand this suggestion. The offspring 
generation corresponds to an equal number of males and females meiosis, 
even if the parents produced different numbers of gametes. 

METHODS 

**Lines 700 – 704: Indicate that this was from cytogenetic data. How is this 
information orientated correctly to the linkage map/genome sequence? 

We removed the sentence about centromeric indexes, since it was better 
explained later in methods, in the paragraph “Testing centromere or telomere 
effects” : “We searched the literature for centromeric indices (ratio of the short 
arm length divided by the total chromosome length) established by cytological 
measures. When we had no information about the correct orientation of the 
chromosome (short arm/long arm), the centromeric index was oriented to 



match the region with the lowest recombination rate of the whole chromosome 
(i.e. putative centromere). ” 

**Lines 709 – 723: I think this paragraph requires a few improvements in 
reproducibility. Was this all done in the MareyMap package in the next paragraph? 
What was a ballpark criteria/example for anything that was outside the global trend? 

At the beginning of the paragraph: “We selected genetic and genomic maps 
after stringent filtering and corrections, using custom scripts provided in a 
public Github repository (https://github.com/ThomasBrazier/diversity-
determinants-recombination-landscapes-flowering-plants.git). ” 

We specified a qualitative criterion for map selection and quality assessment: 
“We assumed that markers must follow a monotone increasing function when 
plotting genetic distances as a function of genomic distances in a 
chromosome (i.e. the Marey map) and collinearity between the genetic map 
and the reference genome was required to keep a Marey map.” 

More details about the correction: “If necessary, genetic maps were reoriented 
so that the Marey map function is increasing (i.e. genetic distances read in the 
opposite direction).” 

We specified criteria for outlier filtering and precisions about the processing: 
“Markers clearly outside the global trend of the Marey map (e.g. large 
genetic/genomic distance from the global cloud of markers or from the 
interpolated Marey function, no other marker in a close neighbourhood) were 
visually filtered out, and multiple iterations of filtering/interpolation helped to 
refine outlier removal. ” We previously tried different strategies of automation 
for this step, as in Mansour et al. (2021), but after many trials, we concluded 
that it was neither efficient nor reliable for handling heterogeneous datasets. 
Though it is easy to distinguish clear outliers for human eyes, it is not a trivial 
task to set an automatic filtering for outliers. Because the noise is highly 
dataset dependent, one cannot use a constant threshold to exclude outliers. A 
threshold adjusted for the best map might be too stringent for another dataset, 
while a threshold set for the worst map might fail to detect the few outliers in 
almost perfect Marey maps. We tried automatic filtering of outliers based on 
the distribution of inter-marker distances (between adjacent markers), but user 
confirmation is required, as for many data-specific tasks. Setting a given 
threshold of distance or a given distribution statistic (e.g. remove 5% with the 
greater genetic distance than the maximum extreme value) do not take into 
consideration the heterogeneity between dataset. Thus, when comparing 
different dataset relying on very different distributions, we suspect it could 
introduce a kind of noise-dependent bias. The more noise there is in data, the 
less stringent filtering will be. Finally, visual assessment and an iterative 
procedure of filtering/interpolation seemed to be the more robust approach, 
though we lose in reproducibility. Please note that all outlier markers removed 



are still present in Marey maps provided in supplementary, though they are 
labelled as ‘not valid’ and not used in subsequent analyses. This is also a 
possibility proposed in the MareyMap package in R. 

In the next paragraph: “Local recombination rates along the chromosome were 
estimated with custom scripts following the Marey map approach, as 
described in the MareyMap R package (Rezvoy et al., 2007).” 
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**Lines 724 – 737: Related to the previous comment, when looking at the plotted 
Marey maps (Figure S1), are the methods/results affected in any way by the “jitter” of 
Mb vs cM distances? I imagine that if the markers were not in the correct order in the 
linkage map (if the local linkage order is ABC, but the real genomic order is ACB), 
then the cM length of the chromosome may be overestimated, meaning that 
recombination rates would be consistently inflated. For example, in Camellia 
sinensis, the maps seems to be messier and therefore may accumulate local 
overestimations in recombination rate that will lead to a longer cM map than the true 
one, compared to Arabidopsis where the orders appear to be highly conserved 
between the genome and the linkage map. The potential impact of this should be 
discussed. 

This issue was addressed by automatically adjusting the smoothing parameter 
of the loess regression to the data, and subsequently by evaluating the 
performance of interpolation using a bootstrap procedure (random resampling 
of markers). Due to higher levels of noise in some Marey maps, we certainly 
lose resolution and miss local variations for those maps, but we are confident 
that our method did not lead to longer genetic maps (cM). 

To check for a bias in our estimates (e.g. inflating the chromosome 
recombination rate), we assessed the differences between the genome wide 
recombination rate (obtained by dividing the genetic map length by the 
genome length) and the averaged estimate per chromosome (the mean of 
recombination rates in windows of 100 kb). Both values are extremely 
correlated (Spearman’s Rho = 0.99, p < 0.001) and the figure below shows that 
our mean estimates are not biased.  

 

 



 

 

 

However, we cannot exclude that locally, along the chromosome, some values 
may reach high values that are not biologically reasonable, false peaks of 
recombination (i.e. data overfitting). On the other hand, the messier maps, due 
to stronger smoothing, should lead to a lower resolution and be more limited 
in the detection of local variation. That is why we implemented a K-fold cross 
validation procedure to automatically adjust the smoothing to avoid overfitting 
& underfitting issues. In addition, a bootstrap procedure (1,000 iterations), with 
random resampling of markers (with replacement), was used to evaluate the 
sensitivity of our estimates to outliers and noisy data. Recombination 
landscapes with large confidence intervals, indicating low data quality and/or 
poor performance of interpolation (precision and reliability), were discarded. 

**Lines 738 – 749: Please clarify here how the relative recombination rate is 
calculated – is this done for each segment? i.e. if the chromosome is 100cM and 
80Mb, and the first segment is e.g. 10cM & 20Mb, then how would the value be 
calculated? The verbal argument is unclear. 

The representation of the broken stick model was not intuitive and we modified 
figure 4. The relative recombination rate is now estimated in 10 bins of 
constant genomic size and the relative recombination rate is the ratio expected 
genetic size divided by observed genetic size. In the legend: “Relative 
recombination rates along the chromosome were estimated in ten bins of 
equal genomic size as the observed genetic length divided by the expected 



genetic length (one tenth of total genetic size) of the bin (log-transformed). 
Values below (above) zero are recombination rates that are lower (higher) than 
expected under a random distribution”. The verbal argument was made 
clearer, and the equation was added. “The relative recombination rate in the 
segment i was estimated by the log-ratio of the observed genetic size divided 
by the expected genetic size (i.e. fixed to total genetic size / k by the model), as 
in the following equation. 

relative recombination rate = log10 (genetici / (genetictotal / k))” 

In the case suggested by the reviewer, it means that the chromosome is cut 
into 10 bins of genomic size 8 Mb (80/10). If the first bin (8 Mb) is 20 cM long, 
the relative recombination rate is: 

log10(20 / (100/10)) = log10(2) 

**Lines 831 – 850: The way this is written, it isn’t connected to any specific models. It 
is important to describe what was modelled here and to be explicit about the model 
structures to ensure reproducibility. 

We specified more explicitly models in the result section (model formulas are 
also given in Supplementary Table S5 of model selection). We compared 
models: 
LM response variable ~ explanatory variable 
LMER response variable ~ explanatory variable + (1|Species) 
LMER response variable ~ explanatory variable + (response variable|Species) 
PGLMM response variable ~ explanatory variable + (1|Species__); where 
Species__ indicates that phylogenetic structure is modelled 
 
After model selection, we chose for all regressions at a chromosome level 
(samples are chromosomes) the model 
LMER response variable ~ explanatory variable + (1|Species) 
 
Since we didn’t detect a phylogenetic effect, we chose the model 
LM response variable ~ explanatory variable for all regressions at a species 
level (one point per species, chromosomes pooled). 
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Abstract 20 

During meiosis, crossover rates are not randomly distributed along the chromosome and 21 

their location may have a strong impact on the functioning and evolution of the genome. To 22 

date, the broad diversity of recombination landscapes among plants has rarely been 23 

investigated and a formal comparative genomic approach is still needed to characterized 24 

and assess the determinants of recombination landscapes among species and 25 

chromosomes. We gathered genetic maps and genomes for 57 flowering plant species, 26 

corresponding to 665 chromosomes, for which we estimated large-scale recombination 27 

landscapes. We found that the number of crossing-over per chromosome spans a limited 28 

range (between one to five/six) whatever the genome size, and that there is no single 29 

relationship across species between genetic map length and chromosome size. Instead, we 30 

found a general relationship between the relative size of chromosomes and recombination 31 

rate, while the absolute length constrains the basal recombination rate for each species. At 32 

the chromosome level, we identified two main patterns (with a few exceptions) and we 33 

proposed a conceptual model explaining the broad-scale distribution of crossovers where 34 

both telomeres and centromeres play a role. These patterns globally correspond to the 35 

underlying gene distribution, which affects how efficiently genes are shuffled at meiosis. 36 

These results raised new questions not only on the evolution of recombination rates but also 37 

on their distribution along chromosomes. 38 

 39 

KEYWORDS: meiotic recombination, crossover pattern, Marey map, genetic shuffling, 40 

comparative genomics 41 

  42 



Author summary 43 

Meiotic recombination is a universal feature of sexually reproducing species. During 44 

meiosis, crossing-overs play a fundamental role for the proper segregation of chromosomes 45 

during meiosis and for reshuffling alleles among between chromosomes, which increases 46 

genetic diversity and the adaptive potential of a species. How much variation in 47 

recombination is expected within a genome and among different species remains a central 48 

question to understand the evolution of recombination. We characterized and compared 49 

recombination landscapes in a large set of plant species that represent a wide range of 50 

genomic characteristics. We found that the number of crossing-overs varied little among  51 

species, from one mandatory to no more than five or six crossing-overs per chromosomes, 52 

whatever the genome size. However, recombination can strongly vary within a genome and 53 

we identified two main patterns of variation along chromosomes (with a few exceptions) that 54 

can be explained by a new conceptual model where chromosome length, chromosome 55 

structure and gene density play a role. The strong association between gene density and 56 

recombination raised new questions not only on the evolution of recombination rates but also 57 

on their distribution along chromosomes. 58 

 59 
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Introduction 61 

Meiotic recombination is a universal feature of sexually reproducing species. Through 62 

crossovers, new haplotypes are passed on to offspring by the reciprocal exchange of DNA 63 

between maternal and paternal chromosomes. However, recombination landscapes — the 64 

variation in recombination rate along the chromosome — are not homogeneous across the 65 

genome and vary among species (de Massy, 2013; Haenel et al., 2018; Mézard et al., 2015; 66 

Stapley et al., 2017). Meiotic recombination plays a fundamental functional role by forming 67 

chiasmata at specific pairing sites between homologous chromosomes to ensure the 68 

physical tension needed for the proper disjunction of homologs (de Massy, 2013; Mézard et 69 

al., 2015; Zickler and Kleckner, 2015). Recombination also plays an evolutionary role by 70 

breaking linkage disequilibrium between neighbouring sites and creating new genetic 71 

combinations transmitted to the next generation (i.e. genetic shuffling), making selection 72 

more efficient (Barton, 1995; Charlesworth and Jensen, 2021; Otto, 2009). The number and 73 

location of crossovers (COs) along the chromosome are finely regulated through 74 

mechanisms of crossover assurance, interference and homeostasis (Otto and Payseur, 75 

2019; Pazhayam et al., 2021). In most species, crossover assurance is necessary to achieve 76 

proper segregation and to avoid deleterious consequences of nondisjunction, though it is not 77 

very clear if it is at least one CO per chromosome or per arm that is mandatory. Additional 78 

COs are also usually regulated through interference, ensuring that they are not too 79 

numerous and not too close to each other (Pazhayam et al., 2021; Wang et al., 2015). In 80 

addition to regulation on a large scale (Cooper et al., 2016; Zelkowski et al., 2019), 81 

recombination is also finely tuned on a small scale. Generally, crossovers are concentrated 82 

in very short genomic regions (typically a few kb), i.e. recombination hotspots. In plants 83 

studied so far, CO hotspots have been found in gene regulatory sequences, and mostly in 84 

promoters (Choi et al., 2018; He et al., 2017; Marand et al., 2019).  85 
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In addition to meiosis functioning, variations in recombination rates have a strong impact 86 

on genome structure, functioning and evolution (Gaut et al., 2007; Haenel et al., 2018; 87 

Stapley et al., 2017; Tiley and Burleigh, 2015) and it has become a key challenge to 88 

integrate recombination rate variation in population genomics in the age of ‘genomic 89 

landscapes’ (Booker et al., 2020; Comeron, 2017). The characterization of recombination 90 

landscapes also has practical interests as variation in meiotic genes could be used to 91 

experimentally manipulate CO patterns for advantageous purposes, such as redirecting 92 

recombination towards regions of interest for crop breeding (Kuo et al., 2021). 93 

In plants, recombination rates are supposed to be higher in smaller genomes because the 94 

linkage map length is independent of genome size and the number of chromosomes explain 95 

more variation than genome size (Stapley et al., 2017). Several broad-scale determinants 96 

have recently been identified, such as chromosome length (Tiley and Burleigh, 2015), 97 

distance to the telomere or centromere (Blitzblau et al., 2007) and genomic and epigenetic 98 

features (Apuli et al., 2020; Marand et al., 2019; Yelina et al., 2012). Plant genomes also 99 

contain large regions with suppressed recombination in various proportions (from a few Mb 100 

to hundreds of Mb, 1 to 75 % of the genome). However, despite these recent advances, the 101 

diversity of recombination landscapes in plants still remain to be properly quantified.  102 

Recently, a meta-analysis explored large-scale recombination landscapes among 103 

eukaryotes and paved the way for identifying general patterns (Haenel et al., 2018). They 104 

found that larger chromosomes have low crossover rates in their centre and suggested a 105 

simple telomere-led model with a universal bias of COs towards the periphery of the 106 

chromosome, positively driven by chromosome length. They also proposed that 107 

chromosome length played the main role in crossover patterning while position of the 108 

centromere had almost no effect (except a local one). Alternatively, it has also been 109 

proposed that both telomeres and centromeres shape recombination landscapes (Wang and 110 

Copenhaver, 2018) and the universality of a universal pattern among plants has been 111 

questioned (Zelkowski et al., 2019). So far, the number of studied species remained limited 112 
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and, as plant genomes are highly diverse in many ways (Pellicer et al., 2018; Soltis et al., 113 

2015), the expected diversity in recombination landscapes may have been overlooked (Gaut 114 

et al., 2007). In addition, previous studies were meta-analyses combining heterogeneous 115 

datasets (ex: mix of inferred data from graphics, final processed data and only a few raw 116 

datasets in Haenel et al. 2018) without a standard way to infer recombination maps, which 117 

prevented detailed comparison among many species. 118 

To overcome these limitations we gathered, to our knowledge, the largest recombination 119 

landscape dataset in flowering plants. We started from raw data by combining genetic 120 

mapping from pedigree data and genome assembly up to the chromosome scale, from 121 

which we estimated recombination maps – more precisely the sex-averaged rate of COs 122 

along chromosomes – using the same standardised method.  Thanks to this dataset we 123 

addressed the following questions. What is the range of COs per chromosome observed in 124 

plants? Is the distribution of COs shaped by genome structure (i.e. chromosome size, 125 

telomeres, centromeres) and if so is there a universal pattern? Since recombination hotspots 126 

have been found in gene regulatory sequences so far, are recombination landscapes 127 

generally associated with gene density? What are the consequences of recombination 128 

heterogeneity on the extent of genetic shuffling? Overall, we found that recombination 129 

landscapes in plants are more diverse and more complex than initially thought. We identified 130 

two main patterns that are parallel to, and which may emerge from, the gene density 131 

distribution. We showed that this globally improves the genetic shuffling of coding regions, 132 

which raises new questions about the evolution of recombination. 133 

 134 

 135 

s

chromosome scale

ies

in all the species, in ordet to ask

previously

what?

do you mean “accompany”?



Results 136 

Dataset and recombination maps 137 

We retrieved publicly available data for sex-averaged linkage maps and genome 138 

assemblies to obtain genetic and physical distances. We selected linkage maps for which 139 

the markers had genomic positions on a chromosome-level genome assembly (except for 140 

Capsella rubella, which had a high-quality scaffold-level assembly of pseudo-chromosomes). 141 

We remapped markers on the reference genome for 14 species for which genomic positions 142 

were not known or were mapped to an older assembly. After making a selection based on 143 

the number of markers, marker density, and genome coverage, and after filtering out the 144 

outlying markers (see methods), we produced 665 chromosome-scale Marey maps (plot of 145 

the genetic vs genomic distance, cM vs Mb) for 57 species (2-26 chromosomes per species, 146 

Table S1, S2, Fig S1, S2). The number of markers per chromosome ranged from 31 to 147 

49,483, with a mean of 956 markers. Corrected linkage map length (Hall & Willis’s method) 148 

did not change the total linkage map length (mean difference = 1.19 cM, max difference = 149 

5.62 cM), giving confidence in the coverage of the linkage map (Hall & Willis, 2005). We 150 

verified that neither the number of markers, marker density nor the number of progenies had 151 

a significant effect on the analyses. We also retrieved gene annotations for 41 genomes. 152 

The angiosperm phylogeny was well represented in our sampling (Fig S3), with a basal 153 

angiosperm species (Nelumbo nucifera), 15 monocot species and 41 eudicots. From 154 

literature, we also obtained data on the centromeric index for 37 species, defined as the ratio 155 

of the short arm length divided by the total chromosome length (Table S3). 156 

From the Marey maps, we estimated local recombination rates along the chromosomes 157 

on non-overlapping 100 kb windows with a 95% confidence interval (1,000 bootstraps). 158 

Estimates at a scale of 1 Mb yielded very similar results (the Spearman rank correlation 159 

coefficient correlation between the two estimates was Rho = 0.99, p < 0.001, Table S4) 160 

therefore only 100 kb landscapes were analysed in the subsequent analyses. 161 
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Smaller chromosomes have higher recombination rates than larger 162 

ones 163 

In agreement with previous studies (Haenel et al., 2018; Stapley et al., 2017), we found a 164 

significant negative correlation between chromosome size (Mb) and the mean chromosomal 165 

recombination rate (Spearman rank correlation coefficient Rho = -0.84, p < 0.001; log-log 166 

Linear Model, adjusted R2 = 0.83, p < 0.001). For most species, there were between one 167 

and four COs per chromosome even though the genome sizes span almost two orders of 168 

magnitude. Less than 2% of chromosomes had less than one CO (n = 11). 234 169 

chromosomes had between one and two COs, suggesting that a single CO per chromosome 170 

is sufficient, though 419 chromosomes had more than two COs. 171 

Using a Linear Mixed Model we found a significant species random effect ( 172 

log10(recombination rate) ~ log10(chromosome size) + (1 | species), marginal R2 = 0.17, 173 

conditional R2 = 0.96, p < 0.001). Adding phylogenetic covariance did not improve the mixed 174 

model thus we did not retain a phylogenetic effect (Table S5). Interestingly, the (log-log) 175 

relationship between the recombination rate and the chromosome size was not the same 176 

within and between species, suggesting that absolute chromosome size does not have a 177 

general effect among species (Fig 1B). Similarly, the relationship between linkage map 178 

length (cM) and chromosome size (Mb) was highly species specific (linkage map length ~ 179 

log10(chromosome size) + (1 | species), marginal R2 = 0.49, conditional R2 = 0.99, p < 180 

0.001) (Fig 2A), with species slopes decreasing with the mean chromosome size in a log-log 181 

relationship. It indicates that species slopes are roughly proportional to the inverse of the 182 

mean chromosome size (Fig S4). As a consequence, the excess of COs on a chromosome 183 

(i.e. the linkage map length minus 50 cM) was not correlated with the absolute chromosome 184 

size but with the relative one (i.e. chromosome size divided by the mean chromosome size 185 

of the species; Fig 2B). Moreover, in contrast to the relationship between recombination rate 186 

and absolute size, we did not observe any difference between the linear model and the fixed 187 

regression of the mixed linear model, suggesting that this relationship is similar across 188 
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species (Fig 2B). More concretely, it means that two chromosomes having the same ratio of 189 

size will have the same ratio of excess of recombination rate, whatever the species and the 190 

genome size. 191 

 192 

Fig 1. Mean recombination rates per chromosome (cM/Mb, log scale) are negatively correlated 193 

with chromosome genomic size (Mb, log scale). Each point represents a chromosome (n = 194 

665). Species are presented in different colours (57 species). (A) The bold solid line represents 195 

the linear regression line fitted to the data. The thin solid lines correspond to the expectation of 196 

one, two, three or four COs per chromosome respectively. (B) Correlations between 197 

recombination rates and chromosome size within each species with at least 5 chromosomes 198 

(coloured lines, 55 species) and the overall between-species correlation controlled for a species 199 

effect (black dashed line , n = 57 species). Solid bold line as in (A). 200 

 201 

 202 

Fig 2. Linkage map length (cM) is positively correlated with genomic chromosome size (Mb). (A) 203 

Correlation between chromosome genomic size (Mb) and linkage map length (cM). Each point 204 

represents a chromosome (n = 665). Species are presented in different colours (57 species). 205 
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The black solid line represents the simple linear regression (linkage map length ~ 206 

log10(chromosome size), adjusted R2 = 0.036, p < 0.001) and the black dashed line the fixed 207 

effect of the mixed model (linkage map length ~ log10(chromosome size) + (1 | species), 208 

marginal R2 = 0.49, conditional R2 = 0.99, p < 0.001). Species random slopes are shown in 209 

colours. Isolines of recombination rates are plotted for different values (indicated cM/Mb) as 210 

dotted red lines to represent regions with equal recombination. (B) The excess of COs (linkage 211 

map length minus 50 cM for the obligate CO) is positively correlated with the relative 212 

chromosome size (size / average size of the species). The black solid line is the linear 213 

regression across species (excess of CO ~ relative chromosome size, adjusted R2 = 0.13, p < 214 

0.001) and  the black dashed line the fixed effect of the mixed model (excess of CO ~ relative 215 

chromosome size + (1 | species), marginal R2 = 0.14, conditional R2 = 0.86, p < 0.001). 216 

Coloured solid lines represent individual regression lines for species with at least 5 217 

chromosomes (55 species). 218 

Diversity of CO patterns among flowering plants 219 

Recombination landscapes along chromosomes appeared to be qualitatively very similar 220 

within species but strongly varied between species (Fig 3, Fig S2). In the text below, we 221 

have used the terms proximal and distal regions, respectively, to avoid confusion with the 222 

molecular composition and specific position defining telomeric and centromeric regions 223 

stricto sensu. Some landscapes were homogeneous along chromosomes whereas others 224 

were extremely structured with recombination concentrated in the short distal parts of the 225 

genome, and wide variations between these two extremes (Fig 3). Representing relative 226 

recombination rates on ten bins of equal chromosome length (see Materials and Methods for 227 

details), we observed that the bias towards the periphery was not ubiquitous across species 228 

(Fig 4), unlike Haenel et al. (2018) who suggested that the distal bias could be universal for 229 

chromosomes larger than 30 Mb. Only a subset of species, especially those with very large 230 

chromosomes (> 100 Mb), exhibited a clear bias (Fig 4). Despite large chromosome sizes 231 

(mean chromosome sizes = 101 Mb and 198 Mb, respectively), Nelumbo nucifera and 232 

Camellia sinensis are noticeable exceptions to this pattern, with the highest recombination 233 

rates found in the middle of the chromosomes (Nelumbo nucifera illustrated in Fig 3E, other 234 

species in Fig S2). For small to medium-sized chromosomes, the pattern is less clear. Most 235 

species did not show any clear structure along the chromosome but a few of them (e.g. 236 

Capsella rubella, Dioscorea alata, Mangifera indica, Manihot esculenta) showed a drop in 237 
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recombination rates in the distal regions and high recombination rates in the proximal 238 

regions (Capsella rubella illustrated in Fig 3A). 239 

 240 

Fig 3. Diversity of recombination landscapes exemplified by six different species. Recombination 241 

landscapes are similar within species (the dashed line is the average landscape for pooled 242 

chromosomes, all recombination landscapes of the species are contained within the colour 243 

ribbon). Genomic distances (Mb) were scaled between 0 and 1 to compare chromosomes with 244 

different sizes. Estimates of the recombination rates were obtained by 1,000 bootstraps over 245 

loci in windows of 100 kb with loess regression and automatic span calibration. One 246 

chromosome per species is represented in a solid line, with the genomic position of the 247 

centromere demarcated by a dot. The six species are ordered by ascending mean 248 

chromosome size (Mb). 249 



 250 

Fig 4. Patterns of recombination within chromosomes (n = 665). Relative recombination rates 251 

along the chromosome were estimated in ten bins of equal genomic size as the observed 252 

genetic length divided by the expected genetic length (one tenth of total size) of the bin (log-253 

transformed). Values below (above) zero are recombination rates that are lower (higher) than 254 

expected under a random distribution. Species are ordered by ascending genome size (57 255 

species). Each horizontal bar plot represents one chromosome. When available, the 256 

centromere position is mapped as a black and white diamond. 257 

Following Haenel et al. (2018), we calculated the periphery-bias ratio as the 258 

recombination rate in the tips of the chromosome (10% at each extremity) divided by the 259 

mean recombination rate. A ratio higher than 1 indicates a higher recombination rate in the 260 

tips than the whole chromosome. By pooling chromosomes per species, we detected a 261 
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significant positive effect of chromosome length on the periphery-bias ratio across species 262 

(Linear Model, adjusted R2 = 0.44, p < 0.001; Fig 5A) with some exceptions (ex on Fig 3A 263 

and 3E). Across all species the mean periphery-bias ratio is significantly higher than 1 (95% 264 

bootstrapped confidence interval = [2.06;2.32]) and skewed towards values higher than 1 but 265 

the correlation with chromosome length within species was not clear (Fig 5B, 5C, Table S6).  266 

 267 

Fig 5. The periphery-bias ratio is positively correlated with chromosome genomic size. (A) Linear 268 

regression between the species mean periphery-bias ratio and the mean chromosome size (log 269 

scale) across species (n = 57 species; adjusted R2 = 0.44, p < 0.001). Points are coloured 270 

according to the classification of the CO patterns described below (orange = distal, blue = sub-271 

distal, black = unclassified). (B) Distribution of periphery-bias ratios (n = 665 chromosomes). 272 

The mean periphery-bias ratio and its 95% confidence interval (black solid and dashed lines) 273 

were estimated by 1,000 bootstrap replicates. The red vertical line corresponds to a ratio of 274 

one. (C) Distribution of Spearman’s correlation coefficients between the periphery-bias ratio 275 

and chromosome genomic size (Mb) within species (n = 57 species). 276 

Joint effect of telomeres and centromeres on crossover distribution 277 

along chromosomes  278 

Globally, recombination rates were negatively correlated with the distance to the nearest 279 

telomere (Fig S5, Table S7, Table S8). However, two different patterns qualitatively emerged 280 

(Fig 6, Fig S6, Table S8). In 34 species, recombination decreased from the telomere and 281 

qualitative



reached a plateau after a relative genomic distance of approximately 20% of the whole 282 

chromosome (the distal model, Fig 6A), in agreement with the model suggested by Haenel 283 

et al. (2018). Sixteen species presented a sharp decrease in the most distal regions and a 284 

peak of recombination in the sub-distal regions (relative genomic distance between 0.1-0.2) 285 

followed by a slow decrease towards the centre of the chromosome (the sub-distal pattern, 286 

Fig 6B). There were a few exceptions to these two patterns (six species), e.g. Capsella 287 

rubella consistently showed higher recombination rates in the middle of the chromosome 288 

(Fig 3A). Interestingly, chromosomes from species classified as having a distal pattern were 289 

significantly larger than chromosomes with a sub-distal pattern (Wilcox rank sum test, p < 290 

0.001, Fig 6C). Furthermore, the correlation between recombination and the distance to the 291 

nearest telomere was significantly higher for species with larger chromosomes (Spearman 292 

rank correlation coefficient Rho = -0.51, p < 0.001; Fig S5). 293 

When the centromere position was known, we observed that the centromeres had an 294 

almost universal local suppressor effect (Fig 3, 4). In small and medium-sized 295 

chromosomes, the recombination was often suppressed in short restricted centromeric 296 

regions (several Mb,  1-5 % of the map) displaying drastic drops in the recombination rates, 297 

whereas the rest of the map did not seem to be affected. In larger chromosomes, the 298 

suppression of recombination extends to large regions upstream and downstream of the 299 

physical centre of the chromosome (approximately 80-90% of the chromosome; Fig 4). 300 

Ninety percent of chromosomes (388 chromosomes) had significantly less recombination 301 

than the chromosome average at the centromeric index (n = 425, resampling test, 1,000 302 

bootstraps, 95 % confidence interval). 81 chromosomes (19 %) were completely 303 

recombination-free in the centromere. However, the transposition of centromere position 304 

from cytological data to genomic data may be imprecise or wrongly oriented for some 305 

chromosomes. After orienting chromosomes to map the centromeric index, 16 % of 306 

chromosomes (70 over 425) had a recombination rate slightly higher in the inferred 307 
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centromere position than on the opposite side, thus a centromere potentially mapped on the 308 

wrong side. 309 

To go further, we formally compared three models that could explain the broad-scale 310 

crossover patterns we observed (Fig 7). Under the strict distal model proposed by Haenel et 311 

al. (2018) (M1), the centromere does not play any role beyond its local suppressor effect, 312 

and therefore we expect an equal distribution of crossovers on both sides of the 313 

chromosome, independently of centromere position: 
𝑑(1 2⁄ )

𝑑(1)
= 0.5, where 𝑑(1 2⁄ ) is the 314 

genetic distance (cM) to the middle of the chromosome and 𝑑(1) is the total genetic distance 315 

(cM). In addition, we tested two alternative models adding a centromere effect. We assumed 316 

that the position of the centromere, 𝑑(𝑐), has an effect on the distribution of crossovers 317 

along the chromosome. Models M2 ‘telomere + centromere + one CO per arm’ and M3 318 

‘telomere + centromere + one CO per chromosome’; both assume that the relative genetic 319 

distance of a chromosome arm is proportional to its relative genomic size. However, they 320 

differ in the number and distribution of mandatory COs. At least one CO in each 321 

chromosome arm (50 cM) is mandatory in M2 whereas only one CO is mandatory for the 322 

entire chromosome in M3. For species whose centromere position was known (37 species, 323 

425 chromosomes) we regressed the observed values against the theoretical predictions of 324 

the three models and compared them using goodness-of-fit criteria (adjusted R2, AIC, BIC). 325 

Model M2 was generally rejected since 22% of chromosomes showed less than 50 cM in at 326 

least one arm, even though it was supported in a handful of species (Table 1), and model 327 

M1 was not supported by any species. Model M3 was the best supported model (30 out of 328 

37 species), with good predictive power (Spearman rank correlation between predicted and 329 

observed values: Rho = 0.72, p < 0.001; Tables 1, S9, S10). Given that some chromosomes 330 

had one chromosome arm shorter than 50 cM, which is incompatible with one mandatory 331 

CO per arm in model M2, we also compared the three models on a subset of chromosomes 332 

with at least 50 cM on each chromosome arm (n = 36 species, 333 chromosomes) which 333 

confirmed that model M3 was the best model. Similarly, we reran the model without 334 
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chromosomes with uncertainty on the centromere position (n = 37 species, 355 335 

chromosomes) and found the same results. 336 

 337 

Fig 6. Distribution of crossover: main patterns. (A and B) Standardized recombination rates for 338 

species (chromosomes pooled per species, n = 57 species) are expressed as a function of the 339 

relative genomic distance from the telomere in 20 bins representing the two main patterns 340 

(orange = distal, blue = sub-distal). The seven unclassified species are not shown. 341 

Chromosomes were split in half and 0.5 corresponds to the centre of the chromosome. In each 342 

plot, the solid line represents the mean recombination rate estimated in a bin (20 bins) and 343 

each dot per bin represents the average of a species. Upper and lower boundaries of the ribbon 344 

represent the maximum and minimum values. (C) Distribution of chromosome genomic sizes 345 

(Mb) for each pattern. 346 

 347 

Fig 7. Possible models of crossover patterns. Schematic representation of the three competing 348 

models for the two main patterns, with an example of a centromere position at 1/3 of the 349 

chromosome. Model 3 is the best model (box). 350 

 351 
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Table 1. Model selection for the telomere/centromere effect (n = 37 species with a centromere 354 

position, 425 chromosomes). Three competing models were compared based on the adjusted 355 

R2, p-value and AIC-BIC criteria among chromosomes (the best supported model is in bold 356 

characters). The number of species supporting each model was calculated based on the 357 

adjusted R2 within species, for all species with at least five chromosomes. (1) ‘telomere’ model. 358 

(2) ‘telomere + centromere + one CO per arm’ model. (3) ‘telomere + centromere + one CO per 359 

chromosome’ model. 𝑑(𝑐) is the genetic distance to the centromere. 𝑑(1) is the total genetic 360 

distance. A second model selection was done on a subset of chromosomes with at least 50 cM 361 

on each chromosome arm (n = 36 species, 333 chromosomes). 362 

# Model Expected Adjusted R2 p AIC BIC Species 

Full dataset (37 species, 425 chromosomes) 

1 Telomere d(1/2) / d(1) = 0.5 0.22 < 0.001 -477.8 -465.7 0 

2 Tel. + Cent. + CO per arm (d(c) – 50) / (d(1) – 100) = c - 0.72 3098.2 3110.4 7 

3 Tel. + Cent. + CO per chr. d(c) / d(1) = c 0.51 < 0.001 -476.6 -464.5 30 

Subset (36 species, 333 chromosomes) 

1 Telomere d(1/2) / d(1) = 0.5 0.18 < 0.001 -407.5 -396.1 0 

2 Tel. + Cent. + CO per arm (d(c) – 50) / (d(1) – 100) = c -0.001 0.42 1939.1 1950.5 10 

3 Tel. + Cent. + CO per chr. d(c) / d(1) = c 0.50 < 0.001 -396 -384.6 26 

Recombination rates are positively correlated with gene density 363 

At a fine scale, it has been shown in a few species that COs preferentially occur in gene 364 

promoters. The scale of 100 kb used here is too large to directly test whether this is a 365 

common pattern shared among angiosperms. Instead, like in Haenel et al. (2018), we 366 

assessed whether recombination increased with gene density. Forty-one genomes were 367 

annotated with gene positions. Across chromosomes, the distribution of chromosomal 368 

correlations between gene count and recombination rate was clearly skewed towards 369 

positive values, independently of the previously described CO patterns (mean Spearman’s 370 

rank correlation = 0.46 [0.43; 0.49]; Fig 8A). Ninety-one percent of 483 chromosomes (41 371 

species) showed a significant correlation between the number of genes and recombination 372 

rate at a 100 kb scale. Yet the strength of the relationship greatly varied across species and 373 

did not correlate with usual predictors such as the chromosome length or the genome-wide 374 

recombination rate (Fig 8B). Overall, standardized recombination rates (subtracting the 375 

mean and dividing by the standard deviation to allow comparison among species) 376 

(see the Introduction)
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consistently increased with the number of genes in most species (linear quadratic 377 

regression, adjusted R2 = 0.62, p < 0.001; Fig 8C). 378 

As for recombination patterns, we classified patterns of gene density along chromosomes 379 

in three categories: distal, sub-distal and exceptions (Fig S7). Most species (30 out of 41) 380 

were classified in the same gene density and recombination pattern (Table S11). Moreover, 381 

when we classified species as a function of recombination patterns, we qualitatively 382 

observed the same pattern for gene density and recombination (Fig 9), suggesting that 383 

recombination and gene density share the same non-random distribution along the genome.   384 

 385 

Fig 8. Recombination rates are positively correlated with gene density (n = 483 chromosomes, 41 386 

species). (A) Distribution of chromosome Spearman’s rank correlations between the number of 387 

genes and the recombination rate in 100 kb windows. The black vertical line is the mean 388 

correlation with a 95% confidence interval (dashed lines) estimated by 1,000 bootstrap 389 

replicates. Colours correspond to CO patterns (orange = distal, blue = sub-distal, black = 390 

exception). (B) Slopes of the species linear regression between gene count and recombination 391 

rates are independent of the species averaged recombination rate (Linear Model, adjusted R2 = 392 

-0.02, p = 0.83). (C) Standardized recombination rates for each number of genes in a 100 kb 393 

window (centred-reduced, chromosomes pooled per species, one colour per species) estimated 394 

by 1,000 bootstraps and standardized within species. The gene count was estimated by 395 

counting the number of gene starting positions within each 100 kb window. The black line with a 396 

grey ribbon is the quadratic regression estimated by linear regression with a 95% parametric 397 

confidence interval (Linear Model, adjusted R2 = 0.62, p < 0.001). 398 

we observed the same qualitative pattern for gene density and recombination for species with either major recombination pattern



 399 

Fig 9. Gene counts patterns along the chromosome are correlated with CO patterns (n = 41 400 

species). Standardized gene count (centred-reduced) as a function of the relative distance from 401 

the tip to the middle of the chromosome (genomic distances distributed in 20 bins). We used 402 

the same groups as identified for the CO pattern in Fig 6; (a) distal pattern vs (b) sub-distal 403 

pattern. Same legend as Fig 6. 404 

Genetic shuffling 405 

We confirmed that recombination is unevenly distributed in genomes, which should affect 406 

how genetic variation is shuffled during meiosis. Genetic shuffling participates to the random 407 

reassortment of genes between parental homologous chromosomes. To quantify how much 408 

genetic shuffling depends on the distribution of COs, we estimated its intrachromosomal 409 

component, 𝑟̅𝑖𝑛𝑡𝑟𝑎, as described in equation 10 in Veller et al. (2019). The 𝑟̅𝑖𝑛𝑡𝑟𝑎 gives, for a 410 

chromosome, a measure of the probability for a random pair of loci to be shuffled by a 411 

crossover. As expected, genetic shuffling was positively and significantly correlated with 412 

linkage map length (𝑟̅𝑖𝑛𝑡𝑟𝑎 ~ linkage map length + (1 | species), marginal R2 = 0.43, 413 

conditional R2 = 0.88, p < 0.001, Fig S8). COs clustered in distal regions are supposed to 414 

generate less genetic shuffling than COs evenly distributed in the chromosome. At a 415 

chromosomal level, the periphery-bias ratio as a low but significant effect on genetic 416 

shuffling, consistent among species (𝑟̅𝑖𝑛𝑡𝑟𝑎 ~ periphery-bias ratio + (1 | species), marginal R2 417 

= 0.05, conditional R2 = 0.68, p < 0.001, Fig S9). The more COs are clustered in the tips of 418 
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the chromosome, the lower the chromosomal genetic shuffling. These results verify the 419 

analytical predictions of Veller et al. (2019), although the strength of the effect remains weak. 420 

However, the distributions of COs and genes are both non-random and often correlated 421 

(Fig 8 and S10). Genomic distances measured in base pairs may not be the most 422 

appropriate measure of genetic shuffling among functional genomic components. Thus, we 423 

measured genomic distances in gene distances (i.e. the cumulative number of genes along 424 

the chromosome) instead of base pairs. Marey maps most often appeared more 425 

homogeneous when scaled on gene distances instead of base pair distances, with 70% (316 426 

over 450) of Marey maps showing a smaller departure from a random distribution (Fig 10, 427 

S11, Table S11). Globally, a subset of 30 species has more homogeneous Marey maps with 428 

gene distances whereas 11 others are quantitatively more heterogeneous (notably Capsella 429 

rubella and Arabidopsis thaliana), although this could be due to low quality annotations 430 

making it difficult to precisely estimate the gene distances for some of them (e.g. Sesamum 431 

indicum). In most cases, genetic shuffling were slightly higher when gene distances were 432 

used instead of base pairs (Fig 11; mean = 0.22 for base pairs; mean = 0.26 for gene 433 

distances; Wilcoxon rank sum test with continuity correction, p < 0.001), implying that the 434 

genetic shuffling was more efficient among coding regions than among regions randomly 435 

sampled in the genome. Interestingly, the increase in genetic shuffling calculated in gene 436 

distances compared to genomic distance was more pronounced for longer chromosomes —437 

 which are often the most heterogeneous ones, characterized by a distal pattern — whereas 438 

we saw little effect on smaller chromosomes characterized by a sub-distal pattern (difference 439 

in 𝑟̅𝑖𝑛𝑡𝑟𝑎 ~ log10(chromosome size) + (1 | species), marginal R2 = 0.21, conditional R2 = 0.87, 440 

p < 0.001, Fig 11). 441 
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 442 

Fig 10. Marey maps of six chromosomes with the relative physical distance expressed in genomic 443 

distances (black dots, position in the genome in Mb) or in gene distances (grey dots, position 444 

measured as the cumulative number of genes along the chromosome. Marey maps are ordered 445 

by ascending chromosome size (Mb). The diagonal dashed line represents a theoretical 446 

random distribution of COs along the chromosome. 447 

 448 

Fig 11. Differences in genetic shuffling between estimates based on genomic distances (Mb) and 449 

gene distances (cumulative number of genes). The difference is the genetic shuffling in gene 450 



distances minus the genetic shuffling in genomic distances. Colours correspond to CO patterns 451 

(orange = distal, blue = sub-distal, black = exception). (A) Distribution of the chromosome 452 

differences in the genetic shuffling (n = 444 chromosomes). (B) Distributions of the species 453 

difference in the genetic shuffling (n = 41 species, chromosomes pooled). (C) Species 454 

differences in the genetic shuffling are positively correlated with the averaged chromosome size 455 

(Linear Model, adjusted R2 = 0.20, p = 0.002, n = 41, 95% parametric confidence interval). 456 

Discussion 457 

Based on a large and curated dataset, we provided, to our knowledge, the largest 458 

description of recombination landscapes among flowering plants. In addition to confirming 459 

that both the chromosome-wide recombination rate and the heterogeneity of recombination 460 

landscapes vary according to chromosome length, we identified two distinct CO patterns and 461 

we proposed a new model that extended the strict telomere model recently proposed by 462 

Haenel et al. (2018). Moreover, the consistent correlation between recombination and gene 463 

density may have implications for the evolution of recombination landscapes and whether 464 

the distribution of COs is optimal for the efficacy of genetic shuffling. 465 

Chromosome size and recombination rate 466 

We showed that, for most species, the smallest chromosome had roughly one or two 467 

COs, independently of chromosome size. This is in agreement with the idea that CO 468 

assurance is a ubiquitous regulation process among angiosperms (Pazhayam et al., 2021). 469 

Moreover, this constraint imposes a kind of basal recombination rate for each species, on 470 

the order of 50 𝑆𝑐⁄  cM/Mb, where 𝑆𝑐 is the size of the lowest chromosome in Mb. Regardless 471 

of the genome size (which ranges three orders of magnitude or more), the number of COs 472 

remains relatively stable amongst species, most probably under the joint influence of CO 473 

assurance, interference and homeostasis (Otto and Payseur, 2019; Stapley et al., 2017; 474 

Wang et al., 2015). As a result, averaged recombination rates are negatively correlated with 475 

chromosome lengths, as already known in plants (Haenel et al., 2018; Tiley and Burleigh, 476 

2015). 477 
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However, there is no universal relationship between the absolute size of a chromosome 478 

and its mean recombination rate. Although the average recombination rate of a species is 479 

well predicted by its average chromosome size, the recombination rates of each 480 

chromosome separately are not well predicted by their absolute chromosome size. Instead, 481 

variation within species is much better explained by the relative chromosome size, and 482 

surprisingly, this relationship seems to be roughly the same among species (see Fig 1 and 483 

2). This suggests that CO interference is proportional to the relative size of the chromosome, 484 

as has been empirically observed in some plants (Ferreira et al., 2021). Although it is not 485 

clear yet which interference distance unit is the most relevant, genomic distances (in Mb) are 486 

excluded in most models of interference in favour of genetic distances (cM) (Foss et al., 487 

1993) or, more likely, the length of the synaptonemal complex in micrometres (Capilla-Pérez 488 

et al., 2021; Kleckner et al., 2004; Lloyd and Jenczewski, 2019; Zickler and Kleckner, 2015). 489 

Both scales match our observation of a relative size effect. Within species, genetic maps 490 

increase with chromosome size, but among species they are uncorrelated and far less 491 

variable than genome sizes, which makes the relative chromosome size the main 492 

determinant of recombination rate variations among species. Similarly, physical sizes (in 493 

micrometres) at meiosis do not seem to scale with genome size, as chromosomal 494 

organization (nucleosomes, chromatin loops) strongly reduces the variation that could be 495 

expected given the genome size (Otto and Payseur, 2019).  496 

Recombination patterns along chromosomes 497 

We observed a global trend towards higher recombination rates in sub-distal regions 498 

(Gaut et al., 2007; Haenel et al., 2018). The distal bias increased with chromosome length, 499 

in agreement with the conclusions of Haenel et al. (2018), although our methods differ in 500 

resolution. We analysed species and chromosomes separately whereas Haenel et al. (2018) 501 

used averages over the different patterns, thereby masking chromosome- and species-502 

specific particularities. For example, they did not detect the sub-distal pattern neither 503 

unclassified exceptions, whereas they seem common among species (16 and 7 species 504 

Surely this is already known, for example from differences between  closely related species with different rates, including selfer-outcrtosser differences



respectively). So far, little is known about the mechanisms that could explain the link 505 

between the distal bias and chromosome length. Even if models of CO interference yield 506 

similar patterns (Falque et al., 2007; Zhang et al., 2014), the conceptual model of Haenel et 507 

al. (2018) is still the only one to explicitly consider chromosome length. The telomere effect 508 

is thought to act at a broad chromosome scale over long genomic distance. The decision of 509 

double strand breaks (DSBs) to engage in the CO pathway is made early on during meiosis 510 

and the early chromosome pairing beginning in telomeres is thought to favour distal COs 511 

(Bishop and Zickler, 2004; Higgins et al., 2012; Hinch et al., 2019). In barley, when the 512 

relative timing of the first stages of the meiotic program was shortened, COs were 513 

redistributed towards proximal regions (Higgins et al., 2012), as later observed in wheat 514 

(Osman et al., 2021).  515 

Haenel et al. (2018) proposed that distance to the telomere is driving CO positioning, and 516 

therefore it should produce a symmetrical U-shaped pattern along chromosomes. However, 517 

a formal test showed that this model was too simple and that centromeres also played a role 518 

in the distribution of COs between chromosome arms. The best model (M3: ‘telomere + 519 

centromere + one CO per chromosome’) that we have proposed suggests that centromeres 520 

do not only have a local effect but also influence the symmetry of recombination landscapes 521 

over long distance, though a large proportion of our sample is metacentric, which might limit 522 

the detection of an effect. The local suppression of COs in centromeric regions is well known 523 

and largely conserved among species and seems a strong constitutive feature restricted to a 524 

short centromeric region, basically the kinetochore (Ellermeier et al., 2010; Fernandes et al., 525 

2019). But the extent of the pericentromeric region varies drastically, most probably under 526 

the influence of DNA methylation, chromatin accessibility or RNA interference (Choi et al., 527 

2018; Ellermeier et al., 2010; Hartmann et al., 2019; Pan et al., 2011). However, how 528 

centromeres (especially non-metacentric ones) may affect CO distribution at larger scales 529 

still needs to be determined. 530 

Some unnecessary repetition of results here can be removed 



Diversity of patterns among species 531 

In addition to the role of centromeres, we also observed that recombination rates do not 532 

always decrease monotonically with the distance to the tip of the chromosome, showing that 533 

the distal model is not generally found among plants. We observed at least two different 534 

crossover patterns among plant species. Only 34 out of 57 species support a process 535 

starting at the tips (distal model), and 16 present the highest recombination rates in sub-536 

distal regions, while seven species remain unclassified, which is at the limit of our visual 537 

classification. Globally, the distal pattern and distal bias seem to occur more often in larger 538 

chromosomes, but our data lack species with giant genomes. Giant genomes are not rare in 539 

plants, and we cannot extrapolate our conclusions to the upper range of the genome size 540 

variation (Pellicer et al., 2018). Astonishingly, a low-density genetic map in Allium showed 541 

higher recombination rates in the proximal regions, which is opposite to the major trend we 542 

found (Khrustaleva et al., 2005). Genera with giant genomes such as Lilium or Allium would 543 

have been valuable assets in our dataset, but the actual genomic and linkage data are 544 

relatively incomplete (Jo et al., 2017; Shahin et al., 2011). 545 

The occurrence of various recombination patterns is in agreement with what is known of 546 

the timing of meiosis and heterochiasmy (the fact that male and female meiosis have 547 

different CO patterns). Despite the strong conservation of the main meiotic mechanism in 548 

plants, differences in the balance between key components may produce distinct CO 549 

patterns (de Massy, 2013; Higgins et al., 2012; Kuo et al., 2021; Zelkowski et al., 2019). For 550 

example, the ZYP1 and ASY1 proteins have antagonistic effects on the formation of the 551 

synaptonemal complex in plants (Lambing et al., 2020). In barley and wheat, linearization of 552 

the chromosome axis triggered by ZYP1 is gradual along the chromosome and initiated in 553 

distal regions, forming the telomere bouquet where early DSBs form (Higgins et al., 2012; 554 

Osman et al., 2021). In contrast, chromosome axes are formed at a similar time in 555 

Arabidopsis thaliana and chromosomes are gradually enriched in ASY1 from the telomeres 556 

to the centromeres; a gene-dosage component favours synapsis and ultimately COs towards 557 



the proximal regions (Lambing et al., 2020). It appears that the timing of the meiotic 558 

programme is important for the distal bias, as it involves changes in the relative contribution 559 

of each meiotic component that could explain the re-localization of COs (Higgins et al., 2012; 560 

Lambing et al., 2020). Therefore, the different patterns we observed may be explained by 561 

the different balance and timing of the expression of shared key regulators of CO patterning 562 

such as ZYP1 and ASY1 (Kuo et al., 2021). It is interesting to note that this is also true for 563 

mechanistic models of interference. Zhang et al. (2014) assessed that the ‘beam-film’ model 564 

is able to fit both CO patterns, regardless whether the tips of the chromosomes have an 565 

effect on interference or not, i.e. clamping. If clamping is assumed, the model predicts that 566 

mechanical stress culminates in the extremities of the chromosome leading to high CO rates 567 

at the periphery where it is released first. In contrast, when clamping is limited, mechanical 568 

stress is released in the tips of the chromosome and COs occur further from the tips, until a 569 

threshold of mechanical stress is reached. The observed sub-distal pattern fits these 570 

predictions.  571 

The two patterns of recombination we described here can also be observed in opposite 572 

sexes within the same plant species (Capilla-Pérez et al., 2021; Dukić and Bomblies, 2022; 573 

Sardell and Kirkpatrick, 2019). Marked heterochiasmy variations between species, a feature 574 

shared among plants and animals, could influence the resulting sex-averaged recombination 575 

landscape (Sardell and Kirkpatrick, 2019). The sex-averaged telomere effect can be thought 576 

of as the product of two independent sex-specific landscapes although it is not clear how 577 

sex-specific maps ultimately contribute to the sex-averaged one (Johnston et al., 2016; 578 

Lenormand et al., 2016). Recombination is usually biased towards the tips of the 579 

chromosome in male recombination maps, but is more evenly distributed in female maps in 580 

the few plant species with available data (Sardell and Kirkpatrick, 2019). In Arabidopsis 581 

thaliana, male meiosis has higher CO rates within the tips of the chromosome, as it has 582 

been observed in other species with large chromosomes, whereas female meiosis is more 583 

homogeneously distributed, with the lowest rates found in the distal regions (Capilla-Pérez et 584 



al., 2021). Shorter chromosome axes in A. thaliana female meiosis could induce fewer DSBs 585 

and class II non-interfering COs (Lloyd and Jenczewski, 2019). Conversely, in maize, the 586 

distal bias is similar in both sexes, despite higher CO rates for females (Kianian et al., 2018). 587 

Heterochiasmy is not universal in plants (Melamed-Bessudo et al., 2016), and we suggest 588 

that the variation in recombination landscapes could also result from variation in 589 

heterochiasmy among species, as it has been suggested for broad-scale differences in 590 

recombination landscapes between A. thaliana and its relative A. arenosa (Dukić and 591 

Bomblies, 2022). This hypothesis should be tested further as more sex-specific genetic 592 

maps become available. 593 

Recombination landscapes, gene density and genetic shuffling 594 

We observed a strong convergence between CO patterns and gene density patterns. This 595 

correlation is consistent in our dataset despite possible errors in genome annotation and we 596 

also observed two different gene density patterns globally corresponding to similar CO 597 

patterns, emphasizing the close link between recombination and gene density. Interestingly, 598 

we found the same correlation in species with atypical chromosomes. For example, Camellia 599 

sinensis and Nelumbo nucifera have large genomes with homogenous recombination 600 

landscapes, and a recent annotation of the Nelumbo nucifera genome showed that genes 601 

are also evenly distributed along chromosomes at a broad scale (Shi et al., 2020), similar to 602 

Camellia sinensis (Wei et al., 2018). In wheat and rye, the analysis of the effect of 603 

chromosome rearrangement on recombination also suggests that CO localization is more 604 

locus-specific than location-specific: after inversions of distal and interstitial segments, COs 605 

were relocated to the new position on the distal segment (Lukaszewski, 2008; Lukaszewski 606 

et al., 2012). Overall, the parallel between gene density and recombination landscapes, 607 

confirmed by these two exceptions, is in agreement with the preferential occurrence of COs 608 

in gene regulatory sequences (Choi et al., 2018; He et al., 2017; Marand et al., 2019), and 609 

suggests that this may be a general pattern shared among angiosperms. Thus, gene 610 

distribution along chromosomes could be a main driver of recombination landscapes simply 611 



by determining where COs may preferentially occur. It should be noted that since the gene 612 

number is usually positively correlated with chromosome size within a species but is roughly 613 

independent of genome size among species, this hypothesis also matches with the relative-614 

size effect discussed above. 615 

However, gene density and recombination rates are both correlated with many other 616 

genomic features, such as transposable elements (Charlesworth et al., 1994; Kent et al., 617 

2017). The accumulation of transposable elements in low recombining regions would 618 

progressively decrease gene density in the region, and would eventually result in a positive 619 

correlation between gene density and recombination. However, the correlation of 620 

recombination rates with transposable elements is not always clear and different TE families 621 

have opposite correlations (Kent et al., 2017; Underwood and Choi, 2019). Causality 622 

mechanisms of these multiple interactions still need to be clarified. The use of fine scale 623 

recombination maps (using very large mapping populations or LD maps) should help 624 

identifying the respective role of genic regions (especially the role of promoters) and 625 

transposable elements (or other genomic features). 626 

Irrespective of the underlying mechanism, our finding implies that the CO distribution 627 

ultimately scales with the gene distribution. Therefore, in most species, COs have a more 628 

even distribution between genes than between random genomic locations (Fig 10). The 629 

redistribution of COs towards functional regions could be a simple consequence of COs 630 

occurring within gene regulatory sequences, but it has important evolutionary implications 631 

such as increasing the genetic shuffling and homogenizing the probability of two random 632 

genes to recombine, especially for large genomes that exhibit the strongest difference in 633 

genetic shuffling between genes and between genomic locations (Fig 11). Therefore, CO 634 

patterning (and not only the global CO rate) could be under selection not only for its direct 635 

effect on the functioning of meiosis but also for its indirect effects on selection efficacy (Otto 636 

and Payseur, 2019). Recombination decreases linkage disequilibrium and negative 637 

interferences between adjacent loci (e.g. Hill-Robertson Interference), and thus locally 638 



increases the efficacy of selection. Functional sites are targets for selection (Nachman and 639 

Payseur, 2012) and we found higher recombination rates in functional regions, meaning that 640 

only a few genes are ultimately excluded from the benefits of recombination, even under the 641 

most pronounced distal bias. 642 

Higher recombination rates in gene-rich regions could provide a satisfying explanation as 643 

to why the distal bias is maintained among species despite its theoretical lack of efficacy for 644 

genetic shuffling (Veller et al., 2019). The association between CO hotspots and gene 645 

regulatory sequences is mechanistically driven by chromatin accessibility, but it does not 646 

exclude the evolution of the mechanism itself towards the benefits of recombining more in 647 

gene-rich regions (Lenormand et al., 2016). However, slight variations in genetic shuffling 648 

caused by the non-random distribution of COs are less likely to be under strong selection 649 

compared to stabilizing selection on molecular constraints for chromosome pairing and 650 

segregation (Ritz et al., 2017), although interference is sometimes likely to evolve towards 651 

relaxed physical constraints (Otto and Payseur, 2019). In addition, the intra-chromosomal 652 

component of the genetic shuffling is a small contributor to the genome-wide shuffling rate, 653 

as a major part is due to independent assortment among chromosomes (Veller et al., 2019). 654 

Our estimates for the chromosomal genetic shuffling do not reach the theoretical optimal 655 

value of 0.5. The pattern is not absolute, and a fraction of genes remains in low recombining 656 

regions. In grass species, up to 30% of genes are found in recombination deserts and are 657 

not subject to efficient selection (e.g. Mayer et al., 2011). Finally, it is still an open question 658 

as to whether this global distribution of COs in gene regulatory sequences is advantageous 659 

for the genetic diversity and adaptive potential of a species (Pan et al., 2016). 660 

Conclusion 661 

Our comparative study only demonstrates correlations, and not mechanisms, but helps to 662 

understand the diversity and determinants of recombination landscapes in flowering plants. 663 

Our results partly confirm previous studies based on fewer species (Haenel et al., 2018; 664 

Stapley et al., 2017; Tiley and Burleigh, 2015) while bringing new insights that alter previous 665 



conclusions thanks to a detailed analysis at the species and chromosome levels. Two main 666 

and distinct CO patterns emerge across a large set of flowering plant species; it seems likely 667 

that chromosome structure (length, centromere) and gene densities are the major drivers of 668 

these patterns, and the interactions between them raise questions about the evolution of 669 

complex genomic patterns at the chromosome scale (Gaut et al., 2007; Nam and Ellegren, 670 

2012). The new large and curated dataset we provide in the present work should be useful 671 

for addressing such questions and testing future evolutionary hypotheses regarding the role 672 

of recombination in genome architecture.  673 

Materials and Methods 674 

Data preparation 675 

To build recombination maps, we combined genetic and genomic maps in angiosperms 676 

that had already been published in the literature. We conducted a literature search to collect 677 

sex-averaged genetic maps estimated on pedigree data – with markers positions in 678 

centiMorgans (cM). The keywords used were ‘genetic map’, ‘linkage map’, ‘genome 679 

assembly’, ‘plants’ and ‘angiosperms’, combined with 'high-density' or 'saturated' in order to 680 

target genetic maps with a large number of markers and progenies. Additionally, we carried 681 

out searches within public genomic databases to find publicly available genetic maps. Only 682 

species with a reference genome assembly at a chromosome level were included in our 683 

study (a complete list of genetic maps with the associated metadata is given in Tables S1, 684 

S2). As much as possible, genomic positions along the chromosome (Mb) were estimated by 685 

blasting marker sequences on the most recent genome assembly (otherwise genomic 686 

positions were those of the original publication). Genome assemblies with annotation files at 687 

a chromosome-scale were downloaded from NCBI (https://www.ncbi.nlm.nih.gov/) or public 688 

databases. Marker sequences were blasted with ‘blastn’ and a 90% identity cutoff. Markers 689 

were anchored to the genomic position of the best hit. When the sequence was a pair of 690 

primers, the mapped genomic position was the best hit between pairs of positions showing a 691 

https://www.ncbi.nlm.nih.gov/


short distance between the forward and reverse primer (< 200 bp). In a few exceptions (see 692 

Table S1), genomic positions were mapped on a close congeneric species genome and the 693 

genomic map was kept if there was good collinearity between the genetic and genomic 694 

positions. Chromosomes were numbered as per the reference genome assembly. When 695 

marker sequences were not available, we kept the genomic positions published with the 696 

genetic map. The total genomic length was estimated by the length of the chromosome 697 

sequence in the genome assembly. The total genetic length was corrected using Hall and 698 

Willis’s method (Hall and Willis, 2005) which accounts for undetected events of 699 

recombination in distal regions by adding 2s to the length of each linkage group (where s is 700 

the average marker spacing in the group). 701 

We selected genetic and genomic maps after stringent filtering and corrections, using 702 

custom scripts available in a public Github repository 703 

(https://github.com/ThomasBrazier/diversity-determinants-recombination-landscapes-704 

flowering-plants.git). We assumed that markers must follow a monotone increasing function 705 

when plotting genetic distances as a function of genomic distances in a chromosome (i.e. 706 

the Marey map) and collinearity between the genetic map and the reference genome was 707 

required to keep a Marey map. If necessary, genetic maps were reoriented so that the Marey 708 

map function is increasing (i.e. genetic distances read in the opposite direction). In a first 709 

step, Marey maps with fewer than 50 markers per chromosome were removed, although a 710 

few exceptions were visually validated (maps with ~30 markers). Marey maps with more 711 

than 10% of the total genomic map length missing at one end of the chromosome were 712 

removed. Marey maps with obvious artefacts and assembly mismatches (e.g. lack of 713 

collinearity, large inversions, large gaps) were removed. Markers clearly outside the global 714 

trend of the Marey map (e.g. large genetic/genomic distance from the global cloud of 715 

markers or from the interpolated Marey function, no other marker in a close neighbourhood) 716 

were visually filtered out, and multiple iterations of filtering/interpolation helped to refine 717 

outlier removal. The Marey map approach is a graphical method, so figures were 718 



systematically produced at each step as a way to evaluate the results of the filtering and 719 

corrections. Finally, when multiple datasets were available for the same species, we 720 

selected the dataset with the highest marker density – in addition to visual validation – to 721 

maintain a balanced sampling and avoid pseudo-replicates of the same chromosome. 722 

Estimates of local recombination rates 723 

Local recombination rates along the chromosome were estimated with custom scripts 724 

following the Marey map approach, as described in the MareyMap R package (Rezvoy et al., 725 

2007). The mathematical function of the Marey map was interpolated with a two-degree 726 

polynomial loess regression. Each span smoothing parameter was calibrated by 1,000 727 

iterations of hold-out partitioning (random sampling of markers between two subsets; 2/3 for 728 

training and 1/3 for testing) with the Mean Squared Error of the loess regression as a 729 

goodness-of-fit criterion. The possible span ranged from 0.2 to 0.5 and was visually adjusted 730 

for certain maps. The local recombination rate was the derivative of the interpolated 731 

smoothed function in fixed 100 kb and 1 Mb non-overlapping windows. Negative estimates 732 

were not possible as we assumed a monotonously increasing function and negative 733 

recombination rates were set to zero. The 95% confidence intervals of the recombination 734 

rates were estimated by 1,000 bootstrap replicates of the markers and recombination 735 

landscapes with large confidence interval were discarded. The quality of the estimates was 736 

checked using the correlation between the 100 kb and 1 Mb windows. 737 

The distribution of CO along chromosomes 738 

The spatial structure of recombination landscapes across species and chromosomes is a 739 

major feature of recombination landscapes. We divided the Marey map in k segments of 740 

equal genomic size (Mb) and then calculated the relative genetic size (cM) of each segment. 741 

Under the null model (i.e. random recombination), one expects k segments of equal genetic 742 

size 1/k. The relative recombination rate in the segment i was estimated by the log-ratio of 743 



the observed genetic size (i.e. genetic size of segment i) divided by the expected genetic 744 

size (i.e. fixed to total genetic size / k by the model), as in the following equation. 745 

𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑟𝑒𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 = 𝑙𝑜𝑔10
𝑔𝑒𝑛𝑒𝑡𝑖𝑐𝑖

𝑔𝑒𝑛𝑒𝑡𝑖𝑐𝑡𝑜𝑡𝑎𝑙 𝑘⁄
 746 

Given the observation that most recombination landscapes are broken down into at least 747 

three segments (White and Hill, 2020), we arbitrarily chose a number of segments k = 10 to 748 

reach a good resolution (a larger k did not show any qualitative differences). 749 

Crossover patterns and the periphery-bias ratio 750 

We investigated the spatial bias towards distal regions of the chromosome in the 751 

distribution of recombination by estimating recombination rates as a function of relative 752 

distances to the telomere (i.e. distance to the nearest chromosome end). Chromosomes 753 

were split by their midpoint and only one side was randomly sampled for each chromosome 754 

to avoid pseudo-replicates and the averaging of two potentially contrasting patterns on 755 

opposite arms. The relative distance to the telomere was the distance to the telomere 756 

divided by total chromosome size, then divided into 20 bins of equal relative distances. A 757 

periphery-bias ratio metric similar to the one presented in Haenel et al. (2018) was estimated 758 

to measure the strength of the distal bias. We divided the recombination rates in the tip of 759 

the chromosome (10% on each side of the chromosome, and one randomly sampled tip) by 760 

the mean recombination rate of the whole chromosome. We investigated the sensitivity of 761 

this periphery-bias ratio to the sampling scale by calculating the ratio for many distal region 762 

sizes (Fig S12). 763 

Testing centromere or telomere effects 764 

We searched the literature for centromeric indices (ratio of the short arm length divided by 765 

the total chromosome length) established by cytological measures. When we had no 766 

information about the correct orientation of the chromosome (short arm/long arm), the 767 

centromeric index was oriented to match the region with the lowest recombination rate of the 768 



whole chromosome (i.e. putative centromere). To determine if telomeres and centromeres 769 

play a significant role in CO patterning, we fitted empirical CO distributions to three 770 

theoretical models of CO distribution. In the following equations, d(x) is the relative genetic 771 

distance at the relative genomic position x, and a is a coefficient corresponding to the excess 772 

of COs per genomic distance. Under the strict ‘telomere’ model (1), we assumed that only 773 

telomeres played a role in CO distribution, i.e. an equal distribution of COs on both sides of 774 

the chromosome (i.e. 𝑑(1 2⁄ ) = 𝑑(1) − 𝑑(1 2⁄ ), such that 
𝑑(1 2⁄ )

𝑑(1)
= 0.5. The ‘telomere + 775 

centromere + one mandatory CO per arm’ model (2) assumed at least one CO per 776 

chromosome arm and a relative genetic distance of each chromosome arm proportional to 777 

its relative genomic size, corresponding to the role of centromere position, denoted d(c). We 778 

have 𝑑(𝑐) = 50 + 𝑎 × 𝑐 and 𝑑(1) − 𝑑(𝑐) = 50 + 𝑎 × (1 − 𝑐), such that 
𝑑(𝑐)−50

𝑑(1)−100
= 𝑐. Lastly, 779 

the ‘telomere + centromere + one CO per chromosome’ model (3) assumed at least one CO 780 

per chromosome and a relative genetic distance within the chromosome proportional to its 781 

relative genomic distance. We have 𝑑(𝑐) = 𝑐 × 50 + 𝑎 × 𝑐 and 𝑑(1) − 𝑑(𝑐) = (1 − 𝑐) × 50 +782 

𝑎 × (1 − 𝑐), such that 
𝑑(𝑐)

𝑑(1)
= 𝑐. The three competing models were compared with a linear 783 

regression between empirical and theoretical values, based on the adjusted R2 and AIC-BIC 784 

criteria among chromosomes. The number of species supporting each model was calculated 785 

based on the adjusted R2 within species, for all species with at least five chromosomes. 786 

Gene density 787 

We retrieved genome annotations (‘gff’ files) for genes, coding sequences and exon 788 

positions, preferentially from NCBI and otherwise from public databases (41 species). We 789 

estimated gene counts in 100 kb windows for recombination maps by counting the number 790 

of genes with a starting position falling inside the window. For each gene count, we 791 

estimated the species mean recombination rate and its confidence interval at 95% by 1,000 792 

bootstrap replicates (chromosomes pooled per species). Most species had rarely more than 793 

20 genes over a 100 kb span and variance dramatically increased in the upper range of the 794 



gene counts, and therefore we pruned gene counts over 20 for graphical representation and 795 

statistical analyses. 796 

Genetic shuffling 797 

To assess the efficiency of the recombination between chromosomes and species, we 798 

calculated the measure of intra-chromosomal genetic shuffling described by Veller et al. 799 

(2019). To have even sampling along the chromosome, genetic positions (cM) of 1,000 800 

pseudo-markers evenly distributed along genomic distances (Mb) were interpolated using a 801 

loess regression on each Marey map, following the same smoothing and interpolation 802 

procedure as for the estimation of the recombination rates. The chromosomal genetic 803 

shuffling 𝑟̅𝑖𝑛𝑡𝑟𝑎 were calculated as per the intra-chromosomal component of the equation 10 804 

presented in Veller et al. (2019). For a single chromosome, 805 

𝑟̅𝑖𝑛𝑡𝑟𝑎 =  ∑(𝑟𝑖𝑗 (
Λ

2
)⁄ )

𝑖<𝑗

 806 

where Λ is the total number of loci, (Λ
2

) =  Λ(Λ −   1)/2 and 𝑟𝑖𝑗 is the rate of shuffling for 807 

the locus pair (i, j). For the intra-chromosomal component 𝑟̅𝑖𝑛𝑡𝑟𝑎, the pairwise shuffling rate 808 

was only calculated for linked sites, i.e. loci on the same chromosome. This pairwise 809 

shuffling rate was estimated by the recombination fraction between loci i and j. 810 

Recombination fractions were directly calculated from Haldane or Kosambi genetic distances 811 

between loci by applying a reverse Haldane function (1) or reverse Kosambi function (2), 812 

depending on the mapping function originally used for the given genetic map. 813 

𝑟𝑖𝑗 =  
1

2
(1 −  𝑒−2𝑑𝑖𝑗/100)   (1) 814 

𝑟𝑖𝑗 =  𝑡𝑎𝑛ℎ
1

2
𝑡𝑎𝑛ℎ(2𝑑𝑖𝑗/100)   (2) 815 

We also estimated marker positions in gene distances instead of genomic distances (Mb) 816 

to investigate the influence of the non-random distribution of genes on the recombination 817 



landscape. Gene distances were the cumulative number of genes along the chromosome at 818 

a given marker’s position. Splicing variants and overlapping genes were counted as a single 819 

gene. The genetic shuffling was re-estimated with gene distances instead of genomic 820 

distances to consider a genetic shuffling based on the gene distribution, as suggested by 821 

Veller et al. (2019). To compare the departure from a random distribution along the 822 

chromosome among both types of distances (i.e. genomic and genes), we calculated the 823 

Root Mean Square Error (RMSE) of each Marey map and for both distances. To assess if 824 

the distribution of genes influenced the heterogeneity of recombination landscapes, the type 825 

of distance with the lower RMSE was considered as the more homogeneous landscape. 826 

However, this measure for gene distances is sensitive to annotation errors and artefacts. 827 

False negatives are therefore expected (when Marey maps were assessed as more 828 

homogeneous in genomic distances while the inverse is true) and this classification remains 829 

conservative. 830 

Statistical analyses 831 

All statistical analyses were performed with R version 4.0.4 (R Core Team, 2019). We 832 

assessed statistical relationships with the non-parametric Spearman’s rank correlation and 833 

regression models. Linear Models were used for regressions with species data since we did 834 

not detect a phylogenetic effect. The structure in the chromosome dataset was accounted for 835 

by Linear Mixed Models (LMER) implemented in the ‘lme4’ R package (Bates et al., 2015, p. 836 

4) and the phylogenetic structure was tested by fitting the Phylogenetic Generalized Linear 837 

Mixed Model (PGLMM) of the ‘phyr’ R package (Ives et al., 2019). The phylogenetic time-838 

calibrated supertree used for the covariance matrix was retrieved from the publicly available 839 

phylogeny constructed by Smith and Brown (Smith and Brown, 2018). Marginal and 840 

conditional R2 values for LMER were estimated with the ‘MuMIn’ R package (Bartoń, 2020). 841 

Significance of the model parameters was tested with the ‘lmerTest’ R package (Kuznetsova 842 

et al., 2017). We selected the model based on AIC/BIC criteria and diagnostic plots. 843 

Reliability and stability of the various models were assessed by checking quantile-quantile 844 



plots for the normality of residuals and residuals plotted as a function of fitted values for 845 

homoscedasticity. Model quality was checked by the comparison of predicted and observed 846 

values. Given the skewed nature of some distributions, we used logarithm (base 10) 847 

transformations when appropriate. For comparison between species, statistics were 848 

standardized (i.e. by subtracting the mean and dividing by standard deviation). Mean 849 

statistics and 95% confidence intervals were estimated by 1,000 bootstrap replicates. 850 

Acknowledgements 851 

We thank Eric Janczewski, Laurent Duret, Anne-Marie Chèvre, Eric Petit and Armel 852 

Salmon, as well as three anonymous reviewers, for precious comments on the results and 853 

manuscript. We thank all the people that provided us genetic data that were not published 854 

yet. 855 

Author contributions 856 

SG conceptualised and supervised the study. TB produced and analysed data. Both authors 857 

contributed to writing the paper. 858 

References 859 

Apuli, R.-P., Bernhardsson, C., Schiffthaler, B., Robinson, K.M., Jansson, S., Street, N.R., 860 

Ingvarsson, P.K., 2020. Inferring the Genomic Landscape of Recombination Rate Variation 861 

in European Aspen (Populus tremula). G3 GenesGenomesGenetics 10, 299–309. 862 

https://doi.org/10.1534/g3.119.400504 863 

Bartoń, K., 2020. MuMIn: Multi-model inference (manual). 864 

Barton, N.H., 1995. A general model for the evolution of recombination. Genet. Res. 65, 865 

123–144. https://doi.org/10.1017/S0016672300033140 866 



Bates, D., Mächler, M., Bolker, B., Walker, S., 2015. Fitting linear mixed-effects models 867 

using lme4. J. Stat. Softw. 67, 1–48. https://doi.org/10.18637/jss.v067.i01 868 

Bishop, D.K., Zickler, D., 2004. Early decision; meiotic crossover interference prior to 869 

stable strand exchange and synapsis. Cell 117, 9–15. https://doi.org/10.1016/S0092-870 

8674(04)00297-1 871 

Blitzblau, H.G., Bell, G.W., Rodriguez, J., Bell, S.P., Hochwagen, A., 2007. Mapping of 872 

Meiotic Single-Stranded DNA Reveals Double-Strand-Break Hotspots near Centromeres 873 

and Telomeres. Curr. Biol. 17, 2003–2012. https://doi.org/10.1016/j.cub.2007.10.066 874 

Booker, T.R., Yeaman, S., Whitlock, M.C., 2020. Variation in recombination rate affects 875 

detection of outliers in genome scans under neutrality. Mol. Ecol. mec.15501. 876 

https://doi.org/10.1111/mec.15501 877 

Capilla-Pérez, L., Durand, S., Hurel, A., Lian, Q., Chambon, A., Taochy, C., Solier, V., 878 

Grelon, M., Mercier, R., 2021. The synaptonemal complex imposes crossover interference 879 

and heterochiasmy in Arabidopsis. Proc. Natl. Acad. Sci. 118, e2023613118. 880 

https://doi.org/10.1073/pnas.2023613118 881 

Charlesworth, B., Sniegowski, P. & Stephan, W., 1994. The evolutionary dynamics of 882 

repetitive DNA in eukaryotes. Nature 371, 215–220. 883 

Charlesworth, B., Jensen, J.D., 2021. Effects of Selection at Linked Sites on Patterns of 884 

Genetic Variability. Annu. Rev. Ecol. Evol. Syst. 52, 177–197. 885 

https://doi.org/10.1146/annurev-ecolsys-010621-044528 886 

Choi, K., Zhao, X., Kelly, K.A., Venn, O., Higgins, J.D., Yelina, N.E., Hardcastle, T.J., 887 

Ziolkowski, P.A., Copenhaver, G.P., Franklin, F.C.H., McVean, G., Henderson, I.R., 2013. 888 

Arabidopsis meiotic crossover hot spots overlap with H2A.Z nucleosomes at gene 889 

promoters. Nat. Genet. 45, 1327–1336. https://doi.org/10.1038/ng.2766 890 



Choi, K., Zhao, X., Tock, A.J., Lambing, C., Underwood, C.J., Hardcastle, T.J., Serra, H., 891 

Kim, Juhyun, Cho, H.S., Kim, Jaeil, Ziolkowski, P.A., Yelina, N.E., Hwang, I., Martienssen, 892 

R.A., Henderson, I.R., 2018. Nucleosomes and DNA methylation shape meiotic DSB 893 

frequency in Arabidopsis thaliana transposons and gene regulatory regions. Genome Res. 894 

28, 532–546. https://doi.org/10.1101/gr.225599.117 895 

Comeron, J.M., 2017. Background selection as null hypothesis in population genomics: 896 

insights and challenges from Drosophila studies. Philos. Trans. R. Soc. B Biol. Sci. 372, 897 

20160471. https://doi.org/10.1098/rstb.2016.0471 898 

Cooper, T.J., Garcia, V., Neale, M.J., 2016. Meiotic DSB patterning: A multifaceted 899 

process. Cell Cycle 15, 13–21. https://doi.org/10.1080/15384101.2015.1093709 900 

Corbett-Detig, R.B., Hartl, D.L., Sackton, T.B., 2015. Natural Selection Constrains Neutral 901 

Diversity across A Wide Range of Species. PLOS Biol. 13, e1002112. 902 

https://doi.org/10.1371/journal.pbio.1002112 903 

de Massy, B., 2013. Initiation of Meiotic Recombination: How and Where? Conservation 904 

and Specificities Among Eukaryotes. Annu. Rev. Genet. 47, 563–599. 905 

https://doi.org/10.1146/annurev-genet-110711-155423 906 

Dukić, M., Bomblies, K., 2022. Male and female recombination landscapes of diploid 907 

Arabidopsis arenosa. Genetics iyab236. https://doi.org/10.1093/genetics/iyab236 908 

Ellermeier, C., Higuchi, E.C., Phadnis, N., Holm, L., Geelhood, J.L., Thon, G., Smith, 909 

G.R., 2010. RNAi and heterochromatin repress centromeric meiotic recombination. Proc. 910 

Natl. Acad. Sci. 107, 8701–8705. https://doi.org/10.1073/pnas.0914160107 911 

Falque, M., Mercier, R., Mézard, C., de Vienne, D., Martin, O.C., 2007. Patterns of 912 

Recombination and MLH1 Foci Density Along Mouse Chromosomes: Modeling Effects of 913 

Interference and Obligate Chiasma. Genetics 176, 1453–1467. 914 

https://doi.org/10.1534/genetics.106.070235 915 



Fernandes, J.B., Wlodzimierz, P., Henderson, I.R., 2019. Meiotic recombination within 916 

plant centromeres. Curr. Opin. Plant Biol. 48, 26–35. 917 

https://doi.org/10.1016/j.pbi.2019.02.008 918 

Ferreira, M.T.M., Glombik, M., Perničková, K., Duchoslav, M., Scholten, O., Karafiátová, 919 

M., Techio, V.H., Doležel, J., Lukaszewski, A.J., Kopecký, D., 2021. Direct evidence for 920 

crossover and chromatid interference in meiosis of two plant hybrids (Lolium 921 

multiflorum×Festuca pratensis and Allium cepa×A. roylei). J. Exp. Bot. 72, 254–267. 922 

https://doi.org/10.1093/jxb/eraa455 923 

Foss, E., Lande, R., Stahl, F., Steinberg, C., 1993. Chiasma interference as a function of 924 

genetic distance. Genetics 133, 681–691. 925 

Galtier, N., Roux, C., Rousselle, M., Romiguier, J., Figuet, E., Glémin, S., Bierne, N., 926 

Duret, L., 2018. Codon Usage Bias in Animals: Disentangling the Effects of Natural 927 

Selection, Effective Population Size, and GC-Biased Gene Conversion. Mol. Biol. Evol. 35, 928 

1092–1103. https://doi.org/10.1093/molbev/msy015 929 

Gaut, B.S., Wright, S.I., Rizzon, C., Dvorak, J., Anderson, L.K., 2007. Recombination: an 930 

underappreciated factor in the evolution of plant genomes. Nat. Rev. Genet. 8, 77–84. 931 

https://doi.org/10.1038/nrg1970 932 

Glémin, S., Clément, Y., David, J., Ressayre, A., 2014. GC content evolution in coding 933 

regions of angiosperm genomes: a unifying hypothesis. Trends Genet. 30, 263–270. 934 

https://doi.org/10.1016/j.tig.2014.05.002 935 

Haenel, Q., Laurentino, T.G., Roesti, M., Berner, D., 2018. Meta-analysis of chromosome-936 

scale crossover rate variation in eukaryotes and its significance to evolutionary genomics. 937 

Mol. Ecol. 27, 2477–2497. https://doi.org/10.1111/mec.14699 938 



Hall, M.C., Willis, J.H., 2005. Transmission Ratio Distortion in Intraspecific Hybrids of 939 

Mimulus guttatus: Implications for Genomic Divergence. Genetics 170, 375–386. 940 

https://doi.org/10.1534/genetics.104.038653 941 

Hartmann, M., Umbanhowar, J., Sekelsky, J., 2019. Centromere-Proximal Meiotic 942 

Crossovers in Drosophila melanogaster Are Suppressed by Both Highly Repetitive 943 

Heterochromatin and Proximity to the Centromere. Genetics 213, 113–125. 944 

https://doi.org/10.1534/genetics.119.302509 945 

He, Y., Wang, M., Dukowic-Schulze, S., Zhou, A., Tiang, C.-L., Shilo, S., Sidhu, G.K., 946 

Eichten, S., Bradbury, P., Springer, N.M., Buckler, E.S., Levy, A.A., Sun, Q., Pillardy, J., 947 

Kianian, P.M.A., Kianian, S.F., Chen, C., Pawlowski, W.P., 2017. Genomic features shaping 948 

the landscape of meiotic double-strand-break hotspots in maize. Proc. Natl. Acad. Sci. 114, 949 

12231–12236. https://doi.org/10.1073/pnas.1713225114 950 

Higgins, J.D., Perry, R.M., Barakate, A., Ramsay, L., Waugh, R., Halpin, C., Armstrong, 951 

S.J., Franklin, F.C.H., 2012. Spatiotemporal Asymmetry of the Meiotic Program Underlies 952 

the Predominantly Distal Distribution of Meiotic Crossovers in Barley. Plant Cell 24, 4096–953 

4109. https://doi.org/10.1105/tpc.112.102483 954 

Hinch, A.G., Zhang, G., Becker, P.W., Moralli, D., Hinch, R., Davies, B., Bowden, R., 955 

Donnelly, P., 2019. Factors influencing meiotic recombination revealed by whole-genome 956 

sequencing of single sperm. Science 363, eaau8861. 957 

https://doi.org/10.1126/science.aau8861 958 

Ives, A., Dinnage, R., Nell, L.A., Helmus, M., Li, D., 2019. phyr: Model based phylogenetic 959 

analysis (manual). 960 

Jo, J., Purushotham, P.M., Han, K., Lee, H.-R., Nah, G., Kang, B.-C., 2017. Development 961 

of a Genetic Map for Onion (Allium cepa L.) Using Reference-Free Genotyping-by-962 



Sequencing and SNP Assays. Front. Plant Sci. 8, 1606. 963 

https://doi.org/10.3389/fpls.2017.01606 964 

Johnston, S.E., Bérénos, C., Slate, J., Pemberton, J.M., 2016. Conserved Genetic 965 

Architecture Underlying Individual Recombination Rate Variation in a Wild Population of 966 

Soay Sheep (Ovis aries). Genetics 203, 583–598. 967 

https://doi.org/10.1534/genetics.115.185553 968 

Kent, T.V., Uzunović, J., Wright, S.I., 2017. Coevolution between transposable elements 969 

and recombination. Philos. Trans. R. Soc. B Biol. Sci. 372, 20160458. 970 

https://doi.org/10.1098/rstb.2016.0458 971 

Khrustaleva, L.I., de Melo, P.E., van Heusden, A.W., Kik, C., 2005. The Integration of 972 

Recombination and Physical Maps in a Large-Genome Monocot Using Haploid Genome 973 

Analysis in a Trihybrid Allium Population. Genetics 169, 1673–1685. 974 

https://doi.org/10.1534/genetics.104.038687 975 

Kianian, P.M.A., Wang, M., Simons, K., Ghavami, F., He, Y., Dukowic-Schulze, S., 976 

Sundararajan, A., Sun, Q., Pillardy, J., Mudge, J., Chen, C., Kianian, S.F., Pawlowski, W.P., 977 

2018. High-resolution crossover mapping reveals similarities and differences of male and 978 

female recombination in maize. Nat. Commun. 9, 2370. https://doi.org/10.1038/s41467-018-979 

04562-5 980 

Kleckner, N., Zickler, D., Jones, G.H., Dekker, J., Padmore, R., Henle, J., Hutchinson, J., 981 

2004. A mechanical basis for chromosome function. Proc. Natl. Acad. Sci. 101, 12592–982 

12597. https://doi.org/10.1073/pnas.0402724101 983 

Kuo, P., Da Ines, O., Lambing, C., 2021. Rewiring Meiosis for Crop Improvement. Front. 984 

Plant Sci. 12, 708948. https://doi.org/10.3389/fpls.2021.708948 985 

Kuznetsova, A., Brockhoff, P.B., Christensen, R.H.B., 2017. lmerTest package: Tests in 986 

linear mixed effects models. J. Stat. Softw. 82, 1–26. https://doi.org/10.18637/jss.v082.i13 987 



Lambing, C., Kuo, P.C., Tock, A.J., Topp, S.D., Henderson, I.R., 2020. ASY1 acts as a 988 

dosage-dependent antagonist of telomere-led recombination and mediates crossover 989 

interference in Arabidopsis. Proc. Natl. Acad. Sci. 117, 13647–13658. 990 

https://doi.org/10.1073/pnas.1921055117 991 

Lenormand, T., Engelstädter, J., Johnston, S.E., Wijnker, E., Haag, C.R., 2016. 992 

Evolutionary mysteries in meiosis. Philos. Trans. R. Soc. B Biol. Sci. 371, 20160001. 993 

https://doi.org/10.1098/rstb.2016.0001 994 

Lloyd, A., Jenczewski, E., 2019. Modelling Sex-Specific Crossover Patterning in 995 

Arabidopsis. Genetics 211, 847–859. https://doi.org/10.1534/genetics.118.301838 996 

Lukaszewski, A.J., 2008. Unexpected behavior of an inverted rye chromosome arm in 997 

wheat. Chromosoma 117, 569–578. https://doi.org/10.1007/s00412-008-0174-4 998 

Lukaszewski, A.J., Kopecky, D., Linc, G., 2012. Inversions of chromosome arms 4AL and 999 

2BS in wheat invert the patterns of chiasma distribution. Chromosoma 121, 201–208. 1000 

https://doi.org/10.1007/s00412-011-0354-5 1001 

Marand, A.P., Zhao, H., Zhang, W., Zeng, Z., Fang, C., Jiang, J., 2019. Historical Meiotic 1002 

Crossover Hotspots Fueled Patterns of Evolutionary Divergence in Rice. Plant Cell 31, 645–1003 

662. https://doi.org/10.1105/tpc.18.00750 1004 

Mayer, K.F.X., Martis, M., Hedley, P.E., Šimková, H., Liu, H., Morris, J.A., Steuernagel, 1005 

B., Taudien, S., Roessner, S., Gundlach, H., Kubaláková, M., Suchánková, P., Murat, F., 1006 

Felder, M., Nussbaumer, T., Graner, A., Salse, J., Endo, T., Sakai, H., Tanaka, T., Itoh, T., 1007 

Sato, K., Platzer, M., Matsumoto, T., Scholz, U., Doležel, J., Waugh, R., Stein, N., 2011. 1008 

Unlocking the Barley Genome by Chromosomal and Comparative Genomics. Plant Cell 23, 1009 

1249–1263. https://doi.org/10.1105/tpc.110.082537 1010 



Melamed-Bessudo, C., Shilo, S., Levy, A.A., 2016. Meiotic recombination and genome 1011 

evolution in plants. Curr. Opin. Plant Biol. 30, 82–87. 1012 

https://doi.org/10.1016/j.pbi.2016.02.003 1013 

Mézard, C., Tagliaro Jahns, M., Grelon, M., 2015. Where to cross? New insights into the 1014 

location of meiotic crossovers. Trends Genet. 31, 393–401. 1015 

https://doi.org/10.1016/j.tig.2015.03.008 1016 

Nachman, M.W., Payseur, B.A., 2012. Recombination rate variation and speciation: 1017 

theoretical predictions and empirical results from rabbits and mice. Philos. Trans. R. Soc. B 1018 

Biol. Sci. 367, 409–421. https://doi.org/10.1098/rstb.2011.0249 1019 

Nam, K., Ellegren, H., 2012. Recombination Drives Vertebrate Genome Contraction. 1020 

PLoS Genet. 8, e1002680. https://doi.org/10.1371/journal.pgen.1002680 1021 

Osman, K., Algopishi, U., Higgins, J.D., Henderson, I.R., Edwards, K.J., Franklin, F.C.H., 1022 

Sanchez-Moran, E., 2021. Distal Bias of Meiotic Crossovers in Hexaploid Bread Wheat 1023 

Reflects Spatio-Temporal Asymmetry of the Meiotic Program. Front. Plant Sci. 12, 631323. 1024 

https://doi.org/10.3389/fpls.2021.631323 1025 

Otto, S.P., 2009. The Evolutionary Enigma of Sex. Am. Nat. 174, S1–S14. 1026 

https://doi.org/10.1086/599084 1027 

Otto, S.P., Payseur, B.A., 2019. Crossover Interference: Shedding Light on the Evolution 1028 

of Recombination. Annu. Rev. Genet. 53, 19–44. https://doi.org/10.1146/annurev-genet-1029 

040119-093957 1030 

Pan, J., Sasaki, M., Kniewel, R., Murakami, H., Blitzblau, H.G., Tischfield, S.E., Zhu, X., 1031 

Neale, M.J., Jasin, M., Socci, N.D., Hochwagen, A., Keeney, S., 2011. A Hierarchical 1032 

Combination of Factors Shapes the Genome-wide Topography of Yeast Meiotic 1033 

Recombination Initiation. Cell 144, 719–731. https://doi.org/10.1016/j.cell.2011.02.009 1034 



Pan, Q., Li, L., Yang, X., Tong, H., Xu, S., Li, Z., Li, W., Muehlbauer, G.J., Li, J., Yan, J., 1035 

2016. Genome‐wide recombination dynamics are associated with phenotypic variation in 1036 

maize. New Phytol. 210, 1083–1094. https://doi.org/10.1111/nph.13810 1037 

Pazhayam, N.M., Turcotte, C.A., Sekelsky, J., 2021. Meiotic Crossover Patterning. Front. 1038 

Cell Dev. Biol. 9, 681123. https://doi.org/10.3389/fcell.2021.681123 1039 

Pellicer, J., Hidalgo, O., Dodsworth, S., Leitch, I., 2018. Genome Size Diversity and Its 1040 

Impact on the Evolution of Land Plants. Genes 9, 88. https://doi.org/10.3390/genes9020088 1041 

R Core Team, 2019. R: A Language and Environment for Statistical Computing. R 1042 

Foundation for Statistical Computing, Vienna, Austria. 1043 

Rezvoy, C., Charif, D., Gueguen, L., Marais, G.A.B., 2007. MareyMap: an R-based tool 1044 

with graphical interface for estimating recombination rates. Bioinformatics 23, 2188–2189. 1045 

https://doi.org/10.1093/bioinformatics/btm315 1046 

Ritz, K.R., Noor, M.A.F., Singh, N.D., 2017. Variation in Recombination Rate: Adaptive or 1047 

Not? Trends Genet. 33, 364–374. https://doi.org/10.1016/j.tig.2017.03.003 1048 

Sandhu, D., Gill, K.S., 2002. Gene-Containing Regions of Wheat and the Other Grass 1049 

Genomes. Plant Physiol. 128, 803–811. https://doi.org/10.1104/pp.010745 1050 

Sardell, J.M., Kirkpatrick, M., 2019. Sex differences in the recombination landscape. Am. 1051 

Nat. 704943. https://doi.org/10.1086/704943 1052 

Shahin, A., Arens, P., Van Heusden, A.W., Van Der Linden, G., Van Kaauwen, M., Khan, 1053 

N., Schouten, H.J., Van De Weg, W.E., Visser, R.G.F., Van Tuyl, J.M., 2011. Genetic 1054 

mapping in Lilium: mapping of major genes and quantitative trait loci for several ornamental 1055 

traits and disease resistances. Plant Breed. 130, 372–382. https://doi.org/10.1111/j.1439-1056 

0523.2010.01812.x 1057 



Shi, T., Rahmani, R.S., Gugger, P.F., Wang, M., Li, H., Zhang, Y., Li, Z., Wang, Q., Van 1058 

de Peer, Y., Marchal, K., Chen, J., 2020. Distinct Expression and Methylation Patterns for 1059 

Genes with Different Fates following a Single Whole-Genome Duplication in Flowering 1060 

Plants. Mol. Biol. Evol. 37, 2394–2413. https://doi.org/10.1093/molbev/msaa105 1061 

Smith, S.A., Brown, J.W., 2018. Constructing a broadly inclusive seed plant phylogeny. 1062 

Am. J. Bot. 105, 302–314. https://doi.org/10.1002/ajb2.1019 1063 

Soltis, P.S., Marchant, D.B., Van de Peer, Y., Soltis, D.E., 2015. Polyploidy and genome 1064 

evolution in plants. Curr. Opin. Genet. Dev. 35, 119–125. 1065 

https://doi.org/10.1016/j.gde.2015.11.003 1066 

Stapley, J., Feulner, P.G.D., Johnston, S.E., Santure, A.W., Smadja, C.M., 2017. 1067 

Variation in recombination frequency and distribution across eukaryotes: patterns and 1068 

processes. Philos. Trans. R. Soc. B Biol. Sci. 372, 20160455. 1069 

https://doi.org/10.1098/rstb.2016.0455 1070 

Tiley, G.P., Burleigh, J.G., 2015. The relationship of recombination rate, genome 1071 

structure, and patterns of molecular evolution across angiosperms. BMC Evol. Biol. 15, 194. 1072 

https://doi.org/10.1186/s12862-015-0473-3 1073 

Underwood, C.J., Choi, K., 2019. Heterogeneous transposable elements as silencers, 1074 

enhancers and targets of meiotic recombination. Chromosoma 128, 279–296. 1075 

https://doi.org/10.1007/s00412-019-00718-4 1076 

Veller, C., Kleckner, N., Nowak, M.A., 2019. A rigorous measure of genome-wide genetic 1077 

shuffling that takes into account crossover positions and Mendel’s second law. Proc. Natl. 1078 

Acad. Sci. 116, 1659–1668. https://doi.org/10.1073/pnas.1817482116 1079 

Wang, S., Zickler, D., Kleckner, N., Zhang, L., 2015. Meiotic crossover patterns: 1080 

Obligatory crossover, interference and homeostasis in a single process. Cell Cycle 14, 305–1081 

314. https://doi.org/10.4161/15384101.2014.991185 1082 



Wang, Y., Copenhaver, G.P., 2018. Meiotic Recombination: Mixing It Up in Plants. Annu. 1083 

Rev. Plant Biol. 69, 577–609. https://doi.org/10.1146/annurev-arplant-042817-040431 1084 

Wei, C., Yang, H., Wang, S., Zhao, J., Liu, C., Gao, L., Xia, E., Lu, Y., Tai, Y., She, G., 1085 

Sun, J., Cao, H., Tong, W., Gao, Q., Li, Y., Deng, W., Jiang, X., Wang, W., Chen, Q., Zhang, 1086 

S., Li, H., Wu, J., Wang, P., Li, P., Shi, C., Zheng, F., Jian, J., Huang, B., Shan, D., Shi, M., 1087 

Fang, C., Yue, Y., Li, F., Li, D., Wei, S., Han, B., Jiang, C., Yin, Y., Xia, T., Zhang, Z., 1088 

Bennetzen, J.L., Zhao, S., Wan, X., 2018. Draft genome sequence of Camellia sinensis var. 1089 

sinensis provides insights into the evolution of the tea genome and tea quality. Proc. Natl. 1090 

Acad. Sci. 115, E4151–E4158. https://doi.org/10.1073/pnas.1719622115 1091 

White, I.M.S., Hill, W.G., 2020. Effect of heterogeneity in recombination rate on variation 1092 

in realised relationship. Heredity 124, 28–36. https://doi.org/10.1038/s41437-019-0241-z 1093 

Yelina, N.E., Choi, K., Chelysheva, L., Macaulay, M., de Snoo, B., Wijnker, E., Miller, N., 1094 

Drouaud, J., Grelon, M., Copenhaver, G.P., Mezard, C., Kelly, K.A., Henderson, I.R., 2012. 1095 

Epigenetic Remodeling of Meiotic Crossover Frequency in Arabidopsis thaliana DNA 1096 

Methyltransferase Mutants. PLoS Genet. 8, e1002844. 1097 

https://doi.org/10.1371/journal.pgen.1002844 1098 

Zelkowski, M., Olson, M.A., Wang, M., Pawlowski, W., 2019. Diversity and Determinants 1099 

of Meiotic Recombination Landscapes. Trends Genet. 35, 359–370. 1100 

https://doi.org/10.1016/j.tig.2019.02.002 1101 

Zhang, L., Liang, Z., Hutchinson, J., Kleckner, N., 2014. Crossover Patterning by the 1102 

Beam-Film Model: Analysis and Implications. PLoS Genet. 10, e1004042. 1103 

https://doi.org/10.1371/journal.pgen.1004042 1104 

Zickler, D., Kleckner, N., 2015. Recombination, Pairing, and Synapsis of Homologs during 1105 

Meiosis. Cold Spring Harb. Perspect. Biol. 7, a016626. 1106 

https://doi.org/10.1101/cshperspect.a016626 1107 



Supporting information 1108 

Fig S1. Markers positions in genetic distance (cM) as a function of genomic distance 1109 
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chromosomes). The black vertical line is the centromere position estimated by cytological 1111 

measures, when available in the literature. 1112 
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coefficients for chromosomes (n = 665 chromosomes). The mean correlation and its 95% 1128 

confidence interval (black solid and dashed lines) were estimated by 1,000 bootstraps. The 1129 

red vertical line is for a null correlation. 1130 
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Chromosomes were split in halves, a relative distance of 0.5 being the centre of the 1133 
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were split in halves, a relative distance of 0.5 being the centre of the chromosome, and only 1139 
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pooled per species. Each colour is a species. A loess regression was estimated for each 1141 

species. Species presented in four plots for clarity. 1142 

Fig S8. The genetic shuffling  increases with the size of the genetic map (cM). Linear 1143 

mixed regression with a species random effect and its 95% confidence interval estimated by 1144 

ggplot2 (black line and grey ribbon). Each colour is a species. A linear regression was 1145 

estimated for each species. 1146 
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annotations (n = 480 chromosomes). The black dashed line is a theoretical uniform 1158 
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Abstract 23 

During meiosis, crossover rates are not randomly distributed along the chromosome and 24 

therefore they locally influence the creation of novel genotypes and the efficacy of 25 

selectiontheir location may have a storonnrg impact on the functioning and evolution of the 26 

genome. To date, the broad diversity of recombination landscapes among plants has rarely 27 

been investigated and, aundermining the overall understanding of the constraints driving the 28 

evolution of crossover frequency and distribution. A formal comparative genomic approach is 29 

still needed to characterized and assess could be valuable to assess tThe determinants that 30 

shape the local crossover rate and the diversity of the resultingof recombination landscapes 31 

among species and chromosomes still need to be assessed in a formal comparative 32 

genomic approach. We gathered genetic maps and genomes for 57 flowering plant species, 33 

corresponding to 665 chromosomes, for which we estimated large-scale recombination 34 

landscapes. We found that the number of crossing-over per chromosome spans a limited 35 

range (between one to five/six) whatever the genome size, and that there is no single 36 

relationship across species between genetic map length and Chromosome chromosome 37 

size. Instead, we found a general relationship between the relative size of chromosomes and 38 

recombination rate, while the absolute length drives constrains the basal recombination rate 39 

for each species, but though within species we were intrigued to notice that the 40 

chromosome-wide recombination rate is was proportional to the relative size of the 41 

chromosome. Moreover, for larger chromosomes, crossovers tend to accumulate occur at 42 

the ends of the chromosome leaving the central regions as recombination-free regions.At the 43 

chromosome level, we identified two main patterns (with a few exceptions) and Based on 44 

identified crossover patterns and testable predictions, we proposed a conceptual model 45 

explaining the broad-scale distribution of crossovers where both telomeres and centromeres 46 

are importantplay a role. Finally, we qualitatively identified two recurrent crossover patterns 47 

among species and highlighted that tThese patterns globally correspond to the underlying 48 

gene distribution, which affects how efficiently genes are shuffled at meiosis. In addition to 49 



the positive correlation between recombination and gene density, we argue that crossover 50 

patterns are essential for the efficiency of chromosomal genetic shuffling, even though the 51 

ultimate evolutionary potential forged by the diversity of recombination landscapes remains 52 

an open question.These results raised new questions not only on the evolution of 53 

recombination rates but also on their distribution along chromosomes. 54 

 55 

KEYWORDS: meiotic recombination, crossover pattern, Marey map, genetic shuffling, 56 

comparative genomics 57 
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Author summary 59 

Meiotic recombination is a universal feature of sexually reproducing species. During 60 

meiosis, crossing-overs play a fundamental role for the proper segregation of chromosomes 61 

during meiosis and for reshuffling alleles among between chromosomes, which increases 62 

genetic diversity and the adaptive potential of a species. How much variation in 63 

recombination is expected within a genome and among different species remains a central 64 

question to understand the evolution of recombination. We characterized and compared 65 

recombination landscapes in a large set of plant species that represent a wide range of 66 

genomic characteristics. We found that the number of crossing-overs varied little among  67 

species, from one mandatory to no more than five or six crossing-overs per chromosomes, 68 

whatever the genome size. However, recombination can strongly vary within a genome and 69 

we identified two main patterns of variation along chromosomes (with a few exceptions) that 70 

can be explained by a new conceptual model where chromosome length, chromosome 71 

structure and gene density play a role. The strong association between gene density and 72 

recombination raised new questions not only on the evolution of recombination rates but also 73 

on their distribution along chromosomes. 74 
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Introduction 77 

Meiotic rRecombination is a universal feature of sexually reproducing species. Through 78 

crossovers,that participates to the production of new haplotypes are passed on to offspring 79 

by the reciprocal exchange of DNA between maternal and paternal chromosomes during 80 

meiosis. However, recombination landscapes — the variation in recombination rate along 81 

the chromosome — are not homogeneous along the chromosomeacross the genome and 82 

vary among species (de Massy, 2013; Haenel et al., 2018; Mézard et al., 2015; Stapley et 83 

al., 2017). Meiotic recombination plays a fundamental functional role by forming chiasmata 84 

at specific pairing sites between homologous chromosomes to ensure the physical tension 85 

needed for the proper disjunction of homologs (de Massy, 2013; Mézard et al., 2015; Zickler 86 

and Kleckner, 2015). Recombination also plays an evolutionary role by breaking the linkage 87 

disequilibrium between neighbouring sites and creating new genetic combinations  88 

transmitted to the next generation (i.e. genetic shuffling),  upon whichmaking selection can 89 

act more efficiently  (Barton, 1995; Charlesworth and Jensen, 2021; Otto, 2009). However, 90 

tThe number and location of crossovers (COs) along the chromosome are finely regulated 91 

through mechanisms of crossover assurance, interference and homeostasis (Otto and 92 

Payseur, 2019; Pazhayam et al., 2021). In most species, crossover assurance is necessary 93 

to achieve proper segregation and to avoid deleterious consequences of nondisjunction, 94 

though it is not very clear if it is at leastat least one CO per chromosome or per arm that is 95 

mandatory to achieve proper segregation and to avoid deleterious consequences of 96 

nondisjunction. Additional COs are also usually regulated through interference, ensuring that 97 

they are not too numerous and not too close to each other (Pazhayam et al., 2021; Wang et 98 

al., 2015). In addition to regulation on a large scale (Cooper et al., 2016; Zelkowski et al., 99 

2019), recombination is also finely tuned on a small scale. Generally, crossovers are 100 

concentrated in very short genomic regions (typically a few kb), i.e. recombination hotspots. 101 

In plants studied so far, CO hotspots are usuallyhave been found in gene regulatory 102 

sequences, and mostly in promoters (Choi et al., 2018; He et al., 2017; Marand et al., 2019).  103 



In addition to meiosis functioning, variations in recombination rates have a strong impact 104 

on genome structure, functioning and evolution (Gaut et al., 2007; Haenel et al., 2018; 105 

Stapley et al., 2017; Tiley and Burleigh, 2015) and it . For example, recombination 106 

landscapes are thought to shape genetic diversity and the distribution of transposable 107 

elements (TEs) along chromosomes, through the indirect effect of recombination in 108 

modulating the extent of linked selection and the accumulation of TEs in regions of low 109 

recombination (Corbett-Detig et al., 2015; Kent et al., 2017). Recombination can also shape 110 

nucleotide landscapes through the effect of GC-biased gene conversion (Galtier et al., 2018; 111 

Glémin et al., 2014). As a consequence, it has become a key challenge to integrate 112 

recombination rate variation in population genomics in the age of ‘genomic landscapes’ 113 

(Booker et al., 2020; Comeron, 2017). The characterization of recombination landscapes 114 

also has practical interests since it is likely that as variation in meiotic genes coubld be used 115 

tochanges in CO patterns is to be experimentally manipulated CO patterns  for an 116 

advantageous purposese, such as redirecting recombination towards regions of interest for 117 

crop breedingcreating specific genetic combinations or directly influencing genetic diversity 118 

and the adaptive potential of a species (Kuo et al., 2021). 119 

In plants, contrary to other eukaryotes, recombination rates are supposed to be higher in 120 

smaller genomes because the linkage map length is independent of genome size and the 121 

number of chromosomes explain more variation than genome size (Stapley et al., 2017). 122 

Several broad-scale determinants have recently been identified, such as chromosome length 123 

(Tiley and Burleigh, 2015), distance to the telomere or centromere (Blitzblau et al., 2007) 124 

and genomic and epigenetic features (Apuli et al., 2020; Marand et al., 2019; Yelina et al., 125 

2012).  126 

To date, the diversity of recombination landscapes in plants has not been properly 127 

quantified; it is often limited to genome-wide recombination rates (Stapley et al., 2017), even 128 

though it could be used as a lever to identify the major determinants shaping crossover 129 

patterns across species (Gaut et al., 2007). Recently, a meta-analysis explored large-scale 130 



recombination landscapes among eukaryotes and concluded that chromosome length plays 131 

a major role in crossover patterns, but this analysis only included a limited number of plant 132 

species (Haenel et al., 2018). As plant genomes are highly diverse in many ways (Pellicer et 133 

al., 2018; Soltis et al., 2015), the expected diversity in recombination landscapes has been 134 

overlooked (Gaut et al., 2007). Plant genomes also contain large regions with suppressed 135 

recombination in various proportions (from a few Mb to hundreds of Mb, 1 to 75 % of the 136 

genome), which impact affect genomic averages (Gaut et al., 2007; Haenel et al., 2018)), 137 

and it seems that the physical location of COs along the chromosome is species-specific 138 

(Wang and Copenhaver, 2018). However, despite these recent advances, the diversity of 139 

recombination landscapes in plants still remain to be properly quantified.  Nonetheless, 140 

several broad-scale determinants have recently been identified, such as chromosome length 141 

(Haenel et al., 2018; Tiley and Burleigh, 2015), distance to the telomere or centromere 142 

(Blitzblau et al., 2007; Haenel et al., 2018) and genomic and epigenetic features (Apuli et al., 143 

2020; Marand et al., 2019; Yelina et al., 2012). In plants, contrary to other eukaryotes, 144 

recombination rates are supposed to be higher in smaller genomes because the linkage map 145 

length is independent of genome size and the number of chromosomes explain more 146 

variation than genome size (Stapley et al., 2017). 147 

Recently, a meta-analysis explored large-scale recombination landscapes among 148 

eukaryotes and paved the way for identifying general patterns (Haenel et al., 2018). They 149 

found that larger chromosomes have low crossover rates in their centre and suggested a 150 

simple telomere-led model with a universal bias of COs towards the periphery of the 151 

chromosome, positively driven by chromosome length. They also proposed that 152 

chromosome length played the main role in crossover patterning while position of the 153 

centromere had almost no effect (except a local one). Alternatively, it has also been 154 

proposed that both telomeres and centromeres shape recombination landscapes (Wang and 155 

Copenhaver, 2018) and the universality of a universal pattern among plants has been 156 

questioned (Zelkowski et al., 2019). So far, the number of studied species remained limited 157 



and, as plant genomes are highly diverse in many ways (Pellicer et al., 2018; Soltis et al., 158 

2015), the expected diversity in recombination landscapes may have been overlooked (Gaut 159 

et al., 2007). In addition, previous studies where meta-analyses combining heterogeneous 160 

datasets (ex: mix of inferred data from graphics, final processed data and only a few raw 161 

datasets in Haenel et al. 2018) without a standard way to infer recombination maps, which 162 

prevented detailed comparison among many species.  and tThe existence of a major broad-163 

scale determinant of CO distribution and frequency, such as chromosome size, needs to be 164 

tested. Haenel et al. (2018) found that larger chromosomes have low crossover rates in their 165 

centre and suggested a simple telomere-led model with a universal bias of COs towards the 166 

periphery of the chromosome, positively driven by chromosome length; this new conceptual 167 

model still needs to be tested on data. However, there is little evidence supporting a 168 

universal pattern among plants (Zelkowski et al., 2019); and Iit has been proposed that both 169 

telomeres and centromeres shape recombination landscapes, although this is not yet fully 170 

understood (Wang and Copenhaver, 2018).  171 

To overcome these limitations Since recombination hotspots are supposedly found in 172 

gene regulatory sequences, gene density could also be a universal driver of recombination 173 

rates among plant species, leading to the emergence of crossover patternsbut this still 174 

needs to be tested. 175 

By combining genetic mapping from pedigree data and genome assembly up to the 176 

chromosome scale, we have gathered, to the best of our knowledge, the largest 177 

recombination landscape dataset in flowering plants. We started from raw data by combining 178 

genetic mapping from pedigree data and genome assembly up to the chromosome scale, 179 

from which we estimated recombination maps – more precisely the sex-averaged rate of 180 

COs along chromosomes – using the same standardiszed method.  More precisely, we have 181 

estimated the sex-averaged rate of COs along chromosomes. Thanks to this dataset we 182 

addressed the following questions. What is the range of COs per chromosome observed in 183 

plants? Is the distribution of COs shaped by genome structure (i.e. chromosome size, 184 



telomeres, centromeres) and if so is there a universal pattern? Since recombination hotspots 185 

have been found in gene regulatory sequences so far, are recombination landscapes 186 

generally associated with gene density? What are the consequences of recombination 187 

heterogeneity on the extent of genetic shuffling? Overall, we found that recombination 188 

landscapes in plants are more diverse and more complex than initially thought. We tested 189 

the relationship between recombination and chromosome length and assessed if the 190 

distribution of COs could be shaped by genome structure (i.e. chromosome size, telomeres, 191 

centromeres) or genome features (i.e. gene density). We identified two main patterns of 192 

recombination that are parallel to, and which may emerge from, the gene density distribution. 193 

We showed . Finally, we discussed the possible evolutionary implications of the 194 

heterogeneity of recombination landscapes by quantifying how CO patterns affect the extent 195 

of genetic shuffling. We assessed that COs patterns were improvingthat this globally 196 

improves the genetic shuffling of coding regions, which raises new questions on about the 197 

evolution of recombination. 198 

 199 

 200 

Results 201 

Dataset and recombination maps 202 

We retrieved publicly available data for sex-averaged linkage maps and genome 203 

assemblies, to obtain genetic map distances and physical distances. We selected linkage 204 

maps for which the markers had genomic positions on a chromosome-level genome 205 

assembly (except for Capsella rubella, which had a high-quality scaffold-level assembly, i.e. 206 

of pseudo-chromosomes). We remapped markers on the reference genome for 14 species 207 

for which genomic positions were not known or were mapped to an older assembly. After 208 

making a selection based on the number of markers, marker density, and genome coverage, 209 
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and after filtering out the outlying markers (see methods), we adopted a qualitative visual 210 

validation. Recombination landscapes with large confidence intervals were discarded. In the 211 

end, we retained produced 665 chromosome-scale Marey maps (plot of the genetic vs 212 

genomic distance, cM vs Mb) for 57 species (2-26 chromosomes per species,), from which 213 

we successfully inferred recombination landscapes (Table S1, S2, Figures S1, S2). After 214 

removing the outliers, tThe number of markers per chromosome map ranged from 31 to 215 

49,483, with a mean of 956 markers. Corrected linkage map length (Hall & Willis’s method) 216 

did notn’t change the total linkage map length (mean difference = 1.19 cM, max difference = 217 

5.62 cM), giving confidence in the coverage of the linkage map (Hall & Willis, 2005) per map. 218 

We used a linear regression on the models’ residuals to verifyverified that neither the 219 

number of markers, marker density nor the number of progenies had a significant effect on 220 

the analyses. We also retrieved gene annotations for 41 genomes. The angiosperm 221 

phylogeny was well represented in our sampling (FigureFig S3), with a basal angiosperm 222 

species (Nelumbo nucifera), 15 monocot species and 41 eudicots. From literature, wWe also 223 

searched obtained the literature for data on the centromeric index for 37 species, defined as 224 

the ratio of the short arm length divided by the total chromosome length (Table S3). 225 

From the Marey maps, we estimated local recombination rates along the chromosomes 226 

on non-overlapping 100 kb windows with a 95% confidence interval (1,000 bootstraps). 227 

Estimates at a scale of 1 Mb yielded very similar results (the Spearman rank correlation 228 

coefficient correlation between the values for 1 Mb windows and those for the 100 kb 229 

windows within themtwo estimates wascorrelation between 1 Mb windows and 100 kb 230 

windows pooled in 1 Mb windows, Spearman rank correlation coefficient Rho = 0.99, p < 231 

0.001, Table S4) therefore only 100 kb landscapes were analysed in the subsequent 232 

analyses. 233 

Smaller chromosomes recombine have higher recombination 234 

ratesmore often than larger ones 235 

Formatted: Font: 11 pt, Font color: Auto, English

(United Kingdom)

Formatted: Font: 11 pt, Font color: Auto, English

(United Kingdom)

Formatted: Font: 11 pt, Font color: Auto, English

(United Kingdom)



Our results are iIn agreement with previous studies showing that smaller chromosomes 236 

have a higher recombination rate per Mb than larger ones (Haenel et al., 2018; Stapley et 237 

al., 2017), and our sampling suggests aw consistent pattern across species (Figure 1A). We 238 

found a significant negative correlation between chromosome size (Mb) and the mean 239 

chromosomal recombination rate (Spearman rank correlation coefficient Rho = -0.84, p < 240 

0.001; log-log Linear Model, adjusted R2 = 0.83, p < 0.001). For most species, there were 241 

between one and four COs per chromosome, which suggests that the number of COs per 242 

chromosome remains stable across species even though the genome sizes span almost two 243 

orders of magnitude. Less than 2% of chromosomes had less than one CO (n = 11). 234 244 

chromosomes had between one and two COs, suggesting that a single CO per chromosome 245 

is sufficient, though 419 chromosomes had more than two COs. 246 

Using a Linear Mixed Model (LMER) we found a significant species random effect for both 247 

the intercept and the slopes (the best model was log-log LMER log10(recombination rate) ~ 248 

log10(chromosome size) + (1 | species), marginal R2 = 0.17, conditional R2 = 0.96, p < 249 

0.001).; the introduction ofAdding phylogenetic covariance did not improve the mixed model 250 

thus we did not retain a phylogenetic effect (Table S5). Interestingly, the LMER results 251 

showed that the (log-log) relationship between the recombination rate and the chromosome 252 

size was not the same within and between species, suggesting that absolute chromosome 253 

size does not have a general effect among species (FigureFig 1B). Similarly, the relationship 254 

between linkage map length (cM) and chromosome size (Mb) was highly species specific 255 

(linkage map length ~ log10(chromosome size) + (1 | species)log-log linear mixed model, 256 

marginal R2 = 0.49, conditional R2 = 0.99, p < 0.001) (FigureFig 2A), with species slopes 257 

decreasing with the mean chromosome size in a log-log relationship. It, indicatesing that 258 

species slopes are roughly proportional to the inverse of the mean chromosome size 259 

(FigureFig S42C). As a consequence, the excess of COs on a chromosome (i.e. the linkage 260 

map length minus 50 cM) was not correlated to correlated with the absolute chromosome 261 

size but to with the relative one (i.e. chromosome size divided by the mean chromosome 262 
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size of the species; Fig 2B). Moreover, in contrast to the relationship between recombination 263 

rate and absolute size, we did not observe any difference between the linear model and the 264 

fixed regression of the mixed linear model, suggesting that this relationship is similar across 265 

species (FigureFig 2BD). More concretely, it means that two chromosomes having the same 266 

ratio of size will have the same ratio of excess of recombination rate, whatever the species 267 

and the genome size. 268 

 269 

FigureFig 1. Mean Recombination recombination rates per chromosome (cM/Mb, log scale) are 270 

negatively correlated to with chromosome genomic size (Mb, log scale). Recombination rates 271 

were estimated with the loess regression function in windows of 100 kb and averaged per 272 

chromosome. Each point represents a chromosome (n = 665). Species are presented in 273 

different colours (57 species). (A) The large blackbold solid line represents the lLinear Model 274 

regression line fitted to the data. (LM log10(recombination rate) ~ log10(chromosome size)log-275 

log Linear Model, adjusted R2 = 0.83, p < 0.001). The lower thin solidlong dashed lines 276 

corresponds to the expectation of one, CO two, three or four COs per chromosome 277 

respectively., and the upper dashed lines correspond to two, three or four COs respectively 278 

(ascending order). (B) Correlations between recombination rates and chromosome size within  279 

each species with at least 5 chromosomes (coloured lines, 55 species) and thea overall 280 

between-species correlation controlled for a species effect (black dashed line , n = 57 species). 281 

Solid bold line as in (A).The black dashed line represents the selected Linear Mixed Model with 282 

a species effect (LMER log10(recombination rate) ~ log10(chromosome size) + (1 | 283 

species)log-log LMER, marginal R2 = 0.17, conditional R2 = 0.96, p < 0.001). Coloured lines 284 

show the random regressions for species (55 species regression lines for species with at least 285 

5 chromosomes mapped, 5-26 chromosomes per species, 55 species).  286 

 287 Formatted: Normal



 288 

FigureFig 2. Linkage map length (cM) is positively correlated to with genomic chromosome size 289 

(Mb). (A) Correlation between chromosome genomic size (Mb) and linkage map length (cM). 290 

Each point represents a chromosome (n = 665). Species are presented in different colours (57 291 

species). The black sThe linear regression is the solid black line represents the simple linear 292 

regression (LM linkage map length ~ log10(chromosome size)Linear Model, adjusted R2 = 293 

0.036, p < 0.001) and the . The fixed regression of the Linear Mixed Model is the black dashed 294 

line the fixed effect of the mixed model (LMER linkage map length ~ log10(chromosome size) + 295 

(1 | species)LMER, marginal R2 = 0.49, conditional R2 = 0.99, p < 0.001). Species random 296 

slopes are shown in colours. Isolines of the Genome-wide rRecombination rRates (GwRR)are  297 

were plotted for different values (indicated cM/Mb) as dotted red lines to represent regions with 298 

equal recombination rates and GwRR (cM.Mb-1) were annotated. (B) Random intercepts for 299 

species as a function of the species mean genomic chromosome size (Mb). (C) Random slopes 300 

for species as a function of the species mean genomic chromosome size (Mb). (BD) The 301 

excess of COs (i.e. linkage map length minus 50 cM for the obligate CO) is consistently 302 

positively correlated to with the relative chromosome size (i.e. chromosome size divided by the 303 

averaged chromosome size of the species)(size / average size of the species). Each point 304 

represents a chromosome (n = 665). Species are presented in different colours (57 species). 305 

The black solid line is the linear regression across species (LM excess of CO ~ relative 306 

chromosome sizeLinear Model, adjusted R2 = 0.13, p < 0.001) and . The the black dashed line 307 

is the linear mixed regression with a random species effectthe fixed effect of the mixed model 308 

(LMER excess of CO ~ relative chromosome size + (1 | species)LMER, marginal R2 = 0.14, 309 

conditional R2 = 0.86, p < 0.001). Coloured solid lines represent individual regression lines 310 

(Linear Model) for species with at least 5 chromosomes (55 species, 5-26 chromosomes per 311 

species). 312 

 313 

Diversity of CO patterns among flowering plants 314 

Recombination landscapes along chromosomes appeared to be qualitatively very similar 315 

within species but strongly varied between species (FigureFig 3, FigureFig S2). COs were 316 

not evenly distributed between the centre and extremities of the chromosomes. In the text 317 

below, we have used the terms proximal and distal regions, respectively, to avoid confusion 318 
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with the molecular composition and specific position defining telomeric and centromeric 319 

regions stricto sensu. Some landscapes were homogeneous along chromosomes whereas 320 

others were extremely structured with the recombination concentrated in the short distal 321 

parts of the genome, with and wide pattern variations between these two extremes 322 

(FigureFig 3). Using a broken stick representation whereRepresenting  relative 323 

recombination rates were presented on ten bins of equal chromosome length (see Materials 324 

and Methods for details), we observed that the bias towards the periphery was not 325 

ubiquitous across species (FigureFig 4), unlike ; Haenel et al. (2018) concluded to 326 

assesseda awho suggested that the distal bias could be universal for chromosomes larger 327 

than 30 Mb. Only a subset of species, especially those with very larger chromosomes (> 100 328 

Mb), exhibited a clear bias, with COs clustered in the distal regions and with recombination 329 

rates that were lower than expected at the centre (FigureFig 4). Despite large chromosome 330 

sizes (mean chromosome sizes = 101 Mb and 198 Mb, respectively), Nelumbo nucifera and 331 

Camellia sinensis are noticeable exceptions to this pattern, with the highest recombination 332 

rates found in the middle of the chromosomes (Nelumbo nucifera illustrated in FigureFig 3E, 333 

other species in FigureFig S2). For small to medium-sized chromosomes, the pattern is less 334 

clear. Most species did not show any clear structure along the chromosome but a few of 335 

them (e.g. Capsella rubella, Dioscorea alata, Mangifera indica, Manihot esculenta) showed a 336 

drop in recombination rates in the distal regions and high recombination rates in the proximal 337 

regions (Capsella rubella illustrated in FigureFig 3A). 338 



 339 

FigureFig 3. The dDiversity of recombination landscapes in angiosperms is exemplified by six 340 

different emblematic species. Recombination landscapes are similar within species (the dashed 341 

line is the average landscape for pooled chromosomes, all recombination landscapes of the 342 

species are contained within the colour ribbon). Genomic distances (Mb) were scaled between 343 

0 and 1 (divided by chromosome size) to compare chromosomes with different sizes. Estimates 344 

of the recombination rates were obtained by 1,000 bootstraps replicates ofover loci in windows 345 

of 100 kb with loess regression and automatic span calibration. The averaged species 346 

recombination landscape (dashed line) was estimated by calculating the mean recombination 347 

rate in 100 bins along the chromosome axis, all chromosomes pooled. Similarly, the lower and 348 

upper boundaries (pale ribbon) were estimated by taking the minimum and maximum 349 

recombination rates in 100 bins. One chromosome per species is represented in a solid line, 350 

with the genomic position of the centromere demarcated by a dot. The six species are ordered 351 

by ascending mean chromosome size (Mb). 352 



 353 

FigureFig 4. Patterns of recombination within chromosomes (n = 665). Relative recombination 354 

rates along the chromosome were estimated in ten bins using the broken stick modelof equal 355 

genomic size as the expectedobserved relative genetic length (one tenth) divided by the 356 

observedexpected relative genetic length (one tenth of total size) of the bin (log-transformedlog-357 

transformed). ). Values below (above) zero are recombination rates that are lower (higher) than 358 

expected under a random distribution..  Species are ordered by ascending (top to bottom) 359 

variation in the relative recombination ratesgenome size (57 species). Each horizontal bar plot 360 

represents the spatial distribution of recombination along aone chromosome. Each 361 

chromosome was divided into ten bins of equal genomic genetic size, i.e. 1/10 of the total 362 

genomic genetic mapsize (cMMb).. The relative recombination rate is the log-transformed ratio 363 

of the expected relative genetic genomic length (one tenth) divided by the observed relative 364 

genetic genomic length of the bin (Mb). It means that values below zero are recombination 365 

rates that are lower than expected under a random distribution of COs whereas values above 366 

zero are recombination rates that are higher than expected. WheneverWhen available, the 367 



centromere position on the chromosome is available, this information is mapped as a red black 368 

and white diamonddot and chromosomes are oriented with the longer arm on the right. 369 

Chromosome sizes (Mb) on the left correspond to each broken stick chromosome.  370 

Following Haenel et al. (2018), we calculated the periphery-bias ratio as the 371 

recombination rate in the tips of the chromosome (10% at each extremity) divided by the 372 

mean recombination rate. A ratio higher than 1 indicates a higher recombination rate in the 373 

tips than the whole chromosome. By pooling chromosomes per species, we detected a 374 

significant positive effect of chromosome length on the periphery-bias ratio across species 375 

(Spearman rank correlation coefficient Rho = 0.60, p < 0.001; Linear Model, adjusted R2 = 376 

0.44, p < 0.001; ) (FigureFig 5A) with some exceptions (ex on FiguresFig 3A and 3E).. At the 377 

chromosome level,Across all species the mean periphery-bias ratio is significantly higher 378 

than 1 (95% bootstrapped confidence interval = [2.06;2.32]) and skewed towards values 379 

higher than 1 but the correlation with chromosome length within species was not clear 380 

(FigureFig 5B, 5C, Table S6). Although we do find some ratios below 1 (Figure 5B), the 381 

distribution of the periphery-bias ratios is clearly skewed towards values higher than 1, 382 

suggesting that spatial clustering in the tips of the chromosome is a common feature among 383 

angiosperms, however with many exceptions (Figure 3A, 3E). 384 

 385 



FigureFig 5. The periphery-bias ratio is positively correlated to with chromosome genomic size. (A) 386 

The Linear regression between the species mean periphery-bias ratio depends onand the 387 

mean chromosome size (Mb, log scale) across species (n = 57 species;)). The linear 388 

regression line and its parametric 95% confidence interval were estimated in ggplot2 (Linear 389 

Model, chromosome size log-transformed, adjusted R2 = 0.44, p < 0.001). A periphery-bias 390 

ratio above 1 (dashed horizontal line) indicates that recombination rates in the tips of the 391 

chromosome are higher than the mean chromosome recombination rate. Points are coloured 392 

according to the classification of the CO patterns described below (orange = distal, blue = sub-393 

distal, black = unclassified). (B) Distribution of periphery-bias ratios (n = 665 chromosomes). 394 

The mean periphery-bias ratio and its 95% confidence interval (black solid and dashed lines) 395 

were estimated by 1,000 bootstrap replicates. The red vertical line corresponds to a ratio of one 396 

shows the theoretical value for an equal recombination in the tips compared to the rest of the 397 

chromosome (periphery-bias ratio = 1). (C) Distribution of Spearman’s correlation coefficients 398 

between the periphery-bias ratio and chromosome genomic size (Mb) within species (n = 57 399 

species). 400 

 401 

 402 

Joint effect of telomeres and centromeres on crossover distribution 403 

along chromosomes  404 

Globally, recombination rates were negatively correlated to with the distance to the 405 

nearest telomere (FigureFig S54, Table S7, Table S8). However, two different patterns 406 

qualitatively emerged (FigureFig 6, FigureFig S65, Table S8). In 34 species, recombination 407 

decreased from the telomere and reached a plateau after a relative genomic distance of 408 

approximately 20% of the whole chromosome (the distal model, Fig 6A), in agreement with 409 

the model suggested by Haenel et al. (2018). Sixteen species presented a sharp decrease in 410 

the most distal regions and a peak of recombination in the sub-distal regions (relative 411 

genomic distance between 0.1-0.2) followed by a slow decrease towards the centre of the 412 

chromosome (the sub-distal pattern, Fig 6B). There were very a few exceptions to these two 413 

patterns (six species), e.g. Capsella rubella consistently showed higher recombination rates 414 

in the middle of the chromosome (FigureFig 3A). Interestingly, chromosomes from species 415 

classified as having a distal pattern were significantly larger than chromosomes with a sub-416 

distal pattern (Wilcox rank sum test, p < 0.001, FigureFig 6C). Furthermore, the the species 417 

correlation between recombination and the distance to the nearest telomere was significantly 418 

higher  was significantly negatively correlated to withfor species with larger chromosomes 419 



the mean chromosome length (Spearman rank correlation coefficient Rho = -0.51, p < 0.001; 420 

FigureFig S54). 421 

When the centromere position was known, we qualitatively observed that the centromeres 422 

had an almost universal local suppressor effect (FigureFig 3, 4)). In small and medium-sized 423 

chromosomes, the recombination was often suppressed in short restricted centromeric 424 

regions (several Mb,  1-5 % of the map) displaying drastic drops in the recombination rates, 425 

whereas the rest of the map did not seem to be affected. In larger chromosomes, the 426 

suppression of recombination extends to large regions upstream and downstream of the 427 

physical centre of the chromosome (approximately 80-90% of the chromosome; FigureFig 428 

4). Ninety percent of chromosomes (388 chromosomes) had significantly less recombination 429 

than the chromosome average at the centromeric index (n = 425, resampling test, 1,000 430 

bootstraps, 95 % confidence interval). 81 chromosomes (19 %) were completely 431 

recombination-free in the centromere. However, the transposition of centromere position 432 

from cytological data to genomic data may be imprecise or wrongly oriented for some 433 

chromosomes. After orienting chromosomes to map the centromeric index, 16 % of 434 

chromosomes (70 over 425) had a recombination rate slightly higher in the inferred 435 

centromere position than on the opposite side, thus a centromere potentially mapped on the 436 

wrong side. 437 

To go further, we formally compared three models that could explain the broad-scale 438 

crossover patterns we observed (FigureFig 76D). Under the strict distal model proposed by 439 

Haenel et al. (2018) (M1), the centromere does not play any role beyond its local suppressor 440 

effect, and therefore we expect an equal distribution of crossovers on both sides of the 441 

chromosome is expected, independently of centromere position: . In other words, we should 442 

expect 
𝑑(1 2⁄ )

𝑑(1)
= 0.5, where 𝑑(1 2⁄ ) is the genetic distance (cM) to the middle of the 443 

chromosome and 𝑑(1) is the total genetic distance (cM). In addition,  to this model (M1), we 444 

tested two nested alternative models adding a centromere effect. We assumed that the 445 



position of the centromere, 𝑑(𝑐), has an effect on the distribution of crossovers along the 446 

chromosome. Models M2 ‘telomere + centromere + one CO per arm’ and M3 ‘telomere + 447 

centromere + one CO per chromosome’; both assume that the relative genetic distance of a 448 

chromosome arm is proportional to its relative genomic size. However, models M2 and 449 

M3they differ in the number and distribution of mandatory COs. At least one CO in each 450 

chromosome arm (50 cM) is mandatory in M2 whereas only one CO is mandatory for the 451 

entire chromosome in M3. For species whose centromere position was known (37 species, 452 

425 chromosomes) we regressed the observed values against the theoretical predictions of 453 

the three models and compared them Based onusing goodness-of-fit criteria (adjusted R2, 454 

AIC, BIC)., we used linear regression to compare the theoretical predictions of the three 455 

competing models to the observed values for Marey maps in which the centromere position 456 

was known (37 species, 425 chromosomes). Model M2 was generally rejected since 22% of 457 

chromosomes showed less than 50 cM in at least one arm, even though it was supported in 458 

a handful of species (Table 1), and model M1 was not supported by any species. Model M3 459 

was the best supported model (30 out of 37 species), with good predictive power (Spearman 460 

rank correlation between predicted and observed values: Rho = 0.72, p < 0.001; Tables 1, 461 

S9, S10). Given that some chromosomes had one chromosome arm shorter than 50 cM, 462 

which is incompatible with one mandatory CO per arm in model M2, we also performed a 463 

second model selectioncompared the three models on a subset of chromosomes with at 464 

least 50 cM on each chromosome arm (n = 36 species, 333 chromosomes) which confirmed 465 

that model M3 was the best model. Similarly, we reran the model without chromosomes with 466 

uncertainty on the centromere position (n = 37 species, 355 chromosomes) and found the 467 

same results. 468 



469 

 470 

FigureFig 6. Distribution of cCrossover: main patterns. and possible models. (A and B) can be 471 

classified in two different patterns, where recombination rates are higher in distal regions and 472 

lower near the centre of the chromosome. Standardized recombination rates for species 473 

(centred-reduced cM/Mb, chromosomes pooled per species, n = 57 species) are expressed as 474 

a function of the relative genomic distance from the telomere in 20 bins representing the two 475 

main patterns (orange = distal, blue = sub-distal). Two patterns were identified and species 476 

were pooled accordingly, with 7The seven unclassified species (orange = distal, blue = sub-477 

distal, black = unclassified).are not shown. (A) In the distal pattern (34 species), recombination 478 

rates decreased immediately from the tip of the chromosome (left plot, orange line and ribbon). 479 

(B) In the sub-distal pattern (16 species), recombination rates were reduced in the distal 480 

regions and the peak of recombination was in the sub-distal region (right plot, blue line and 481 

ribbon). Chromosomes were split in half and 0.5 corresponds to the centre of the chromosome. 482 

In each plot, the solid line represents the mean recombination rate estimated in a bin (20 bins) 483 



and each dot per bin represents the average of a species.. Chromosomes were split in half, 484 

where a distance of 0.5 is the centre of the chromosome. Then, chromosomes were pooled per 485 

species (each point is the mean recombination rate of all chromosomes in a species, for a 486 

distance bin to the tip of the chromosome). Upper and lower boundaries of the ribbon represent 487 

the maximum and minimum values attained for a particular pattern. Patterns that were not 488 

classified (7 species) were represented by individual loess regressions using black dashed 489 

lines. (C) Distribution of chromosome genomic sizes (Mb) in for each pattern. (D) Schematic 490 

representation of the Three three competing models for the two main patterns, compatible with 491 

the distal and sub-distal crossover patterns were tested using formal tests on predictions. 492 

Models are compatible with the distal and sub-distal crossover patterns we identified.with an 493 

exemple of a centromere position at 1/3 of the chromosome. Predictions are made on the 494 

distribution of crossovers between both chromosome sides (separated by the middle of the 495 

chromosome, model 1) or chromosome arms (separated by the centromere, models 2 and 3). 496 

Symbolic chromosomes illustrate the distribution of crossovers expected under each model and 497 

for each pattern. Model 3 is the best model (box). 498 

 499 

Fig 7. Possible models of crossover patterns. Schematic representation of the three competing 500 

models for the two main patterns, with an example of a centromere position at 1/3 of the 501 

chromosome. Model 3 is the best model (box). 502 

 503 

 504 

  505 
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Table 1. Model selection for the telomere/centromere effect (n = 37 species with a centromere 506 

position, 425 chromosomes). Three competing models were compared based on the adjusted 507 

R2 , p-value and AIC-BIC criteria among chromosomes (the best supported model is in bold 508 

characters). The number of species supporting each model was calculated based on the 509 

adjusted R2 within species, for all species with at least five chromosomes. (1) ‘telomere’ model. 510 

(2) ‘telomere + centromere + one CO per arm’ model. (3) ‘telomere + centromere + one CO per 511 

chromosome’ model. 𝑑(𝑐) is the genetic distance to the centromere. 𝑑(1) is the total genetic 512 

distance. A second model selection was done on a subset of chromosomes with at least 50 cM 513 

on each chromosome arm (n = 36 species, 333 chromosomes). 514 

# Model Expected Adjusted R2 p AIC BIC Species 

Full dataset (37 species, 425 chromosomes) 

1 Telomere d(1/2) / d(1) = 0.5 0.22 < 0.001 -477.8 -465.7 0 

2 Tel. + Cent. + CO per arm (d(c) – 50) / (d(1) – 100) = c - 0.72 3098.2 3110.4 7 

3 Tel. + Cent. + CO per chr. d(c) / d(1) = c 0.51 < 0.001 -476.6 -464.5 30 

Subset (36 species, 333 chromosomes) 

1 Telomere d(1/2) / d(1) = 0.5 0.18 < 0.001 -407.5 -396.1 0 

2 Tel. + Cent. + CO per arm (d(c) – 50) / (d(1) – 100) = c -0.001 0.42 1939.1 1950.5 10 

3 Tel. + Cent. + CO per chr. d(c) / d(1) = c 0.50 < 0.001 -396 -384.6 26 

Recombination rates are positively correlated to with gene density 515 

At a fine scale, it has been shown in a few species that COs preferentially occur in gene 516 

promoters. The scale of 100 kb used here is too large to directly test whether this is a 517 

common pattern shared among angiosperms. Instead, like in Haenel et al. (2018), we 518 

assessed whether recombination increased with gene density. Forty-one genomes were 519 

annotated with gene positions. Across chromosomes, the distribution of chromosomal 520 

correlations between gene count and recombination rate was clearly skewed towards 521 

positive values, independently of the previously described CO patterns (mean Spearman’s 522 

rank correlation = 0.46 [0.43; 0.49]; FigureFig 87A). Ninety-one percent (91%) of 483 523 

chromosomes (41 species) showed a significant correlation between the number of genes 524 

and recombination rate at a 100 kb scale. Yet the strength of the relationship greatly varied 525 

across species and did not correlate with usual predictors such as the chromosome length or 526 

the genome-wide recombination rate (FigureFig 87B). Overall, standardized recombination 527 

rates (subtracting the mean and dividing by the standard deviation to allow comparison 528 



among species) consistently increased with the number of genes in most species (linear 529 

quadratic regression, adjusted R2 = 0.62, p < 0.001; FigureFig 87C). 530 

As for recombination patterns, we classified patterns of gene density along chromosomes 531 

in three categories: distal, sub-distal and exceptions (FigureFig S76). Most species (30 out 532 

of 41) were classified in the same gene density and recombination pattern (Table S11). 533 

Moreover, when we classified species as a function of recombination patterns, we 534 

qualitatively observed the same pattern for gene density and recombination (FigureFig 98), 535 

suggesting that recombination and gene density share the same non-random distribution 536 

along the genome.   537 

 538 

FigureFig 87. Recombination rates are positively correlated to with gene density (n = 483 539 

chromosomes, 41 species). (A) Distribution of chromosome Spearman’s rank correlations 540 

between the number of genes and the recombination rate in 100 kb windows. The black vertical 541 

line is the mean correlation with a 95% confidence interval (dashed lines) estimated by 1,000 542 

bootstrap replicates. Colours correspond to CO patterns (orange = distal, blue = sub-distal, 543 

black = exception). (B) Slopes of the species linear regression between gene count and 544 

recombination rates are independent of the species averaged recombination rate (Linear 545 

Model, adjusted R2 = -0.02, p = 0.83). (C) Standardized recombination rates for each number of 546 

genes in a 100 kb window (centred-reduced, chromosomes pooled per species, one colour per 547 

species) estimated by 1,000 bootstraps and standardized within species. The gene count was 548 

estimated by counting the number of gene starting positions within each 100 kb window. The 549 

black line with a grey ribbon is the quadratic regression estimated by linear regression with a 550 

95% parametric confidence interval (Linear Model, adjusted R2 = 0.62, p < 0.001). 551 
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 552 

FigureFig 98. Gene counts patterns along the chromosome are correlated to with CO patterns (n = 553 

41 species). Standardized gene count (centred-reduced) as a function of the relative distance 554 

from the tip to the middle of the chromosome (genomic distances distributed in 20 bins). We 555 

used the same groups as identified for the CO pattern in FigureFig 6; (a) distal pattern vs (b) 556 

sub-distal pattern.) and observed the same patterns along the chromosome. The solid line 557 

represents the mean gene count estimated in a bin and the upper and lower boundaries of the 558 

ribbon represent the maximum and minimum values in a bin. Patterns that were not classified 559 

(4 species with a gene annotation) were represented by loess regression in grey dashed lines. 560 

To estimate gene counts in bins of relative distances, chromosomes were split in half, where a 561 

distance of 0.5 is the centre of the chromosome. Chromosomes were pooled per species (n = 562 

483 chromosomes).Same legend as FigureFig 6. 563 

Genetic shuffling 564 

We showed confirmed that recombination is unevenly distributed in genomes, which 565 

should affect how genetic variation is shuffled during meiosis. Genetic shuffling participates 566 

to the random reassortment of genes between parental homologous chromosomes. To 567 

quantify how much the genetic shuffling depends on the distribution of COs, we estimated 568 

the its intrachromosomal component, of the genetic shuffling 𝑟̅𝑖𝑛𝑡𝑟𝑎, as described in equation 569 

10 provided byin Veller et al. (2019). The 𝑟̅𝑖𝑛𝑡𝑟𝑎 gives, for a chromosome, a measure of the 570 

probability of for a random pair of loci to be shuffled by a crossover. As expected, genetic 571 

shuffling was positively and significantly correlated with towith linkage map length (LMER 572 

𝑟̅𝑖𝑛𝑡𝑟𝑎 ~ linkage map length + (1 | species)Linear Mixed Model, marginal R2 = 0.43, 573 

conditional R2 = 0.88, p < 0.001, FigureFig S87). COs clustered in distal regions are 574 

supposedly less efficientto generate less genetic shuffling than COs evenly distributed in the 575 



chromosome. At a chromosomal level, linear mixed regression (controlling for a species 576 

effect) revealed a low but significant negative effect of the periphery-bias ratio as a low but 577 

significant effect on the genetic shuffling, consistent among species (LMER 𝑟̅𝑖𝑛𝑡𝑟𝑎 ~ 578 

periphery-bias ratio + (1 | species), marginal R2 = 0.05, conditional R2 = 0.68, p < 0.001, 579 

FigureFig S98). The more COs are clustered in the tips of the chromosome, the lower the 580 

chromosomal genetic shuffling. These results verify the analytical predictions of Veller et al. 581 

(2019), although the strength of this the effect remains weak. 582 

However, the distributions of COs and genes are both non-random and often correlated 583 

(FiguresFig 87 and S109). Genomic distances measured in base pairs may not be the most 584 

appropriate measure of genetic shuffling among functional genomic components. Thus, we 585 

measured genomic distances in gene distances (i.e. the cumulative number of genes along 586 

the chromosome) instead of base pairs. Marey maps most often appeared more 587 

homogeneous when scaled on gene distances instead of base pair distances, with 70% (316 588 

over 450) of Marey maps showing a smaller scale departure from a random distribution 589 

(FiguresFig 109, S110, Table S11). Globally, a subset of 30 species have has more 590 

homogeneous Marey maps with gene distances whereas 11 others are quantitatively more 591 

heterogeneous (notably Capsella rubella and Arabidopsis thaliana), although this could be 592 

due to low quality annotations making it difficult to precisely estimate the gene distances for 593 

some of them (e.g. Sesamum indicum). In most cases, genetic shuffling were slightly higher 594 

when gene distances were used instead of base pairs (FigureFig 110; mean = 0.22 for base 595 

pairs; mean = 0.26 for gene distances; Wilcoxon rank sum test with continuity correction, p < 596 

0.001), implying that the genetic shuffling was more efficient among coding regions than the 597 

whole genomeamong regions randomly sampled in the genome with a distribution slightly 598 

skewed towards higher values for gene distances. Interestingly, the increase in genetic 599 

shuffling when scaled withcalculated in gene distances compared to genomic distance was 600 

more pronounced for longer chromosomes — which are often the most heterogeneous ones, 601 

characterized by a distal pattern — whereas we saw little effect on smaller chromosomes 602 



characterized by a sub-distal pattern (LMER difference in 𝑟̅𝑖𝑛𝑡𝑟𝑎 ~ log10(chromosome size) + 603 

(1 | species)Linear Mixed Model, marginal R2 = 0.2116, conditional R2 = 0.873, p < 0.001, 604 

FigureFig 110). 605 

 606 

FigureFig 109. Marey maps of six chromosomes with the relative physical distance expressed in 607 

genomic distances (black dots, position in the genome in Mb) or in gene distances (grey dots, 608 

position measured as the cumulative number of genes along the chromosome. ). Marey maps 609 

are ordered by ascending chromosome size (Mb). The relative genetic position is the position of 610 

the marker on the linkage map. The diagonal dashed line represents a theoretical random 611 

distribution of COs along the chromosome. 612 



 613 

FigureFig 110. Differences in genetic shuffling between estimates based on genomic distances 614 

(Mb) and gene distances (cumulative number of genes). The difference is the genetic shuffling 615 

in (gene distances) minus the genetic shuffling in (genomic distances), thus positive values 616 

indicate an increase in the genetic shuffling based on gene distances compared to genomic 617 

distances. Colours correspond to CO patterns (orange = distal, blue = sub-distal, black = 618 

exception). (A) Distribution of the chromosome differences in the genetic shuffling (n = 444 619 

chromosomes). (B) Distributions of the species difference in the genetic shuffling (n = 41 620 

species, chromosomes pooled). (C) Species differences in the genetic shuffling are positively 621 

correlated to with the averaged chromosome size (Linear Model, adjusted R2 = 0.20, p = 0.002, 622 

n = 41, 95% parametric confidence interval). 623 

Discussion 624 

Based on a large and, curated dataset, we provided here, to the best of our knowledge, 625 

the largest description of recombination landscapes among flowering plants. In addition to 626 

confirming that both the chromosome-wide recombination rate and the heterogeneity of 627 

recombination landscapes vary according to chromosome length, we identified two distinct 628 

CO patterns and we proposed a new model that builds onextended the strict telomere model 629 

recently suggested proposed by Haenel et al. (2018). Moreover, the consistent correlation 630 

between recombination and gene density that we observed suggests that crossover initiation 631 

in gene regulatory sequences could be shared among angiosperms. This sheds new light 632 

onmay have implications for the evolution of recombination landscapes and whether the 633 



distribution of COs is optimal for the efficacy of genetic shuffling and the evolution of 634 

recombination landscapes. 635 

Chromosome size and recombination rate 636 

We showed that, for most species, the smallest chromosome had roughly one or two 637 

COs, independently of chromosome size. This is in agreement with the idea that CO 638 

assurance is a ubiquitous regulation process among angiosperms (Pazhayam et al., 2021). 639 

Moreover, it seems that this constraint imposes a kind of basal recombination rate for each 640 

species, on the order of 50 𝑆𝑐⁄  cM/Mb, where 𝑆𝑐 is the size of the lowest chromosome in Mb. 641 

Regardless of the genome size (which ranges three orders of magnitude or more), the 642 

number of COs remains relatively stable amongst species, most probably under the joint 643 

influence of CO assurance, interference and homeostasis (Otto and Payseur, 2019; Stapley 644 

et al., 2017; Wang et al., 2015). As a result, averaged recombination rates are negatively 645 

correlated to with chromosome lengths, as already known in plants (Haenel et al., 2018; 646 

Tiley and Burleigh, 2015). and in contrast to fungi and animals (Stapley et al., 2017).  647 

Surprisingly, we found that, However, there is no universal relationship between the 648 

absolute size of a chromosome and its mean recombination rate. Although the average 649 

recombination rate of a species is well predicted by its average chromosome size, the 650 

recombination rates of each chromosome separately are not well predicted by their absolute 651 

chromosome size. Instead, variation within species is much better explained by the within a 652 

species, relative chromosome size , and surprisingly, this relationship seems to be roughly 653 

the same among species (see FiguresFig 1 and 2). was a stronger determinant of the 654 

genetic map than absolute chromosome size. This suggests that CO interference is 655 

proportional to the relative size of the chromosome, as has been empirically observed in 656 

some plants (Ferreira et al., 2021). Although it is not clear yet which interference distance 657 

unit is the most relevant, genomic distances (in Mb) are excluded in most models of 658 

interference in favour of genetic distances (cM) (Foss et al., 1993) or, more likely, the length 659 



of the synaptonemal complex in micrometres (Capilla-Pérez et al., 2021; Kleckner et al., 660 

2004; Lloyd and Jenczewski, 2019; Zickler and Kleckner, 2015). Both scales (in genetic 661 

distances or in size) of the synaptonemal complex, in micrometres, match our observation of 662 

a relative size effect. Within species, genetic maps increase with chromosome size, but 663 

among species they are uncorrelated and far less variable than genome sizes, which makes 664 

the relative chromosome size the main determinant of recombination rate variations among 665 

species. Similarly, physical sizes (in micrometres) at meiosis do not seem to scale with 666 

genome size, as chromosomal organization (nucleosomes, chromatin loops) strongly 667 

reduces the variation that could be expected given the genome size (Otto and Payseur, 668 

2019).  669 

Recombination patterns along chromosomes 670 

We observed a global trend towards higher recombination rates in sub-distal regions 671 

(Gaut et al., 2007; Haenel et al., 2018). The distal bias increased with chromosome length, 672 

in agreement with the conclusions of Haenel et al. (2018), although our methods differ in 673 

resolution. We analysed species and chromosomes separately whereas Haenel et al. (2018) 674 

used averages over the different patterns, thereby masking chromosome- and species-675 

specific particularities. For example, they did not detect the sub-distal pattern and neither 676 

unclassified exceptions, whereas they seem common among species (146 and 7 species 677 

respectively). So far, little is known about the mechanisms that could explain the link 678 

between the distal bias and chromosome length. Even if models of CO interference yield 679 

similar patterns (Falque et al., 2007; Zhang et al., 2014), the conceptual model of Haenel et 680 

al. (2018) is still the only one to explicitly consider chromosome length. The telomere effect 681 

is thought to act at a broad chromosome scale over long genomic distances. The decision of 682 

double strand breaks (DSBs) to engage in the CO pathway is made early on during meiosis 683 

and the early association chromosome pairing beginning inof telomeres is thought to favour 684 

distal COs (Bishop and Zickler, 2004; Higgins et al., 2012; Hinch et al., 2019). In barley, 685 

when the relative timing of the first stages of the meiotic program was shortened, COs were 686 



redistributed towards proximal regions (Higgins et al., 2012), as later observed in wheat 687 

(Osman et al., 2021).  688 

Haenel et al. (2018) proposed that distance to the telomere is driving CO positioning, and 689 

therefore it should produce a symmetrical U-shaped pattern along chromosomes. However, 690 

a formal test showed that this model was too simple and that centromeres also played a role 691 

in the distribution of COs between chromosome arms. The best model (M3: ‘telomere + 692 

centromere + one CO per chromosome’) that we have proposed in this work suggests that 693 

centromeres do not only have just a local effect but they also influence the symmetry of 694 

recombination landscapes over long distances, though a large proportion of our sample is 695 

metacentric, which might limit the detection of an effect. The local suppression of COs in 696 

centromeric regions is well known and largely conserved among species and seems a 697 

strong constitutive feature restricted to a short centromeric region, basically the kinetochore 698 

(Ellermeier et al., 2010; Fernandes et al., 2019). But the extent of a largerthe pericentromeric 699 

region varies drastically, most probably under the influence of DNA methylation, chromatin 700 

accessibility or RNA interference (Choi et al., 2018; Ellermeier et al., 2010; Hartmann et al., 701 

2019; Pan et al., 2011). However, how centromeres (especially non-metacentric ones) may 702 

affect CO distribution at larger scales still needs to be determined. 703 

Diversity of patterns among species 704 

In addition to the role of centromeres, we also observed a departure from the prediction 705 

that recombination rates should do not always decrease linearlymonotonically with the 706 

distance to the tip of the chromosome, showing that the distal model is not generally found 707 

among plants. We observed at least two different crossover patterns among plant species. 708 

Only 34 out of 57 species support a process starting in at the tips (distal model), and 16 709 

present the highest recombination rates in sub-distal regions, while seven species remain 710 

unclassified, which is at the limit of our visual classification. Globally, the distal pattern and 711 

distal bias seem to occur more often in larger chromosomes, but our data lack species with 712 

giant genomes. Giant genomes are not rare in plants, and we cannot extrapolate our 713 



conclusions to the upper range of the genome size variation (Pellicer et al., 2018). 714 

Astonishingly, a low-density genetic map in Allium showed higher recombination rates in the 715 

proximal regions, which is opposite to the major trend we found (Khrustaleva et al., 2005). 716 

Genera with giant genomes such as Lilium or Allium would have been valuable assets in our 717 

dataset, but the actual genomic and linkage data are relatively incomplete (Jo et al., 2017; 718 

Shahin et al., 2011). 719 

Contrary to the single pattern described by Haenel et al. (2018), this pattern diversity is 720 

moreThe occurrence of various recombination patterns is in agreement with what is known 721 

of the timing of meiosis and heterochiasmy (the fact that male and female meiosis have 722 

different CO patterns). Despite the strong conservation of the main meiotic mechanism in 723 

plants, differences in the balance between key components may produce distinct CO 724 

patterns (de Massy, 2013; Higgins et al., 2012; Kuo et al., 2021; Zelkowski et al., 2019). For 725 

example, the ZYP1 telomere-led recombination and the ASY1 proteins are twohave 726 

antagonistic forces actingeffects on the formation of the synaptonemal complex in plants 727 

(Lambing et al., 2020). In barley and wheat, linearization of the chromosome axis triggered 728 

by ZYP1 is gradual along the chromosome and, initiated in distal regions, whereas early 729 

DSBs form in theforming the telomere bouquet where early DSBs form (Higgins et al., 2012; 730 

Osman et al., 2021). In contrast, chromosome axes are formed at a similar time in 731 

Arabidopsis thaliana and chromosomes are gradually enriched in ASY1 from the telomeres 732 

to the centromeres; a gene-dosage component favours synapsis and ultimately COs towards 733 

the proximal regions (Lambing et al., 2020). It appears that the timing of the meiotic 734 

programme is important for the distal bias, as it involves changes in the relative contribution 735 

of each meiotic component that could explain the re-localization of COs (Higgins et al., 2012; 736 

Lambing et al., 2020). Therefore, the different patterns we observed may be explained by 737 

the different balance and timing of the expression of shared key regulators of CO patterning 738 

such as ZYP1 and ASY1 (Kuo et al., 2021). It is interesting to note that this is also true for 739 

mechanistic models of interference. Zhang et al. (2014) assessed that tThe ‘beam-film’ 740 



model is able to fit both CO patterns, regardless if whether the tips of the chromosomes 741 

have an effect on interference or not, i.e. clamping (Zhang et al., 2014). If there is clamping 742 

is assumed, the model predicts that mechanical stress culminates in the extremities of the 743 

chromosome leading to high CO rates at the periphery where it is released first. In contrast, 744 

when clamping is limited, mechanical stress is released in the tips of the chromosome and 745 

COs occur further from the tips, until a threshold of mechanical stress is reached. The 746 

observed sub-distal pattern fits these predictions.  747 

The two patterns of recombination we described here can also be observed in opposite 748 

sexes within the same plant species, i.e. heterochiasmy (Capilla-Pérez et al., 2021; Dukić 749 

and Bomblies, 2022; Sardell and Kirkpatrick, 2019). Marked heterochiasmy variations 750 

between species, a feature shared among plants and animals, could influence the resulting 751 

sex-averaged recombination landscape (Sardell and Kirkpatrick, 2019). The sex-averaged 752 

telomere effect can be thought of as the product of two independent sex-specific landscapes 753 

although it is not clear how sex-specific maps ultimately contribute to the sex-averaged one 754 

(Johnston et al., 2016; Lenormand et al., 2016). Recombination is usually biased towards 755 

the tips of the chromosome in male recombination maps, but is more evenly distributed in 756 

female maps in most the few plant species with available datas (Sardell and Kirkpatrick, 757 

2019). In Arabidopsis thaliana, male meiosis has higher CO rates within the tips of the 758 

chromosome, as it has been observed in other species with large chromosomes, whereas 759 

female meiosis is more homogeneously distributed, with the lowest rates found in the distal 760 

regions (Capilla-Pérez et al., 2021). Shorter chromosome axes in A. thaliana female meiosis 761 

could induce fewer DSBs and class II non-interfering COs (Lloyd and Jenczewski, 2019). 762 

Conversely, in maize, the distal bias is similar in both sexes, despite higher CO rates for 763 

females (Kianian et al., 2018). Heterochiasmy is not universal in plants (Melamed-Bessudo 764 

et al., 2016), and we suggest that the variation in recombination landscapes could also result 765 

from variation in heterochiasmy among species, as it has been suggested for broad-scale 766 

differences in recombination landscapes between A. thaliana and its relative A. arenosa 767 



(Dukić and Bomblies, 2022). This hypothesis should be tested further as more sex-specific 768 

genetic maps become available. 769 

Recombination landscapes, gene density and genetic shuffling 770 

We observed a strong convergence between CO patterns and gene density patterns. This 771 

correlation is consistent in our dataset despite possible errors in genome annotation and we 772 

also observed two different gene density patterns globally corresponding to similar CO 773 

patterns, emphasizing the close link between recombination and gene density. Interestingly, 774 

gene density also had a strong correlation with the recombination ratewe found the same 775 

correlation in species with atypical chromosomes. For example, Camellia sinensis and 776 

Nelumbo nucifera have large genomes with homogenous recombination landscapes, 777 

whereas large genomes are usually associated with a distal pattern.and A a recent 778 

annotation of a new genome assembly ofthe Nelumbo nucifera genome showed that genes 779 

are also evenly distributed along chromosomes at a broad scale (Shi et al., 2020), similar to 780 

Camellia sinensis (Wei et al., 2018). In wheat and rye, the analysis of the effect of 781 

chromosome rearrangement on recombination also suggests that CO localization is more 782 

locus-specific than location-specific: after inversions of distal and interstitial segments, COs 783 

were relocated to the new position on the distal segment (Lukaszewski, 2008; Lukaszewski 784 

et al., 2012). Overall, the parallel between gene density and recombination landscapes, 785 

confirmed by these two exceptions, is in agreement with the preferential occurrence of COs 786 

in gene regulatory sequences (Choi et al., 2018; He et al., 2017; Marand et al., 2019), and 787 

suggests that this may be a general pattern shared among angiosperms. Thus, gene 788 

distribution along chromosomes could be a main driver of recombination landscapes simply 789 

by determining where COs may preferentially occur. It should be noted that since the gene 790 

number is usually positively correlated with towith chromosome size within a species but is 791 

roughly independent of genome size among species, this hypothesis also matches with the 792 

relative-size effect discussed above. 793 



However, gene density and recombination rates are both correlated to with many other 794 

genomic features, such as transposable elements  (Marand et al., 2019)(Charlesworth et al., 795 

1994; Kent et al., 2017). The accumulation of transposable elements in low recombining 796 

regions would progressively decrease gene density in the region,  and would eventually 797 

result in a positive correlation between gene density and recombination (Kent et al., 2017). 798 

However, the correlation of recombination rates with transposable elements is not always 799 

clear and different TE families have opposite correlations (Kent et al., 2017; Underwood and 800 

Choi, 2019). The positive association of COs and gene regulatory sequences, including fine-801 

scale correlations, appears more robust (Choi et al., 2013; He et al., 2017; Marand et al., 802 

2019), but cCausality mechanisms of these multiple interactions still need to be clarified. The 803 

use of fine scale recombination maps (using very large mapping populations or LD maps) 804 

should help identifying the respective role of genic regions (especially the role of promoters) 805 

and transposable elements (or other genomic features).. 806 

Irrespective of the underlying mechanism, our finding implies that the CO distribution 807 

ultimately scales with the gene distribution. Therefore, in most species, COs have a more 808 

even distribution between genes than between random genomic locations (FigureFig 109). 809 

The redistribution of COs towards functional regions could be a simple consequence of COs 810 

occurring within gene regulatory sequences, but it has important evolutionary implications 811 

such as increasing the genetic shuffling and homogenizing the probability of two random 812 

genes to recombine, especially for large genomes that exhibit the strongest difference in 813 

genetic shuffling between genes and between genomic locations (FigureFig 110). Therefore, 814 

CO patterning (and not only the global CO rate) could be under selection not only for its 815 

direct effect on the functioning of meiosis but also for its indirect effects on selection efficacy 816 

(Otto and Payseur, 2019). Recombination decreases linkage disequilibrium and negative 817 

interferences between adjacent loci (e.g. Hill-Robertson Interference), and thus locally 818 

increases the efficacy of selection. Functional sites are targets for selection (Nachman and 819 

Payseur, 2012) and we found higher recombination rates in functional regions, meaning that 820 



only a few genes are ultimately excluded from the benefits of recombination, even under the 821 

most pronounced distal bias. 822 

Higher recombination rates in gene-rich regions could provide a satisfying explanation as 823 

to why the distal bias is maintained among species despite its theoretical lack of efficacy for 824 

genetic shuffling (Veller et al., 2019). The association between CO hotspots and gene 825 

regulatory sequences is mechanistically driven by chromatin accessibility, but it does not 826 

exclude the evolution of the mechanism itself towards the benefits of recombining more in 827 

gene-rich regions (Lenormand et al., 2016). However, slight variations in genetic shuffling 828 

caused by the non-random distribution of COs are less likely to be under strong selection 829 

compared to stabilizing selection on molecular constraints for chromosome pairing and 830 

segregation (Ritz et al., 2017), although interference is sometimes likely to evolve towards 831 

relaxed physical constraints (Otto and Payseur, 2019). In addition, the intra-chromosomal 832 

component of the genetic shuffling is a small contributor to the genome-wide shuffling rate, 833 

as a major part is due to independent assortment among chromosomes (Veller et al., 2019) 834 

even though there may be significant selective pressure towards more recombination 835 

between genes within chromosomes. Our estimates for the chromosomal genetic shuffling 836 

do not reach the theoretical optimal value of 0.5. The pattern is not absolute, and a fraction 837 

of genes remains in low recombining regions. In grass species, up to 30% of genes are 838 

found in recombination deserts and are not subject to efficient selection (e.g. Mayer et al., 839 

2011). Finally, it is still an open question as to whether this global distribution of COs in gene 840 

regulatory sequences is advantageous for the genetic diversity and adaptive potential of a 841 

species (Pan et al., 2016). 842 

Conclusion 843 

Our comparative study only demonstrates correlations, and not mechanisms, but helps to 844 

understand the diversity and determinants of recombination landscapes in flowering plants. 845 

Our results partly confirm previous studies based on fewer species (Haenel et al., 2018; 846 

Stapley et al., 2017; Tiley and Burleigh, 2015) while bringing new insights that alter previous 847 



conclusions thanks to a detailed analysis at the species and chromosome levels. Two main 848 

and distinct CO patterns emerge across a large set of flowering plant species; it seems likely 849 

that chromosome structure (length, centromere) and gene densities are the major drivers of 850 

these patterns, and the interactions between them raise questions about the evolution of 851 

complex genomic patterns at the chromosome scale (Gaut et al., 2007; Nam and Ellegren, 852 

2012). The new large and curated dataset we provide in the present work should be useful 853 

for addressing such questions and testing future evolutionary hypotheses regarding the role 854 

of recombination in genome architecture.  855 

Materials and Methods 856 

Data preparation 857 

To build recombination maps, we combined genetic and genomic maps in angiosperms 858 

that had already been published in the literature. We conducted a literature search to collect 859 

sex-averaged genetic maps estimated on pedigree data – with markers positions in 860 

centiMorgans (cM). The keywords used were ‘genetic map’, ‘linkage map’, ‘genome 861 

assembly’, ‘plants’ and ‘angiosperms’, combined with 'high-density' or 'saturated' in order to 862 

target genetic maps with a large number of markers and progenies. Additionally, we carried 863 

out searches within public genomic databases to find publicly available genetic maps. Only 864 

species with a reference genome assembly at a chromosome level were included in our 865 

study (a complete list of genetic maps with the associated metadata is given in Tables S1, 866 

S2). As much as possible, genomic positions along the chromosome (Mb) were estimated by 867 

blasting marker sequences on the most recent genome assembly (otherwise genomic 868 

positions were those of the original publication). Genome assemblies with annotation files at 869 

a chromosome-scale were downloaded from NCBI (https://www.ncbi.nlm.nih.gov/) or public 870 

databases. Marker sequences were blasted with ‘blastn’ and a 90% identity cutoff. Markers 871 

were anchored to the genomic position of the best hit. When the sequence was a pair of 872 

primers, the mapped genomic position was the best hit between pairs of positions showing a 873 

https://www.ncbi.nlm.nih.gov/


short distance between the forward and reverse primer (< 200 bp). In a few exceptions (see 874 

Table S1), genomic positions were mapped on a close congeneric species genome and the 875 

genomic map was kept if there was good collinearity between the genetic and genomic 876 

positions. Chromosomes were numbered as per the reference genome assembly. When 877 

marker sequences were not available, we kept the genomic positions published with the 878 

genetic map. The centromere position was retrieved from the literature (i.e. the centromeric 879 

index, the ratio of the short arm length versus the total chromosome length). The total 880 

genomic length was estimated by the length of the chromosome sequence in the genome 881 

assembly. The total genetic length was corrected using Hall and Willis’s method (Hall and 882 

Willis, 2005) which accounts for undetected events of recombination in distal regions by 883 

adding 2s to the length of each linkage group (where s is the average marker spacing in the 884 

group). 885 

We selected genetic and genomic maps after stringent filtering and corrections, using 886 

custom scripts available in a public Github repository 887 

(https://github.com/ThomasBrazier/diversity-determinants-recombination-landscapes-888 

flowering-plants.git). We assumed that markers must follow a monotone increasing function 889 

when plotting genetic distances as a function of genomic distances in a chromosome (i.e. 890 

the Marey map) and to guarantee collinearity between the genetic map and the reference 891 

genome was required to keep a Marey map. If necessary, genetic maps were reoriented so 892 

that the Marey map function is increasing (i.e. genetic distances read in the opposite 893 

direction). In a first step, Marey maps with fewer than 50 markers per chromosome were 894 

removed, although a few exceptions were visually validated (maps with ~30 markers). Marey 895 

maps with more than 10% of the total genomic map length missing at one end of the 896 

chromosome were removed. Marey maps with obvious artefacts and assembly mismatches 897 

(e.g. lack of collinearity, large inversions, large gaps) were removed. Markers clearly outside 898 

the global trend of the Marey map (e.g. large genetic/genomic distance from the global cloud 899 

of markers or from the interpolated Marey function, no other marker in a close 900 



neighbourhood) were visually filtered out, and multiple iterations of filtering/interpolation 901 

helped to refine outlier removal. The Marey map approach is a graphical method, so figures 902 

were systematically produced at each step as a way to evaluate the results of the filtering 903 

and corrections. Finally, when multiple datasets were available for the same species, we 904 

selected the dataset with the highest marker density – in addition to visual validation – to 905 

maintain a balanced sampling and avoid pseudo-replicates of the same chromosome. 906 

Estimates of local recombination rates 907 

Local recombination rates along the chromosome were estimated with custom scripts 908 

following the Marey map approach, as described in the MareyMap R package (Rezvoy et al., 909 

2007) with the Marey map approach described in the MareyMap R package (Rezvoy et al., 910 

2007). The mathematical function of the Marey map was interpolated with a two-degree 911 

polynomial loess regression. Each span smoothing parameter was calibrated by 1,000 912 

iterations of hold-out partitioning (random sampling of markers between two subsets; 2/3 for 913 

training and 1/3 for testing) with the Mean Squared Error of the loess regression as a 914 

goodness-of-fit criterion. The possible span ranged from 0.2 to 0.5 and was visually adjusted 915 

for certain maps. The local recombination rate was the derivative of the interpolated 916 

smoothed function in fixed 100 kb and 1 Mb non-overlapping windows. Negative estimates 917 

were not possible as we assumed a monotonously increasing function and negative 918 

recombination rates were set to zero. The 95% confidence intervals of the recombination 919 

rates were estimated by 1,000 bootstrap replicates of the markers and recombination 920 

landscapes with large confidence interval were discarded. The quality of the estimates was 921 

checked using the correlation between the 100 kb and 1 Mb windows. 922 

The distribution of CO along chromosomesbroken stick model 923 

The spatial structure of recombination landscapes across species and chromosomes is a 924 

major feature of recombination landscapes. Applied to the distribution of recombination in 925 

Marey maps, our implementation of the broken stick model seemed effective to visualize the 926 



broad-scale variation of recombination rates (White and Hill, 2020). We divided the Marey 927 

map in k segments of equal genetic genomic size (Mb) and then calculated the relative 928 

genomic genetic size (cM) of each segment. Under the null model (i.e. random 929 

recombination), one expects k segments of equal genomic genetic size 1/k. The relative 930 

recombination rate in the segment i was estimated by the log-ratio of the relative observed 931 

genetic size (i.e. genetic size of segment i) divided by the relative expected genomic genetic 932 

size (i.e. fixed to total genetic size / k by the model), as in the following equation. 933 

𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑟𝑒𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 = 𝑙𝑜𝑔10
𝑔𝑒𝑛𝑒𝑡𝑖𝑐𝑖

𝑔𝑒𝑛𝑒𝑡𝑖𝑐𝑡𝑜𝑡𝑎𝑙 𝑘⁄
 934 

 Given the observation that most recombination landscapes are broken down into at least 935 

three segments (White and Hill, 2020), we arbitrarily chose a number of segments k = 10 to 936 

reach a good resolution (a larger k did not show any qualitative differences). 937 

Crossover patterns and the periphery-bias ratio 938 

We investigated the spatial bias towards distal regions of the chromosome in the 939 

distribution of recombination by estimating recombination rates as a function of relative 940 

distances to the telomere (i.e. distance to the nearest chromosome end). Chromosomes 941 

were split by their midpoint and only one side was randomly sampled for each chromosome 942 

to avoid pseudo-replicates and the averaging of two potentially contrasting patterns on 943 

opposite arms. The relative distance to the telomere was the distance to the telomere 944 

divided by total chromosome size, then divided into 20 bins of equal relative distances. A 945 

periphery-bias ratio metric similar to the one presented in Haenel et al. (2018) was estimated 946 

to measure the strength of the distal bias. We divided the recombination rates in the tip of 947 

the chromosome (10% on each side of the chromosome, and one randomly sampled tip) by 948 

the mean recombination rate of the whole chromosome. We investigated the sensitivity of 949 

this periphery-bias ratio to the sampling scale by calculating the ratio for many distal region 950 

sizes (FigureFig S121). 951 

Formatted: Font: Italic



Testing centromere or telomere effects 952 

We searched the literature for centromeric indices (ratio of the short arm length divided by 953 

the total chromosome length) established by cytological measures. When we had no 954 

information about the correct orientation of the chromosome (short arm/long arm), the 955 

centromeric index was oriented to match the region with the lowest recombination rate of the 956 

whole chromosome (i.e. putative centromere). To determine if telomeres and centromeres 957 

play a significant role in CO patterning, we fitted empirical CO distributions to three 958 

theoretical models of CO distribution. In the following equations, d(x) is the relative genetic 959 

distance at the relative genomic position x, and a is a coefficient corresponding to the excess 960 

of COs per genomic distance. Under the strict ‘telomere’ model (1), we assumed that only 961 

telomeres played a role in CO distribution, i.e. an equal distribution of COs on both sides of 962 

the chromosome (i.e. 𝑑(1 2⁄ ) = 𝑑(1) − 𝑑(1 2⁄ ), such that 
𝑑(1 2⁄ )

𝑑(1)
= 0.5. The ‘telomere + 963 

centromere + one mandatory CO per arm’ model (2) assumed at least one CO per 964 

chromosome arm and a relative genetic distance of each chromosome arm proportional to 965 

its relative genomic size, corresponding to the role of centromere position, denoted d(c). We 966 

have 𝑑(𝑐) = 50 + 𝑎 × 𝑐 and 𝑑(1) − 𝑑(𝑐) = 50 + 𝑎 × (1 − 𝑐), such that 
𝑑(𝑐)−50

𝑑(1)−100
= 𝑐. Lastly, 967 

the ‘telomere + centromere + one CO per chromosome’ model (3) assumed at least one CO 968 

per chromosome and a relative genetic distance within the chromosome proportional to its 969 

relative genomic distance. We have 𝑑(𝑐) = 𝑐 × 50 + 𝑎 × 𝑐 and 𝑑(1) − 𝑑(𝑐) = (1 − 𝑐) × 50 +970 

𝑎 × (1 − 𝑐), such that 
𝑑(𝑐)

𝑑(1)
= 𝑐. The three competing models were compared with a linear 971 

regression between empirical and theoretical values, based on the adjusted R2 and AIC-BIC 972 

criteria among chromosomes. The number of species supporting each model was calculated 973 

based on the adjusted R2 within species, for all species with at least five chromosomes. 974 

Gene density 975 

We retrieved genome annotations (‘gff’ files) for genes, coding sequences and exon 976 

positions, preferentially from NCBI and otherwise from public databases (41 species). We 977 



estimated gene counts in 100 kb windows for recombination maps by counting the number 978 

of genes with a starting position falling inside the window. For each gene count, we 979 

estimated the species mean recombination rate and its confidence interval at 95% by 1,000 980 

bootstrap replicates (chromosomes pooled per species). Most species had rarely more than 981 

20 genes over a 100 kb span and variance dramatically increased in the upper range of the 982 

gene counts, and therefore we pruned gene counts over 20 for graphical representation and 983 

statistical analyses. 984 

Genetic shuffling 985 

To assess the efficiency of the recombination between chromosomes and species, we 986 

calculated the measure of intra-chromosomal genetic shuffling described by Veller et al. 987 

(2019). To have even sampling along the chromosome, genetic positions (cM) of 1,000 988 

pseudo-markers evenly distributed along genomic distances (Mb) were interpolated using a 989 

loess regression on each Marey map, following the same smoothing and interpolation 990 

procedure as for the estimation of the recombination rates. The chromosomal genetic 991 

shuffling 𝑟̅𝑖𝑛𝑡𝑟𝑎 were calculated as per the intra-chromosomal component of the equation 10 992 

presented in Veller et al. (2019). For a single chromosome, 993 

𝑟̅𝑖𝑛𝑡𝑟𝑎 =  ∑(𝑟𝑖𝑗 (
Λ

2
)⁄ )

𝑖<𝑗

 994 

where Λ is the total number of loci, (Λ
2

) =  Λ(Λ −   1)/2 and 𝑟𝑖𝑗 is the rate of shuffling for 995 

the locus pair (i, j). For the intra-chromosomal component 𝑟̅𝑖𝑛𝑡𝑟𝑎, the pairwise shuffling rate 996 

was only calculated for linked sites, i.e. loci on the same chromosome. This pairwise 997 

shuffling rate was estimated by the recombination fraction between loci i and j. 998 

Recombination fractions were directly calculated from Haldane or Kosambi genetic distances 999 

between loci by applying a reverse Haldane function (1) or reverse Kosambi function (2), 1000 

depending on the mapping function originally used for the given genetic map. 1001 



𝑟𝑖𝑗 =  
1

2
(1 −  𝑒−2𝑑𝑖𝑗/100)   (1) 1002 

𝑟𝑖𝑗 =  𝑡𝑎𝑛ℎ
1

2
𝑡𝑎𝑛ℎ(2𝑑𝑖𝑗/100)   (2) 1003 

We also estimated marker positions in gene distances instead of genomic distances (Mb) 1004 

to investigate the influence of the non-random distribution of genes on the recombination 1005 

landscape. Gene distances were the cumulative number of genes along the chromosome at 1006 

a given marker’s position. Splicing variants and overlapping genes were counted as a single 1007 

gene. The genetic shuffling was re-estimated with gene distances instead of genomic 1008 

distances to consider a genetic shuffling based on the gene distribution, as suggested by 1009 

Veller et al. (2019). To compare the departure from a random distribution along the 1010 

chromosome among both types of distances (i.e. genomic and genes), we calculated the 1011 

Root Mean Square Error (RMSE) of each Marey map and for both distances. To assess if 1012 

the distribution of genes influenced the heterogeneity of recombination landscapes, the type 1013 

of distance with the lower RMSE was considered as the more homogeneous landscape. 1014 

However, this measure for gene distances is sensitive to annotation errors and artefacts. 1015 

False negatives are therefore expected (when Marey maps were assessed as more 1016 

homogeneous in genomic distances while the inverse is true) and this classification remains 1017 

conservative. 1018 

Statistical analyses 1019 

All statistical analyses were performed with R version 4.0.4 (R Core Team, 2019). We 1020 

assessed statistical relationships with the non-parametric Spearman’s rank correlation and 1021 

regression models. Linear Models were used for regressions with species data since we did 1022 

not detect a phylogenetic effect. The structure in the chromosome dataset was accounted for 1023 

by Linear Mixed Models (LMER) implemented in the ‘lme4’ R package (Bates et al., 2015, p. 1024 

4) and the phylogenetic structure was tested by fitting the Phylogenetic Generalized Linear 1025 

Mixed Model (PGLMM) of the ‘phyr’ R package (Ives et al., 2019). The phylogenetic time-1026 

calibrated supertree used for the covariance matrix was retrieved from the publicly available 1027 



phylogeny constructed by Smith and Brown (Smith and Brown, 2018). Marginal and 1028 

conditional R2 values for LMER were estimated with the ‘MuMIn’ R package (Bartoń, 2020). 1029 

Significance of the model parameters was tested with the ‘lmerTest’ R package (Kuznetsova 1030 

et al., 2017). We selected the model based on AIC/BIC criteria and diagnostic plots. 1031 

Reliability and stability of the various models were assessed by checking quantile-quantile 1032 

plots for the normality of residuals and residuals plotted as a function of fitted values for 1033 

homoscedasticity. Model quality was checked by the comparison of predicted and observed 1034 

values. Given the skewed nature of some distributions, we used logarithm (base 10) 1035 

transformations when appropriate. For comparison between species, statistics were 1036 

standardized (i.e. by subtracting the mean and dividing by standard deviation). Mean 1037 

statistics and 95% confidence intervals were estimated by 1,000 bootstrap replicates. 1038 
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Supporting information 1296 

FigS1. Markers positions in genetic distance (cM) as a function of genomic distance (Mb), 1297 

namely Mary maps, for each chromosome included in the dataset (n = 665 chromosomes). 1298 

The black vertical line is the centromere position estimated by cytological measures, when 1299 

available in the literature. 1300 

FigS2. Recombination landscapes for each chromosome included in the dataset (n = 665 1301 

chromosomes). Recombination rate (cM/Mb) estimated in windows of 100kb along genomic 1302 

distances (Mb). Confidence interval at 95% (grey ribbon) estimated by 1,000 bootstraps of 1303 

loci. The black vertical line is the centromere position estimated by cytological measures, 1304 

when available in the literature. 1305 

FigS3. Phylogenetic tree of species in our dataset (n = 57), annotated with mean 1306 

recombination rate (cM/Mb) and mean chromosome size (Mb). The supertree was retrieved 1307 

from the publicly available phylogeny constructed by Smith and Brown (Smith & Brown, 1308 

2018). 1309 
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FigS4. Slopes of the linear regression within species (linkage map length ~ chromosome 1310 

size) as a function of the species mean genomic chromosome size (Mb). 1311 

FigS5. The negative correlation (Spearman’s Rho coefficient) between recombination 1312 

rates (cM/Mb) and the distance to the nearest telomere is stronger for species with a larger 1313 

chromosome size (n = 57). The linear regression line and its parametric 95% confidence 1314 

interval were estimated in ggplot2. The inset presents the distribution of Spearman’s Rho 1315 

coefficients for chromosomes (n = 665 chromosomes). The mean correlation and its 95% 1316 

confidence interval (black solid and dashed lines) were estimated by 1,000 bootstraps. The 1317 

red vertical line is for a null correlation. 1318 

FigS6. Standardized recombination rate (cM/Mb) as a function of the relative distance 1319 

(Mb) from the telomere along the chromosome (physical distances expressed in 20 bins). 1320 

Chromosomes were split in halves, a relative distance of 0.5 being the centre of the 1321 

chromosome, and only one side was randomly sampled to avoid averaging patterns. Then, 1322 

chromosomes were pooled per species. Each colour is a species. A loess regression was 1323 

estimated for each species. Species presented in four plots for clarity. 1324 

FigS7. Standardized gene count as a function of the relative distance (Mb) from the 1325 

telomere along the chromosome (physical distances expressed in 20 bins). Chromosomes 1326 

were split in halves, a relative distance of 0.5 being the centre of the chromosome, and only 1327 

one side was randomly sampled to avoid averaging patterns. Then, chromosomes were 1328 

pooled per species. Each colour is a species. A loess regression was estimated for each 1329 

species. Species presented in four plots for clarity. 1330 

FigS8. The genetic shuffling  increases with the size of the genetic map (cM). Linear 1331 

mixed regression with a species random effect and its 95% confidence interval estimated by 1332 

ggplot2 (black line and grey ribbon). Each colour is a species. A linear regression was 1333 

estimated for each species. 1334 
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FigS9. The genetic shuffling  decreases with the periphery-bias ratio. Linear mixed 1335 

regression with a species random effect and its 95% confidence interval estimated by 1336 

ggplot2 (black line and grey ribbon). Each colour is a species. A linear regression was 1337 

estimated for each species. 1338 

FigS10. Gene count in windows of 100kb along genomic distances (Mb) for each 1339 

chromosome with gene annotations (n = 480 chromosomes). Recombination rate (cM/Mb) 1340 

estimated in windows of 100kb . Loess regression of gene count along the chromosome in 1341 

blue line with parametric confidence interval at 95% in grey. 1342 

FigS11. Marey maps with genomic distances (black points) and gene distances (gray 1343 

points). Markers positions in genetic distance (cM) as a function of the relative physical 1344 

distance (either Mb of cumulative number of genes) for each chromosome with gene 1345 

annotations (n = 480 chromosomes). The black dashed line is a theoretical uniform 1346 

distribution of markers. The black vertical line is the centromere position estimated by 1347 

cytological measures, when available in the literature. 1348 

FigS12. Sensitivity of the periphery-bias ratio to the size of the sampled distal region (i.e. 1349 

number of bins sampled at the tips). The periphery-bias ratio was estimated for different 1350 

numbers of bins sampled and always divided by the mean chromosomal recombination rate. 1351 

Linear regression (black line) shows a decrease of the periphery-bias ratio as the number of 1352 

bins increases, towards a ratio value of 1 (dashed line).  1353 
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Table S1. Metadata for 665 recombination landscapes, with name of the dataset collected 1354 

and literal name of the chromosome used in our study, chromosome name in annotation 1355 

(gff), size of the genetic map (cM, raw and corrected by methods of Chakravarti et al. (1991) 1356 

or Hal & Willis (2005)), size of the genomic sequence in genome assembly (Mb), number of 1357 

markers, density of markers in cM and bp, mean interval between markers in cM and bp, 1358 

span parameter of the loess function, type of mapping function (Haldane, Kosambi or none), 1359 

accession of the reference genome used for markers genomic positions, link to data 1360 

repository and doi reference of the study in which the genetic map was published. 1361 

Table S2. Flowering plant species included in the study, with authors, year and doi 1362 

reference of the genetic map publication, and accession of the reference genome. 1363 

Table S3. Centromeric indexes estimated in cytological studies, with unit of 1364 

measurement, mean and standard error of long and short chromosome arms, centromeric 1365 

index (ratio of short arm length divided by total chromosome length), and doi reference to the 1366 

original study. 1367 

Table S4. Correlation between recombination landscapes estimated at two different 1368 

genomic scales (1Mb and 100kb). Spearman’s Rho coefficient was estimated for each 1369 

chromosome between recombination rates estimated directly in windows of 1Mb and the 1370 

mean recombination rate of 100kb windows pooled together in 1Mb windows. Mean of the 1371 

Spearman’s Rho coefficient among chromosomes and proportion of significant p-values 1372 

given for each species. 1373 

Table S5. Selection of the regression model between LM, LMER and PGLMM which 1374 

explains best the relationship between the mean recombination rate (cM/Mb) and the 1375 

chromosome size (Mb), based on AIC and BIC criteria. 1376 

Table S6. Species averaged correlation between the averaged chromosome size (Mb) 1377 

and the averaged periphery-bias ratio. Mean of the Spearman’s Rho coefficient among 1378 
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correlations at chromosome scale and proportion of significant p-values given for each 1379 

species. 1380 

Table S7. Chromosome correlation between the recombination rate (cM/Mb) and the 1381 

relative distance to the telomere, with Spearman’s Rho coefficient and p-value of the test per 1382 

chromosome. 1383 

Table S8. Species averaged correlation between the recombination rate (cM/Mb) and the 1384 

relative distance to the telomere. Mean of the Spearman’s Rho coefficient among 1385 

correlations at chromosome scale and proportion of significant p-values given for each 1386 

species. 1387 

Table S9. Selection of the best model of crossover distribution for each species, based on 1388 

Adjusted R-Squared between observed values and theoretical values predicted by the 1389 

model. The best model selected for each species is the one maximizing the Adjusted R-1390 

Squared. 1391 

Table S10. Selection of the best model of crossover distribution for each species in a 1392 

subset of chromosomes with at least 50cM on each chromosome arm, based on Adjusted R-1393 

Squared between observed values and theoretical values predicted by model. The best 1394 

model selected for each species is the one maximizing the Adjusted R-Squared. 1395 

Table S11. Convergence between crossover patterns and gene patterns at a species 1396 

scale. For each species is given the type of crossover pattern, the type of gene count 1397 

pattern, the difference RMSE(gene pattern) - RMSE(crossover pattern) which indicates how 1398 

gene patterns are more/less homogeneous than crossover patterns, the homogenization 1399 

effect of gene patterns (more/less), the difference genetic shuffling(gene pattern) - genetic 1400 

shuffling(crossover pattern) and the averaged chromosome size (Mb). 1401 
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