1	A high-performance genetically encoded fluorescent indicator
2	for in vivo cAMP imaging
3	
4	Liang Wang, Chunling Wu, Wanling Peng, Ziliang Zhou, Jianzhi Zeng, Xuelin Li, Yini
5	Yang, Shuguang Yu, Ye Zou, Mian Huang, Chang Liu, Yefei Chen, Yi Li, Panpan Ti,
6	Wenfeng Liu, Yufeng Gao, Wei Zheng, Haining Zhong, Shangbang Gao, Zhonghua Lu,
7	Pei-Gen Ren, Ho Leung Ng, Jie He, Shoudeng Chen, Min Xu, Yulong Li, Jun Chu
8	
9	Contents:
10	1. Supplementary Figures
11	2. Supplementary Tables
12	3. Supplementary References
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	

24 1. Supplementary Figures

(a) Schematic of cAMPr, Flamindo2, Pink Flamindo and R-FlincA sensors. PKA-C and
PKA-R represent PKA catalytic and regulatory subunit, respectively. mPKA, bPKA and
hPKA are mouse, bovine and human PKA, respectively. mEpac1 is mouse Epac1. GFP,

Citrine and mApple are fluorescent proteins. In R-FlincA, cpmApple was inserted into
the first CNBD of PKA-R.

(b) Representative fluorescence images (left) and traces of $\Delta F/F_0$ (right) of cAMP sensors in response to 60 µM Forskolin (Fsk) in HEK293T cells. Notably, the image contrasts for different sensors were different to render fluorescence visible. Data are shown as mean ± SEM. n = 33 cells (cAMPr), 42 cells (Flamindo2), 34 cells (Pink Flamindo) and 18 cells (R-FlincA) from 3 cultures for each sensor. Scale bars: 10 µm.

38 (c) Basal and peak brightness of the green cAMP sensors (cAMPr and Flamindo2) and 39 red cAMP sensors (Pink Flamindo and R-FlincA) in HEK293T cells before and 15 min after 60 µM Fsk stimulation. Brightness of green and red cAMP sensors were normalized 40 41 to those of the green calcium sensor GCaMP6s and the red calcium sensor jRCaMP1b, respectively. The brightness of GFP and mCherry were also normalized to GCaMP6s and 42 jRCaMP1b, respectively. Data are shown as mean \pm SEM. n = 3 wells from 12-well 43 plates for each sensor. Two-tailed Student's *t*-tests were performed. P = 0.008 between 44 mEGFP and GCaMP6s, P = 0.2039 between GCaMP6s and cAMPr, P = 0.0035 between 45 GCaMP6s and Flamindo2. P = 0.0097 between mCherry and jRCaMP1b, $P = 8.4 \times 10^{-8}$ 46 between jRCaMP1b and Pink Flamindo2, $P = 8.7 \times 10^{-6}$ between jRCaMP1b and R-47 FlincA. The minus and plus signs denote without and with Fsk treatment, respectively. 48 (d) R-FlincA formed puncta in HEK293T cells after 48 h transfection. Representative 49 image from 3 independent experiments is shown. Scale bar: 10 μ m. ***P < 0.001, **P <50 0.01 and NS, not significant. 51

52 Source data are provided as a Source Data file.

b cAMP (or cAMP analogue)-bound structures

54 Supplementary Fig. 2 Structure and amino acid sequence alignments of CNBDs

55 from bovine PKA, mouse Epac2 and bacterial MlotiK1 channel.

- 56 (a) Structures of different cAMP-free CNBDs.
- 57 (b) Structures of different cAMP (or its analogue)-bound CNBDs. cAMP or its analogue
- 58 molecules are shown as stick models. Protein termini are highlighted in grey.
- 59 (c) Protein sequence alignment of CNBDs.

60

62 Supplementary Fig. 3 Evolution of G-Flamp1.

63 (a) Five-step directed evolution procedure of G-Flamp1.

(b) Three insertion regions tested are highlighted in blue, green and orange in mlCNBD'sstructure (PDB 1VP6).

66 (c) $\Delta F/F_0$ of 11 G-Flamp variants with different insertion sites in response to 500 μ M 67 cAMP. The variant with the insertion site between Pro285 and Asn286 (named G-68 Flamp0.1) showed the largest fluorescence change. The color coding matches the one in 69 **b**.

(d) The brightness of G-Flamp0.1 and G-Flamp0.2 in bacterial cells cultured overnight at
34°C.

(e) $\Delta F/F_0$ of 427 G-Flamp0.2 variants with different linkers in response to 500 μ M cAMP. The variant with the linkers 'WG' and 'RV' (named G-Flamp0.5) showed the greatest fluorescence change. Source data are provided as a Source Data file.

(f) The brightness of G-Flamp0.5 and G-Flamp0.7 in bacterial cells cultured overnight at
34°C.

(g) $\Delta F/F_0$ of G-Flamp0.5, G-Flamp0.7 and G-Flamp1 under excitation at 488 nm.

a	00
GFP MVSKGEELFTGVVPILVELDGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPV 70 80 90 100 110	P W P T L 120
GFP VTTLTYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFFKDDGNYKTRAEVKFE 130 140 150 160 170	G D T L V 180
GFP NRIELKGIDFKEDGNILGHKLEYNYNSHNVYI <mark>K</mark> ADKQKNGIKANFKIRHN <mark>I</mark> EDGG 190 200 210 220 230	V Q L A Y 238
GFP HYQQNTPIGDGPVLLPDNHYLSVQSKLSKDPNEKRDHMVLLEFVTAAGITLGMDE	LYK
b	
213 222 232 242 252 262 mICNBD GEVOEVERGDEVENWOLVAAVELEOKIGPAVIVELVEALEAETVPAGAVICELGE	272 PGDRM
	332
MICNED FFVVEGSVSVATPNPVELGPGAFFGEMALTSGEPRSATVSAATTVSLLSLHSADF	QMLCS
mICNBD SSPEIAEIFRKTALERRGAAASA	
C	
G-Flamp0.1 MRGSHHHHHHGMASMTGGQQMGRDLYDDDDKDPMGFYQEVRRGDFVRNWQLVAAV	27 PLFQK
G-Flamp1 <u>MRGSHHHHHHGMASMTGGQQMGRDLYDDDDKDP</u> MGFYQEVRRGDFVRNWQLVAAV RSET	PLFQK
37 47 57 67 77	87
G-FlampU.1 L G P A V L V E I V R A L R A R T V P A G A V I C R I G E P G D R M F F V V E G S V S V A T P L E N V Y I K A G-Flamp1 L G P A V L V E I V R A L R A R T V P A G A V I C R I G E P G D R M F F V V E G S V S V A T N WG N V Y I T A	DKQKN DKQKN
linker 1	
9/ 10/ 11/ 12/ 13/ G-Flamp0.1 GIKANFKIRHNIEDGGVQLAYHYQQNTPIGDGPVLLPDNHYLSVQSKLSKDPNEK	147 RDHMV
G-Flamp1 GIKANFKIRHN <mark>VEG</mark> GGVQLAYHYQQNTPIGDGPVLLPDNHYLSVQSKLSKDPNEK	RDHMV
157 167 177 187 197	207
G-FlampU.1 LLEFVTAAGITLGMDELYKGGTGGSMVSKGEELFTGVVPILVELDGDVNGHKFSV G-Flamp1 LLEFVTAAGITLGMDELYKGGTGGSMVSKGEELFTGVVPILVELDGDVNGHKFSV	S G E G E R G E G E
017 007 007 017 017	007
G-Flamp0.1 GDATYGKLTLKFICTTGKLPVPWPTLVTTLTYGVQCF <mark>S</mark> RYPDHMKQHDFFKSAMP	EGYIQ
G-Flamp1 GDATNGKLTLKFICTTGKLPVPWPTLVTTLTYGVQCFARYPDHMKQHDFFKSAMP	EGYIQ
	327
G-Flamp0.1 ERTIFFKDDGNYKTRAEVKFEGDTLVNRTELKGTDFKEDGNTLGHKLEYNLPNPV G-Flamp1 ERTIVFKDDGTYKTRAEVKFEGDTLVNRTELKGTDFKEDGNTLGHKLEYNRVNPV	ELGPG ELGPG
linker 2	397
G-Flamp0.1 AFFGEMALISGEPRSATVSAATTVSLLSLHSADFQMLCSSSPEIAEIFRKTALER	RGAAA
G-Flamp1 AFFGEMALISGEPRVATVSAATIVSLLSLHSADFQMLCSSSPETAETFRKTALER	RGAAA
G-Flamp0.1 S A	
GFP : GFP sequence is modified from cpGFP of GCaMP6f.	
RSET: RSET peptide is required for the large Δ F/F ₀ of G-Flamp1.	
R307E in mICNBD for cAMP-insensitive mutant sensor.	
* : R(Arg) deleted for mammalian expression.	

79 Supplementary Fig. 4 Protein sequences of GFP, mlCNBD, G-Flamp0.1 and G-

80 Flamp1.

(a-b) Protein sequences of GFP and mlCNBD. The numberings of GFP and mlCNBD are
according to PDB 2Y0G and 1VP6, respectively. Modified amino acid residues in GFlamp1 sensor are highlighted in magenta and blue.

(c) Sequence alignment of full-length G-Flamp0.1 and G-Flamp1. The numbering is
according to PDB 6M63. Modified amino acid residues are highlighted in magenta, blue
and orange. Note the amino acid Arg immediately after the initiator methionine in GFlamp1 was deleted for mammalian expression. Source data are provided as a Source
Data file.

99 Supplementary Fig. 5 Fluorescence and absorption spectra of purified G-Flamp1,

100 **mEGFP and GCaMP6f.**

- 101 (a-b) Excitation (a) and emission (b) spectra of mEGFP, cAMP-free G-Flamp1, cAMP-
- 102 bound G-Flamp1, calcium-free GCaMP6f and calcium-bound GCaMP6f.
- 103 (c) Absorption spectra of 20 µM purified G-Flamp1 in HEPES buffer in the presence or
- 104 absence of 500 μ M cAMP.
- 105 (d) Relative brightness at different excitation wavelengths under two-photon excitation.
- 106 Source data are provided as a Source Data file.

Supplementary Fig. 6 pH-dependent fluorescence and fluorescence change of
 purified G-Flamp1.

110 (a) Normalized fluorescence of purified G-Flamp1 (2 µM) at various pH values in the

111 presence or absence of 500 μ M cAMP. Fitted data are shown as solid lines.

(b) $\Delta F/F_0$ of purified G-Flamp1 (2 μ M) in buffers with different pH values.

113 Data are presented as mean \pm SEM. n = 3 independent experiments. Source data are 114 provided as a Source Data file.

124 Supplementary Fig. 7 Gel filtration chromatography of G-Flamp1.

(a) The size-exclusion chromatogram for the cAMP-bound G-Flamp1 indicator without
the RSET peptide (42.6 kDa) and standard molecular weight proteins (carbonic
anhydrase, 29 kDa; bovine serum albumin, 66 kDa). 850 μL of 29.8 mg/mL (0.7 mM) GFlamp1 was loaded into the column (Hiload 16/600 Superdex 200 pg column, GE
Healthcare).

130 (b) SDS-PAGE of purified cAMP-bound G-Flamp1 using 10% gel. All eluted fractions

showed specific bands with a molecular weight of ~43 kDa. Representative image from 3

132 independent experiments is shown.

133 Source data are provided as a Source Data file.

134

- 135
- 136
- 137
- 138
- 139

Supplementary Fig. 8 Crystal structure of cAMP-bound G-Flamp1 (PDB: 6M63) with
electron density on both two linkers and their neighboring residues. The mesh depicts
electron density in the 2Fo–Fc map contoured to 1.2 sigma within 2.0 Å of the atoms
displayed in stick form.

145

Supplementary Fig. 9 Linker conformation and the interactions between key residues and chromophore in other single-FP indicators. FPs, linkers and sensing domains are marked in green/red, orange and grey, respectively. All chromophores in the FP are shown as stick and amino acid residues interacting with the phenolic oxygen of the chromophore are shown as sphere. In iGABASnFR, the linker 2 folds as α -helix. Unlike GCaMP3 and NCaMP7, in which the fluorescence modulation is dependent on

152	the interactions with residues of CaM, the fluorescence change in K-GECO1 is mediated
153	by a residue from linker 1.
154	
155	
156	
157	
158	
159	
160	
161	
162	
163	
164	
165	
166	
167	
168	
169	
170	
171	
172	
173	
174	

176 Supplementary Fig. 10 Stable cAMP-bound and cAMP-free structures predicted by

177 the metadynamics molecular dynamics simulations.

- 178 (a) The simulated cAMP-bound G-Flamp1 structure at global minimum.
- (b) The two dihedral angles picked for collective variables (CVs).

180	(c) Free energy landscape of the cAMP-bound form at 300 K. The red star shows the
181	global minima (lowest-energy pose) and its free energy was -7.81 kcal/mol.
182	(d) The cAMP-bound conformation at global minimum. The side chain of Trp 75 is close
183	to the chromophore. There is a pi-stacking interaction between the side chain of Trp 75
184	and the chromophore.
185	(e) Free energy landscape of cAMP-free form at 300K. The red star shows the global
186	minima (lowest-energy pose) and its free energy was -5.27 kcal/mol.
187	(f) The cAMP-free conformation at global minimum. The side chain of Trp 75 moves
188	away from the chromophore.
189	
190	
191	
192	
193	
194	
195	

197	Supplementary Fig. 11 Saturation mutagenesis of Trp75 in G-Flamp1 sensor. Basal
198	brightness (up) and $\Delta F/F_0$ (bottom) for each variant were shown. Error bars indicate SEM
199	of the mean from 3 independent experiments. Source data are provided as a Source Data
200	file.
201	
202	
203	
204	
205	
206	
207	
208	

Supplementary Fig. 12 Performance of G-Flamp1 in HEK293T cells under twophoton imaging.

(a) Brightness comparison of three different green cAMP sensors (cAMPr, Flamindo2 and G-Flamp1) and GCaMP6s. Images were taken after 48 hours transfection under twophoton excitation (920 nm). n = 3 cultures for each sensor. Two-tailed Student's *t*-tests were performed. P = 0.044, 0.017 and 1.9×10^{-4} between G-Flamp1 and GCaMP6s, cAMPr and Flamindo2, respectively.

217	(b-c) Representative two-photon fluorescence images (b) and traces of $\Delta F/F_0$ (c) of
218	HEK293T cells expressing cAMP sensors in response to 60 μ M Fsk. n = 76 cells
219	(Flamindo2), 35 cells (cAMPr) and 64 cells (G-Flamp1) from 2 separate experiments.
220	Scale bars: 50 µm.
221	(d) Signal-to-noise ratio (SNR) of different sensors in (c). Two-tailed Student's t-tests
222	were performed. $P = 6.1 \times 10^{-33}$ between G-Flamp1 and Flamindo2, and $P = 4.7 \times 10^{-33}$
223	between G-Flamp1 and cAMPr.
224	All data are shown as mean \pm SEM in a , c and d . *** <i>P</i> < 0.001 and * <i>P</i> < 0.05. Source
225	data are provided as a Source Data file.
226	
227	
228	
229	
230	
231	
232	
233	
234	
235	
236	

Supplementary Fig. 13 Effects of G-Flamp1 expression on HEK293T proliferation
and cAMP signaling.

241 (a) Proliferation rates of HEK293 cells (control) and stable HEK293T cells expressing G-

Flamp1 (HEK293T-G-Flamp1) were measured using the CCK-8 assay. Data are shown as mean ± SEM from 3 independent experiments.

244 (b) Western blot analysis of phosphorylated CREB (pCREB) in cells induced by 10 nM

or 100 nM Iso for 1 hour. Representative images from 3 separate experiments are shown.

Lanes 1-3 and 4-6 were the lysates of serum-starved control and stable HEK293T cells

expressing G-Flamp1 (HEK293T-G-Flamp1), respectively.

248 Source data are provided as a Source Data file.

250 Supplementary Fig. 14 $\Delta F/F_0$ of G-Flamp1 in HeLa and CHO cells.

251 (a) Representative fluorescence images (left) and $\Delta F/F_0$ traces (right) of HeLa cells

expressing G-Flamp1 in response to 60μ M Fsk. n = 18 cells from 2 cultures.

253 (b) Same as **a** except that the mammalian cell line used was CHO. n = 13 cells from 6 254 cultures.

255 Data are shown as mean \pm SEM. Scale bars: 10 μ m. Source data are provided as a Source

256 Data file.

(a) $\Delta F/F_0$ of purified G-Flamp1-mut in response to various concentrations of cAMP or cGMP. The fluorescence under excitation at 450 nm was collected. Data are shown as

- 261 mean \pm SEM from 3 independent experiments.
- (b) Excitation and emission spectra of purified G-Flamp1-mut without cAMP or cGMP
- 263 (black), with 1000 μM cAMP (blue) and with 1000 μM cGMP (orange). Ex and Em stand
- for excitation and emission, respectively.
- 265 Source data are provided as a Source Data file.
- 266
- 267
- 268
- 269
- 270
- 271
- 272

274 Supplementary Fig. 16 $\Delta F/F_0$ and signal-to-noise ratio (SNR) of G-Flamp1 in 275 HEK293T cells under 450 nm and 480 nm excitations.

(a) Representative traces of $\Delta F/F_0$ of HEK293T cells stably expressing G-Flamp1 in response to 60 μ M Fsk. n = 30 cells (450 nm excitation) and 32 cells (480 nm excitation) from 3 cultures.

(b) SNRs of G-Flamp1 under 450 nm and 480 nm excitations. n = 30 cells (450 nm excitation) and 32 cells (480 nm excitation) over 3 independent experiments. Two-tailed Student's *t*-test was performed. $P = 1.1 \times 10^{-5}$ between the two groups.

All data are shown as mean \pm SEM in **a** and **b**. ****P* < 0.001. Source data are provided as a Source Data file.

284

285

Supplementary Fig. 17 Fluorescence lifetime changes of G-Flamp1 in HEK293T
cells.

(a) Representative fluorescence lifetime images of HEK293T cells expressing G-Flamp1 or G-Flamp1-mut before and 10 min after 60 μ M Fsk stimulation from 3 independent experiments. The minus and plus signs denote without and with Fsk treatment, respectively. Scale bars: 20 μ m.

294	(b) Summary of the fluorescence lifetimes of G-Flamp1 and G-Flamp1-mut in HEK293T
295	cells before and after 60 μ M Fsk treatment. n = 20 cells for both G-Flamp1 and G-
296	Flamp1-mut groups from 3 cultures. Individual data points from single cells and their
297	averages are indicated by gray and green/black circles, respectively.
298	(c) Fluorescence lifetime changes for G-Flamp1 and G-Flamp1-mut in b. Data are
299	presented as mean \pm SEM. Two-tailed Student's <i>t</i> -test was performed. $P = 1.3 \times 10^{-8}$
300	between the two groups. *** $P < 0.001$.
301	Source data are provided as a Source Data file.
302	
303	
304	
305	
306	
307	
308	
309	
310	
311	
312	
313	
314	
315	

317 Supplementary Fig. 18 $\Delta F/F_0$ of Green cGull and G-Flamp1 in response to 25 μ M

- 318 SNP in HEK293T cells.
- 319 Representative traces of $\Delta F/F_0$ of HEK293T cells expressing Green cGull or G-Flamp1.
- 320 Data are shown as mean \pm SEM. n = 22 cells for Green cGull and n = 15 cells for G-
- 321 Flamp1 from 3 cultures for both. Source data are provided as a Source Data file.

Representative fluorescence images (left) and traces of $\Delta F/F_0$ (right) of cortical neurons expressing G-Flamp1 in response to 60 μ M Fsk. Data are shown as mean \pm SEM. n = 6 ROIs of 6 neurons for both soma and neurites. Curves are shown as mean \pm SEM. Scale bar: 20 μ m.

330 Supplementary Fig. 20 Performance of G-Flamp1 in zebrafish.

331 (a) Schematic drawing for the experiments in zebrafish.

(b) Representative fluorescent images of G-Flamp1 before and after 120 µM Fsk or PBS
injection from 4 (for Fsk) and 3 (for PBS) independent experiments. High-magnification

images of the boxed areas are shown below. Scale bars: $50 \mu m$.

335 (c) Similar as **b** except that G-Flamp1-mut-T2A-NLS-mCherry plasmid was used.

 $336 Representative fluorescent images of G-Flamp1-mut before and after 120 \,\mu\text{M} \,Fsk \,or \,PBS$

injection from 3 (for Fsk) and 3 (for PBS) independent experiments.

(d) Quantification of $\Delta F/F_0$ in the above conditions. Data are shown as mean \pm SEM overlaid with data points from individual cells. n = 73 cells from 4 animals for G-Flamp1 with Fsk group, 86 cells from 3 animals for G-Flamp1 with PBS group, 93 cells from 3 animals for G-Flamp1-mut with Fsk group, 92 cells from 3 animals for G-Flamp1-mut with PBS group. Two-tailed Student's *t*-tests were performed. $P = 1.7 \times 10^{-13}$, 2.1×10^{-13} and 7.4×10^{-14} between G-Flamp1 with Fsk group and G-Flamp1 with PBS, G-Flamp1mut with Fsk and G-Flamp1-mut with PBS groups, respectively. ***P < 0.001. Source data are provided as a Source Data file.

346

347

Supplementary Fig. 21 Pearson correlation analysis of time series between G-Flamp1 and jRGECO1a signals in Fig. 4f. Each group includes 30 time points during $0\sim20$ s after running onset. The Pearson's correlation values (R) for the 'fast increase', 'slow increase' and 'decrease' groups were 0.024, 0.318 and -0.807, respectively. Twotailed Student's *t*-tests were performed and *P* values are also shown. Source data are provided as a Source Data file.

355

356

357

358

359

360

361

363 **2. Supplementary Tables**

364 Supplementary Table 1 Biophysical and biochemical properties of purified G-

- 365 Flamp1.
- 366

	cAMP sensor	Ex/Em ^a (nm), free ^b	Ex/Em (nm), bound ^c	$\frac{\Delta F/F_0}{(450)}$	$K_d \ (\mu M)^e$	n _H ^f	$k_{on} \ (\mu M^{-1} s^{-1})^g$	k_{off} $(s^{-1})^h$	pKa ⁱ , free	pKa, bound	EC ^j , free (M ⁻ ¹ cm ⁻¹)	EC, bound $(M^{-1}cm^{-1})$	QY ^k , free	QY, bound
-	G-Flamp1	500/513	490/510	13.4	2.17	1.13	3.48	7.9	8.27	6.95	4374	25280	0.323	0.322
367														

^aExcitation peak/Emission peak. ^bcAMP-free form of G-Flamp1. ^ccAMP-bound form of G-Flamp1. ^dMaximum fluorescence change under 450 nm excitation. ^eDissociation constant. ^fHill coefficient. ^gAssociation rate constant. ^hDissociation rate constant. ⁱThe pH at which the fluorescence intensity is half-maximal. ^jExtinction coefficient. ^kQuantum yield.

373

374 Supplementary Table 2 Molecular brightness and fluorescence change of GCaMP

375 sensors¹.

376

 Sensor	$\Delta F/F_0^a$	$EC^{b} \times QY^{c}$ ratio	EC, free ^d	EC, bound ^e $(M^{-1}cm^{-1})$	QY, free	QY, bound
		(bound/free)	$(M^{-1}cm^{-1})$	· · · ·		
 GCaMP6f	39	27	2761	66293	0.57	0.66
jGCaMP7s	39	10	5554	53068	0.58	0.65
jGCaMP7c	144	38	1541	49566	0.5	0.59
jGCaMP7b	21	10	5668	56462	0.59	0.6

377

³⁷⁸ ^aMaximum fluorescence change. ^bExtinction coefficient. ^cQuantum yield. ^dCa²⁺-free ³⁷⁹ form. ^eCa²⁺-bound form.

380

382 Supplementary Table 3 List of current cAMP indicators²⁻⁵.

383

Sensor (year ^a)	K_d^{d} for cAMP (μM)	K_d for cGMP (μ M)	$\Delta R/R_0$ or $\Delta F/F_0^e$	$\Delta R/R_0$ or $\Delta F/F_0$
			(purified sensor)	(in cells or cell lysate)
CFP-(δDEP,CD)-YFP	14	Insensitive to cGMP	n.d.	-0.45
(2004) ^b				
^T Epac1 ^{VV} /Epac-S ^{H74}	~10	n.d.	n.d.	~0.82
(2011) ^b				
Epac-S ^{H187} (2015) ^b	~4	n.d.	n.d.	~1.6
cAMPFIRE-L (2021) ^b	2.65	n.d.	n.d.	~2.7
cAMPFIRE-M (2021) ^b	1.41	n.d.	n.d.	~3.2
cAMPFIRE-H (2021) ^b	0.38	n.d.	n.d.	~3.3
ICUE1 (2004) ^b	n.d.	n.d.	n.d.	~0.3
ICUE2 (2008) ^b	12.5	n.d.	n.d.	~0.6
ICUE3 (2009) ^b	n.d.	n.d.	n.d.	~1.0
Epac1-camps (2004) ^b	2.35	n.d.	n.d.	~0.24
Epac2-camps300	0.3	14	n.d.	~0.8
$(2009)^{b}$				
mlCNBD-FRET	0.07	0.5	~0.4	~0.47
(2016) ^b				
CUTie (2017) ^b	7.4	n.d.	n.d.	~0.23
$cAMPr(2018)^{c}$	1	No response to 1 mM	n.d.	~0.5; 0.45 ^f
		cGMP		
Flamindo2 (2014) ^c	3.2	22	-0.75	-0.7; -0.25 ^f , -0.75 ^{f,g}
cADDis (2016) ^c	10-100	n.d.	-0.55	n.d.
Pink Flamindo (2017) ^c	7.2	94	3.2	1.30; 0.88 ^f
R-FlincA (2018) ^c	0.3	6.6	7.6	6.0; 1.5 ^f

384

³⁸⁵ ^aPublication year. ^bFRET-based cAMP indicators. ^cSingle-FP cAMP indicators. ³⁸⁶ ^dDissociation constant. ^eThe maximum ratio change ($\Delta R/R_0$) and maximum fluorescence ³⁸⁷ change ($\Delta F/F_0$) for FRET sensors and single-FP sensors, respectively. ^fMeasured in this ³⁸⁸ study. HEK293T cells were cultured at 37 °C. ^gValue was obtained under two-photon ³⁸⁹ excitation. n.d.: not determined.

390

391392

393

394

	G-Flamp1 (PDB 6M63)					
Data collection						
Space group	$P 2_1 2_1 2_1$					
Cell dimensions						
<i>a</i> , <i>b</i> , <i>c</i> (Å)	87.84, 94.69, 109.99					
α, β, γ (°)	90.00, 90.00, 90.00					
Resolution (Å)	50.00-2.25 (2.29-2.25) [*]					
$R_{\rm merge}^{**}$	0.15 (1.01)					
$I / \sigma I$	36.36 (4.45)					
Completeness (%)	100.00 (100.00)					
Redundancy	14.50 (13.80)					
Refinement						
Resolution (Å)	47.34-2.25 (2.33-2.25)					
No. reflections	43,987 (4,114)					
$R_{\mathrm{work}}^{}$ # / $R_{\mathrm{free}}^{}$ ##	0.18/0.22					
No. atoms	5,857					
Protein	5,448					
Ligand/ion	44					
Water	365					
B-factors	37.61					
Protein	37.16					
Ligand/ion	28.42					
Water	45.50					
R.m.s. deviations						
Bond lengths (Å)	0.007					
Bond angles (°)	0.900					
Ramachandran favored (%)	98.15					
Ramachandran allowed (%)	1.85					
Ramachandran outliers (%)	0.00					

^{*}Statistics for the highest-resolution shell are shown in parentheses.

^{**}Rmerge = $\sum_{hkl} \sum_{i} |I_i| (hkl) - \langle I(hkl) \rangle | / \sum_{hkl} \sum_{i} I_i(hkl)$, where $I_i(hkl)$ is the intensity measured for the *i* th reflection and $\langle I(hkl) \rangle$ is the average intensity of all reflections with indices hkl.

402 [#]R-work = \sum_{hkl} ||F_{obs} (hkl) |-|F_{calc} (hkl) || / \sum_{hkl} |F_{obs}(hkl) |.

⁴⁰³ ^{##}R-free is calculated in an identical manner using 10% of randomly selected reflections

404 that were not included in the refinement.

Figure	Cell	Indicator or FP	Microscope	Objective	Excitation	Emission	Frame interval
2a	HEK293T	GCaMP6s, cAMPr,	IX83	20 × 0.75 NA	480/30 nm	530/30 nm	-
2c	HEK293T	G-Flmap1,	IX83	60 × 1.35 NA	441/20 nm	530/30 nm	15 s
2d-e	HEK293T	G-Flamp1-mut G-Flamp1	IX83	60 × 1.35 NA	441/20 nm	530/30 nm	15 s
2d-e	HEK293T	cAMPr, Flamindo2	IX83	60 × 1.35 NA	480/30 nm	530/30 nm	15 s
2d-e	HEK293T	Pink Flamindo, R-FllincA	IX83	60 × 1.35 NA	568/20 nm	630/50 nm	15 s
2f-g	HEK293T	G-Flamp1	IX83	60 × 1.35 NA	441/20 nm	530/30 nm	15 s
2h-i	Cultured mouse cortical neurons	G-Flamp1	IX83	20×0.75 NA	441/20 nm	530/30 nm	15 s
3d-f	Fly Kenyon cells	G-Flamp1, GFP	Olympus FV1000	25 × 1.05 NA	930 nm	495-540 nm	0.15 s (odor puff) 0.15 s (electrical shock) 1 s (Fsk
4b-d	Mouse cortical neurons <i>in</i>	G-Flamp1, G-Flamp1-mut	Bruker Ultima Investigator	16 × 0.8 NA	920 nm	490-560 nm	perfusion) 0.67s
4b-d	Mouse cortical neurons in	jRGEC01a	Bruker Ultima Investigator	16 × 0.8 NA	920 nm	570-620 nm	0.67s
S1b	HEK293T	cAMPr, Flamindo2	IX83	60 × 1.35 NA	480/30 nm	530/30 nm	15 s
S1b	HEK293T	Pink Flamindo, R-Flinc A	IX83	60 × 1.35 NA	568/20 nm	630/50 nm	15 s
S1d	HEK293T	R-FlincA	IX83	60 × 1.35 NA	568/20 nm	630/50 nm	-
S12a	HEK293T	Flamindo2, cAMPr, G-Flamp1	Nikon-TI two-photon	25 × 1.4 NA	920 nm	495-532 nm	-
S12b-d	НЕК293Т	Flamindo2, cAMPr, G-Flamp1	microscope Nikon-TI two-photon microscope	25 × 1.4 NA	920 nm	495-532 nm	5 s
S14a	HeLa	G-Flamp1	IX83	60 × 1.35 NA	441/20 nm	530/30 nm	15 s
S14b	СНО	G-Flamp1	IX83	60 × 1.35 NA	441/20 nm	530/30 nm	15 s
S16	НЕК293Т	G-Flamp1	IX83	60 × 1.35 NA	480/30 nm	530/30 nm	15 s
S16	НЕК293Т	G-Flamp1	IX83	60 × 1.35 NA	441/20 nm	530/30 nm	15 s
S17	HEK239T	G-Flamp1, G-Flamp1-mut	Leica TSC SP8 two- photon	25 × 0.95 NA	920 nm	495-550 nm	-
S18	HEK293T	G-Flamp1	IX83	60 × 1.35 NA	441/20 nm	530/30 nm	15 s
S18	HEK293T	Green cGull	IX83	60 × 1.35 NA	480/30 nm	530/30 nm	15 s
S19	Cultured mouse cortical neurons	G-Flamp1	IX83	20×0.75 NA	441/20 nm	530/30 nm	15 s
S20b-d	Zebrafish cells <i>in vivo</i>	G-Flamp1, G-Flamp1-mut	Olympus BX61WI two-photon microscope	25 × 1.05 NA	960 nm	495-540 nm	1 s

405 Supplementary Table 5 Key parameters for fluorescence imaging data collection.

3. Supplementary References

408	1.	Dana, H. et al. High-performance calcium sensors for imaging activity in neuronal
409		populations and microcompartments. <i>Nature Methods</i> 16 , 649-657 (2019).
410	2.	Jiang, J.Y., Falcone, J.L., Curci, S. & Hofer, A.M. Interrogating cyclic AMP
411		signaling using optical approaches. Cell Calcium 64, 47-56 (2017).
412	3.	Klausen, C., Kaiser, F., Stüven, B., Hansen, J.N. & Wachten, D. Elucidating
413		cyclic AMP signaling in subcellular domains with optogenetic tools and
414		fluorescent biosensors. Biochemical Society Transactions 47, 1733-1747 (2019).
415	4.	Dikolayev, V., Tuganbekov, T. & Nikolaev, V.O. Visualizing Cyclic Adenosine
416		Monophosphate in Cardiac Microdomains Involved in Ion Homeostasis. Front
417		<i>Physiol</i> 10 , 1406 (2019).
418	5.	Massengill, C.I. et al. Highly sensitive genetically-encoded sensors for population
419		and subcellular imaging of cAMP in vivo. Preprint at bioRxiv
420		https://www.biorxiv.org/content/10.1101/2021.08.27.457999v1 (2021).
421		