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Supplemental Methods Fig.1 Comprehensive bioinformatical analysis flow diagram. 19 

SnATAC-sequencing was applied to cryopreserved frontal cortex samples from deceased 20 
PSP, CBD, and Ctrl individuals. Raw sequencing reads were preprocessed with Snaptools 21 
and SnapATAC. The resulting matrices were then used (i) for graph-based clustering and 22 
cell type inference (using a binned genome), and (ii) for peak-calling, GO, and TF-motif 23 
analysis (using the peak matrix). Furthermore, the peak matrix was subjected to GWAS risk 24 
variant-association with cell types.   25 
Downstream, only the astrocytic cluster was investigated (boxed lower part) to find altered 26 
TF motif enrichment (TFME) in pairwise comparisons (mid panel), TFME changes along 27 
pseudotime trajectories (left), and to train an ML-based disease classifier (right). Finally, 28 
significant results from all these three branches were integrated, and refined by a TA-29 
associated TF profile extracted from an external dataset, to define either a general 30 
astrocytic tauopathy TF signature, or entity-specific astrocytic TF signatures. These 31 
signatures were presumed to mirror the neuropathological context of characteristic pTau 32 
inclusions in astrocytes, namely TA in PSP and AP in CBD. Names of algorithms employed 33 
in this analysis are given in bold italic in the upper left corner of each panel.  34 
Abbreviations: AP, astrocytic plaque; GO, gene ontology; GWAS, genome wide 35 
association studies; ML, machine learning; pTau; hyperphosphorylated Tau; RTN, 36 
Reconstruction of Transcriptional Networks; TA, tufted astrocyte; TFME, transcription factor 37 
motif enrichment. 38 
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Analysis of snATAC-seq data 39 

snATAC-seq data pre-processing, peak calling, and peak matrix construction 40 

Raw sequencing reads in *.bcl-format were de-multiplexed into *.fastq using the 10x 41 

Genomics™ cellranger-atac-1.2.0 software with cellranger-atac mkfastq. 42 

Subsequently, cellranger-atac count was executed on single-sample fastq-files to 43 

generate general QC metrics and sequence alignment maps in *.bam format according to 44 

the reference data (10x Genomics-indexed genome hg19/GRCh37.87 (hg19), 45 

https://cf.10xgenomics.com/supp/cell-atac/refdata-cellranger-atac-hg19-1.2.0.tar.gz). The 46 

cellranger-atac output allowed a primary QC of each sample regarding sequencing 47 

metrics, included cells, insert sizes, targeting metrics, and library complexity.  48 

Next, these quality assessment values were set to define exclusion criteria for single 49 

barcode (assigned cell)-fragment vectors, so that only those barcoded cells remained, 50 

whose fragments reached a mapping quality score (MAPQ) of at least 30, did not exceed 51 

the length of 1000 bp, had a coverage of at least 500, and which satisfied correctly paired 52 

ends on the basis of alignment flags. Incorporating these QC parameters, the snaptools 53 

snap-pre function [1] generated a Single-Nucleus Accessibility Profiles file (.snap). After 54 

generating a cell-by-bin matrix with snaptools snap-add-bmat (window size: 1000 bp) 55 

within each snap-file, downstream analysis was continued in an RStudio Server/R3.6 56 

environment by importing and instantiating the <sample>.snap objects. A final QC measure 57 

followed to restrict the inclusion in terms of unique fragment counts (3 <= UMI <= 6) and 58 

fragments/promoter ratio (.1 <= ratio <= .7). 59 

SnapATAC: quality control, clustering, and cell type identification  60 

We utilized the R package SnapATAC [2] to perform matrix binarization, clustering, 61 

differential accessibility, GO, and TFM analysis on the preprocessed snATAC-seq data. 62 

Single sample datasets were preprocessing before merging into a single, all samples 63 

comprising snap-file, followed by downstream matrix manipulation. Therefore, the entire 64 

genome was binned into 1000 bp-large segments and binary normalized, which had been 65 

shown to biologically and computationally improve clustering performance [3]. Fragments 66 

overlapping with regions present in the ENCODE blacklist [4] or the mitochondrial 67 

chromosome, or which represented the top 5% bins at transcription start sites were 68 

excluded, since those could systematically compromise subsequent steps. Dimensionality 69 

reduction and feature extraction was conducted by applying the diffusion maps algorithm in 70 

combination with Nyström density-based sampling (because of large sample sizes). 71 

Significant components were determined ad hoc and set as eigen dimensions in k-nearest 72 

https://cf.10xgenomics.com/supp/cell-atac/refdata-cellranger-atac-hg19-1.2.0.tar.gz
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neighbor clustering (kNN, k = 15, eigen dimensions = 1 to 25, Euclidean distance, resolution 73 

= 1). This graph-based approach was guided by the Leiden algorithm to find optimally 74 

connected communities/clusters [5]. The resulting cluster number showed a robust gap 75 

statistic of 0.943, when applied to a subset of 1,000 barcodes/cells and the top 3 quartiles 76 

of accessibility bins in a post hoc cluster validation (Suppl.Fig.1). This parameter describes 77 

the deviation of intra-cluster variation at different cluster sizes k from a randomly distributed 78 

reference data set and should be maximized. Subset size was determined by visual cluster 79 

purity, choosing the minimum cell number that resulted in overlapping cluster assignments 80 

(1,000 cells, Suppl.Fig.1). Downscaling was necessary due to the algorithm’s computing 81 

capacity. Barcodes were then embedded in two-dimensional (2D) space using uniform 82 

manifold approximation and projection (UMAP). Batch effects were levelled out by harmony 83 

[6] accounting for the assigned case identifiers (IDs) in the first 25 eigen dimensions. Thus, 84 

main technical confounders showed no specific enrichment within single clusters 85 

(Suppl.Fig.2A&B). In a sample-specific evaluation, sequencing, and biological covariates 86 

(e.g., unmapped reads, duplicate likelihood, low MAPQ, and promoter ratio, mitochondrial 87 

reads, blacklist region fragments) showed high correlations, but not with epidemiological 88 

covariates (age at death, PMI) (Suppl.Fig.2D).  89 

GA scores were calculated in SnapATAC and utilized to identify cluster-wise cell type 90 

identities. Reference marker genes for brain cell types were included from McKenzie et al. 91 

[7] and Lake et al. [8], and are provided with Suppl.Data01,T01. Visual inspection of 92 

projected GA scores on cells in UMAP guided cell type assignments (Suppl.Fig.3&4).  93 

SnapATAC: Peak calling, GO, and TFM analysis 94 

For peak calling, reads from cells of the same cluster (n > 100 cells) were aggregated first. 95 

Then, peaks were extracted for each cluster individually with MACS2, given the options --96 

nomodel --shift 75 --ext 150 --qval 5e-2 -B --SPMR. Considering this cluster-97 

wise peak-matrix as reference, the cell-by-peak matrix (pmat) was deduced from the 98 

merged peaks and the binarized matrix (bmat).   99 

To identify differentially accessible peaks among clusters, a kNN-based approach was 100 

followed, which accounted for a reference background to compare with in the local graph 101 

environment. Using SnapATAC’s implementation of edgeR’s (v3.18.1) differential analysis 102 

scoring, Benjamini-Hochberg (BH)-corrected p-values were read out for a biological 103 

coefficient of variation of 0.25 to identify differentially accessible regions (DARs). DARs in 104 

smaller clusters (n <= 100 cells) were detected for the top 2,000 peaks in a rank-based 105 

enrichment metric. Next, chromVAR-motif [9] was used to compute TFME from the peaks-106 
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input in the pmat, which resulted in a motif matrix (mmat; ref. genome hg19, minimum cells 107 

per peak = 10). With this approach, we found a total of 373,957 peaks and 386 TFMs. 108 

The rGREAT package [10] was applied on the DARs of each cluster to obtain GO term 109 

enrichment for molecular function (MF), biological process (BP), and cellular compartment 110 

(CC). BH-corrected p-value statements and corresponding binomial enrichment values 111 

were reported, as indicated in the figures.  112 

Astrocyte sub-clusters: Co-accessibility, pseudotime inference and TFME tracing 113 

To regress peak co-accessibility and to delineate single-nucleus accessibility pseudotime 114 

trajectories in astrocytes, we deployed the updated Cicero [11,12] version developed with 115 

Monocle3.  116 

First, a CellDataSet (cds) was created given the barcode vector and pmat from the 117 

astrocytes snap object. Then we followed single steps as described in the version-specific 118 

vignette of Cicero [12]. Briefly, we preprocessed the cds using principal component analysis 119 

(PCA) to obtain a reduced dimensionality of 50 (default) and regressed out batch effects 120 

with align_cds, taking the case IDs as covariate. Cells were embedded in 2D with UMAP 121 

and astrocytic subclusters detected with k-means clustering.  122 

For single-cell trajectory construction, functions from Cicero/Monocle3 to learn a trajectory 123 

graph was applied to a re-processed cds in UMAP for each disease entity separately, but 124 

while including Ctrl astrocytes as biological reference and origin of the trajectory. Root 125 

(‘origin’) cells were defined as the population with the highest TFME for EMX2, a 126 

developmentally early, astrocytic TF [13]. Epigenetic changes of TFME and GA along 127 

pseudotime were modeled separately using tradeSeq’s [14] fitGAM function for each 128 

disease-specific trajectory. Differences regarding start to end feature values and lineage 129 

associations were statistically tested with Wald-test-based functions. 130 

In order to discretize pseudotime steps, as depicted in Suppl.Fig.11, all cells were 131 

partitioned to one of 5 equally sized pseudotime bins. TFME scores were pairwise 132 

compared across those bins, where the first one was set as reference (Wilcoxon rank-sum 133 

test). 134 

Astrocytes sub-clusters: GO analysis and TFME comparisons 135 

GO assessment was applied on the UMAP embedding of astrocytes obtained from the 136 

previous Cicero-based dimensionality reduction. GO analysis of TF proteins was 137 

conducted with pathfindR. Binomial testing enrichment and p-values with BH-correction 138 

were reported. The same tool was used for analyzing relations of terms and proteins in the 139 
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bubble-connections graphs. To identify significant differences of active TFs between the 140 

three disease groups, pairwise comparisons of TFME medians was conducted, using a 141 

Wilcoxon rank-sum test and the BH method for multiple hypothesis correction. 142 

Quantification of protein degradation changes or microglial activation was enabled by the 143 

amiGO2 database (http://amigo.geneontology.org/amigo/search/bioentity) filtered for the 144 

terms ‘chaperon-mediated autophagy’ (CMA), ubiquitin-proteasome-system (UPS), and 145 

unfolded-protein-response (UPR) or ‘microglial cell activation’ in Homo sapiens. Gene lists 146 

were downloaded March 7th, or June 10th, 2021, respectively, and subjected to SnapATAC’s 147 

GA calculation. Then, disease- and cell type-wise mean GA values (of genes associated 148 

with one of these gene lists) were calculated for statistical comparison (Welch t-test). 149 

Modeling TF states, analyzing branch intersections and triangle plots 150 

To train machine learning classifiers, the astrocyte TFME matrix was first split into a train 151 

(80% of cells) and test (20% of cells) set. Then a decision tree-based modeling algorithm 152 

(extreme gradient boosting tree, XGB) was fit to the train set with a 3 times repeated 10-153 

fold cross validation control strategy in caret [15]. Predictive performance was measured on 154 

the test set in terms of overall accuracy and Cohen’s kappa as chance-corrected agreement 155 

measure in categorical problems [16]. The ML model explanation framework Lime [17] was 156 

used to learn an interpretable representation of the complex XGB by fitting multiple local 157 

linear models to the permuted predictions of the original model. Extracted feature weights 158 

from these simpler models were considered to describe the importance of each feature, 159 

namely TFMs, in favoring one of the group entities. 160 

To determine the intersections of TFs associated with either the trajectory changes, a 161 

disease group in the triangular comparison, the model’s feature importance, or with the 162 

appearance of TAs in PSP, upset plots were constructed with UpSetR [18]. 163 

Triangle plots were considered to extend volcano plots in differentiating a grouping identity 164 

against feature scores. In this approach, two columns (C, Cref) of the same feature (f) were 165 

stratified by disease entity (i) and their medians statistically evaluated against each other, 166 

where Cref was the median of the respective Ctrl subset (Wilcoxon rank-sum test, BH 167 

correction). Then the extent of absolute difference of medians between Ci,f  and Cref i,f was 168 

depicted as symbol size and the respective negative decadic logarithm of p-values was 169 

indicated as color code. The tips of the triangles finally show the direction of value change 170 

in the comparison of interest. 171 

http://amigo.geneontology.org/amigo/search/bioentity
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gchromVAR: risk variant enrichment analysis in snATAC-seq data 172 

We used gchromVAR [19,20] to asses single nucleus-resolved GWAS risk variant 173 

enrichment in the chromatin accessibility data set comprising all identified cell types and 174 

following the gchromVAR_vignette.Rmd. GWAS summary statistics for PSP 175 

(Orphanet_683), CBD (Orphanet_278), FTD (Orphanet_282), AD (EFO_0000249), PD 176 

(EFO_0002508), MSA (EFO_1001050), LBD (EFO_0006792), and ALS (EFO_0000253) 177 

were downloaded from the EBI-GWAS catalogue [21] January 7th, 2021. We used a pmat 178 

derivate depicting cluster- or cell type-wise peak sums from the previously assigned snap 179 

object and discarded empty or unmapped peak columns. Together with the genomic peak 180 

description table, a RangedSummarizedExperiment object was created. Then, GC bias was 181 

added, a measure introduced by the developers of chromVAR to account for background 182 

properties in the hg19 reference genome. By finding overlaps of the peak distributions in 183 

the dataset with risk variant annotations in the summary statistics, gchromVAR implements 184 

‘weighted deviations’ as z-scores to evaluate the extent of cell type-specific enrichment and 185 

provides Bonferroni-corrected p-values. 186 

Analysis of transcriptional regulatory networks in PSP 187 

Processed phenotype-gene expression regression data from bulkRNA-seq in temporal 188 

cortices (TCX) of PSP brains [22] were downloaded from 189 

https://link.springer.com/article/10.1007%2Fs00401-018-1900-5#SupplementaryMaterial 190 

(Table 04, Excel-file). Subject covariates with the accession doi:10.7303/syn3817650.5, as 191 

well as normalized gene-mapped read counts with the accession 192 

doi:10.7303/syn3607513.1 (MayoRNA-seq-Pilot PSP TCX) and doi:10.7303/syn4650265.4 193 

(MayoRNA-seq PSP TCX) were downloaded from the AMP-AD knowledge portal. During 194 

pre-processing of the primary data, 25,937 single transcripts from the MayoRNAseq Study 195 

[23] could be assigned to a total of 14,056 annotated Ensembl gene IDs using the hg19 196 

reference genome. Based on a consensus list of 1,590 human TFs [24], 1,097 TFs could 197 

be identified by their Ensembl IDs in the underlying expression data set. For network 198 

inference, only the PSP cohorts comprising 176 samples were used.  199 

For the Reconstruction of Transcriptional Regulatory Networks, input parameters were 200 

defined as follows: a named normalized gene expression matrix (gexp, n=176 PSP cases), 201 

a named character vector with gene identification codes of all human TFs [24], and a matrix 202 

with annotations to all matched gene identification codes (Illumina_ID; Ensemble Gene_ID, 203 

hg19 H. sapiens, v86; ‘Symbol’). The mutual information, a weighting of the interaction of 204 

each TF with all its possible target genes, was calculated from the gexp. After permutation 205 

https://link.springer.com/article/10.1007%2Fs00401-018-1900-5#SupplementaryMaterial
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(n = 1000, p-cut-off = 3.21-7) and bootstrapping, only robust regulon edges (corresponding 206 

to a TF-target gene connection) were retained. The established transcriptional network 207 

(tnet) comprised regulons and their binary inner single connection weighting (positive vs. 208 

negative).  209 

To assess regulon associations with phenotypic hallmarks in PSP, a numerical vector was 210 

included with gene-specific coefficients resulting from Pearson correlation between 211 

expression and neuropathological latent trait residual values representing the 212 

semiquantitative TA levels of PSP brains [22]. Using gene-set enrichment analysis (GSEA) 213 

with the Pearson coefficient and significant differentially expressed genes (DEG; adj.p-value 214 

<= .05), we obtained an enrichment score that reflected the accumulation of phenotype-215 

attributed DEGs in the inferred regulons. Resulting phenotype-associated regulons were 216 

filtered for their statistical significance in the comparison of regulon activities between PSP 217 

and Ctrl samples from the Allen et al. data set. Only those regulons with a BH-corrected p 218 

<=.05 in GSEA-1T and with a Bonferroni-corrected p<.05 in the PSP vs. Ctrl comparison of 219 

regulon activities were considered in downstream analysis parts.  220 

 221 
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1.  Abbreviations 283 

Abbreviation Term 

(q)PCR (Quantitative) polymerase chain reaction 

AD Alzheimer’s Disease 

ALS Amyotrophic Lateral Sclerosis 

Ast Astrocytes 

ATAC-seq Assay for Transposase-Accessible Chromatin using sequencing 

BH Benjamini-Hochberg 

bp Base pairs 

BP biological process 

CBD Corticobasal Degeneration 

CC cellular compartment 

CMA Chaperon-mediated autophagy 

CRE Cis-regulatory element 

DAR Differentially accessible region 

DEG Differentially expressed gene 

DNA Desoxyribonucleic acid 

FDR False discovery rate 

FTD Frontotemporal Dementia 

GA Gene accessibility 

Gb Giga bases 

GO Gene ontology 
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GSEA Gene-set enrichment analysis 

GWAS Genome-wide association study 

kNN k-nearest neighbor 

LSI latent semantic indexing 

LBD Lewy Body Dementia 

Lime Local interpretable model-agnostic explanations 

Log2-FC Binary logarithm fold-change 

MF molecular function 

ML Machine learning 

MSA Multiple System Atrophy 

PCA Principle component analysis 

PD Parkinson Disease 

PMI Post mortal interval 

PSP Progressive Supranuclear Palsy 

pTau Hyperphosphorylated Tau 

RAP Regulon activity profile 

RNA-seq Ribonucleotide acid sequencing 

RTN Reconstruction of transcriptional regulatory networks  

sn* Single nulcei 

TA  Tufted astrocyte 

TF(M)(E) Transcription factor (motif) (enrichment) 

UMAP Uniform Manifold Approximation and Projection 

UPR Unfolded protein response 

UPS Ubiquitin proteasome system 

XGB Extreme gradient boosting  
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