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SUMMARY 10

This supplementary material available at Biometrika online includes the statement and proof
of Proposition S1 and the proofs of Proposition 1, Lemmas 1–2, and Corollaries 1–3. The Gibbs
sampling algorithm, settings, and additional results of the simulations and ecology data analysis
are reported, including trace plots and a sensitivity analysis with respect to varying hyperparam-
eters. 15

S1. PROPOSITIONS AND PROOFS

PROPOSITION S1. Let ΠΛ ⊗ΠΣ denote the prior on (Λ,Σ). Let ΘΛ and ΘΣ denote the
sample spaces of the matrices Λ and Σ, respectively. If E(φjh) = E(φlh) for every h, l ∈
{1, . . . ,∞} and

∑∞
h=1E(γh) <∞, then, ΠΛ ⊗ΠΣ(ΘΛ ×ΘΣ) = 1.

Proof. Assume Σ ∈ ΘΣ and (Ψ,Λ) ∈ ΘΨ ×ΘΛ, with ΘΣ the set of p× p positive semi- 20

definite matrices with finite elements, and

ΘΨ ×ΘΛ =

{
Λ = (λjh), Ψ = (ψhh) :

∞∑
h=1

λjhψhhλsh <∞ ∀ j, s ∈ (1, . . . , p)

}
.

Due to independence, we can study the prior on Σ and Λ separately. The prior on Σ is defined
on the set of positive semi-definite matrices. Therefore, it is sufficient to prove that the elements
of ΛΨΛT are finite almost surely. Using Cauchy-Schwartz, it is straightforward to show that all 25

the entries of ΛΨΛT are finite if and only if
∑∞

h=1 ψhhλ
2
jh <∞ (j = 1, . . . , p). Let c satisfy

c > maxh=1,...,∞ ψhh. Since

E(λ2
jh) = E{E(λ2

jh | φjh, γh, τ0)} = E(φjh)E(γh)E(τ0),

and E(φjh) = E(φj1) (j = 1, . . . , p; h = 1, . . . ,∞), it is sufficient that
∑∞

h=1E(γh) <∞
to prove that

∑∞
h=1E(λ2

jh) = E(φj1)E(τ0)
∑∞

h=1E(γh) <∞ and then
∑∞

h=1 ψhhλ
2
jh < 30

c
∑∞

h=1 λ
2
jh <∞. �

Proof of Proposition 1. The trace of Ω is tr(Σ) + tr(ΛHΨHΛT
H) + tr(Λ∆H

Ψ∆H
ΛT

∆H
), where

Λ∆H
= Λ− ΛH and Ψ∆H

= Ψ−ΨH . Hence, it is equivalent to rewrite the probability of in-
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terest as

pr
{ tr(Λ∆H

Ψ∆H
ΛT

∆H
)

tr(Ω)
≥ 1− T

}
.

By Markov’s Inequality

pr
{ tr(Λ∆H

Ψ∆H
ΛT

∆H
)

tr(Ω)
≥ 1− T

}
≤ E

{ tr(Λ∆H
Ψ∆H

ΛT
∆H

)

tr(Ω)

}/
(1− T ).

The expected ratio of two random variables u and v is E(u/v) = cov(u, 1/v) + E(u)E(1/v),
which allows us to write E(u/v) ≤ E(u)E(1/v) if cov(u, 1/v) ≤ 0. Then, since the covariance
between tr(Λ∆H

Ψ∆H
ΛT

∆H
) and tr(Ω) is non-negative, the following inequality holds35

E

{ tr(Λ∆H
Ψ∆H

ΛT
∆H

)

tr(Ω)

}
≤ E{tr(Λ∆H

Ψ∆H
ΛT

∆H
)}E

(
1

tr(Ω)

)
.

The trace tr(Λ∆H
Ψ∆H

ΛT
∆H

) is equal to
∑p

j=1

∑∞
h=H+1 ψhhλ

2
jh. The variance of λjh is

E(λ2
jh) = E(φj1)E(γh)E(τ0). Let c satisfy c ≥ maxh=1,...,∞ ψhh. Since E(φj1) is finite and

E(γh) = abh−1 with a, b positive constants and b < 1, then

E{tr(Λ∆H
Ψ∆H

ΛT
∆H

)} ≤ cE(τ0)a
bH

1− b

p∑
j=1

E(φj1).

Since tr(Ω) = tr(ΛΨΛT) + tr(Σ), we know that tr(Ω) ≥
∑∞

h=1 ψhhλ
2
jh + σ2

j for any j in
1, . . . , p, where σ2

j is the j-th diagonal element of Σ. Then, for any j in 1, . . . , p, we obtain40

1

tr(Ω)
≤ 1∑∞

h=1 ψhhλ
2
jh + σ2

j

,

and, consequently,

E

{
1

tr(Ω)

}
≤ E

(
σ−2
j

)
, E

{
1

tr(Ω)

}
≤ E


( ∞∑
h=1

ψhhλ
2
jh

)−1
 .

Therefore, since mΩ = minj=1,...,p

[
E(σ−2

j ), E

{(∑∞
h=1 ψhhλ

2
jh

)−1
}]

<∞, then

pr
{

tr(ΛHΨHΛT
H) + tr(Σ)

tr(Ω)
≤ T

}
≤
(

1

1− T

)
a c

bH

1− b
mΩE(τ0)

p∑
j=1

E(φj1),

as stated by the Theorem. �

Proof of Lemma 1. Consistently with Proposition 2, (λjh | Λ−jh) has power law tail if (θjh |
Λ−jh) has power law tail. Furthermore, pr(|λjh| > λ | Λ−jh) has power law tail for large λ if and45

only if pr(|λjh| > λ | Λ−jh, θjh > 0) has power law tail and pr(θjh > 0 | Λ−jh) > 0. The latter
inequality is always true when the marginal pr(θjh > 0) is positive. To prove (θjh | Λ−jh) has
power law tail, we apply Lemma 3. We first focus on proving the lemma when φjh satisfies the
power law tail condition with τ0γh = wh. As the local scale φjh is independent from (Λ−jh, wh)
given βh, its conditional density is50

fφjh|wh,Λ−(jh)
(φ) =

∫
<
fφjh|βh(φ) fβh|wh,Λ−jh(β) dβ.
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As the tail conditions hold for any possible prior on β, we have

fφjh(φ) =

∫
<
fφjh|βh(x) f(β) dβ, fφjh(φ̃) ∝ φ̃−α, φ̃ = {φ : φ > l}, L� 0,

for any prior density f defined on <. Hence, (φjh | wjh,Λ−jh) is power law tail distributed. We
now focus on proving the lemma when τ0 or γh are power law tail distributed. Let r∗h = (rh |
rh > 0) and w∗jh = (wjh | wjh > 0), where rh is the scale parameter with power law tail and wh
is the product of the remaining two scale parameters, respectively. By Bayes’ Theorem 55

fr∗
h
|w∗
jh
,Λ−jh(r) =

fΛ−jh|w∗
jh
,r∗
h
(Λ−jh; r)fr∗

h
|w∗
jh

(r)

fΛ−jh|w∗
jh

(Λ−jh)
.

Since r∗h is independent fromw∗jh for any parameter scale, it is sufficient to prove that the function
fΛ−jh|w∗

jh
,r∗
h
(Λ−jh; r) decreases slower than c r−α, for c, α > positive constants, when r →∞.

Denoting Fτ0,φ11...φpk,γ1,...,γh−1,γh+1,...,γk|w∗
jh
,r∗
h

the probability measure for conditional density
fτ0,φ11...φpk,γ1,...,γh−1,γh+1,...,γk|w∗

jh
,r∗
h
, we can write

fΛ−jh|w∗
jh
,r∗
h
(Λ−jh; r) =

∫
fΛ−jh|τ0,φ11...φpk,γ1,...,γk(Λ−jh; r) dFτ0,φ11...φpk,γ1,...,γh−1,γh+1,...,γk|w∗

jh
,r∗
h
60

=

∫ ∏
(s,m) 6=(j,h)

fλsm|θsm(λsm; r) dFτ0,φ11,...,γk|w∗
jh
,r∗
h

= E

{ ∏
(s,m)6=(j,h)

fλsm|θsm(λsm; r)

∣∣∣∣ w∗jh, r∗h,Λ−jh}

The product inside the expectation is zero when there is a pair of indices (s,m) such that λsm 6= 0
and θsm = 0. However, since the probability pr(θsm = 0 | λsm 6= 0) = 0, we know that the ex-
pected value of the product between the functions fλsm|θsm(λsm; r), given w∗jh, r

∗
h,Λ−jh, is 65

strictly positive. We first focus on the case γh = rh and prove that fΛ−jh|w∗
jh
,γ∗
h
(Λ−jh; γ) de-

creases slower than cγ−α for c, α > 0. In this case, we can write the above expectation as

E

{ p∏
s=1,m 6=h

fk(λsm)
∏
s 6=j

fλsh|θsh(λsh; γ∗h)

∣∣∣∣ w∗jh, γ∗h,Λ−jh},
where

∏p
s=1,m 6=h fk(λsm) is a product between (k − 1)× p strictly positive random variables

that does not depend on w∗jh and γ∗h, while
∏
s 6=j fλsh|θsh(λsh; γ∗h) is a product between p strictly

positive random variables. In particular, if wsh = 0, then fλsm|θsh(λsh; γ∗h) = 1(λsh = 0). If 70

wsh > 0, then

fλsh|θsh(λsh; γ∗h) = (2πw∗shγ
∗
h)−0.5 exp

(
−

λ2
sh

2w∗shγ
∗
h

)
> (2πw∗shγ

∗
h)−0.5 exp

(
−

λ2
sh

2w∗sh

)
.

Therefore, the upper bound

fλsh|θsh(λsh; γ∗h) ≥

{
min{1, (2πw∗shγ

∗
h)−0.5}, if λsh=0

(2πw∗shγ
∗
h)−0.5 exp{−λ2

sh/(2w
∗
sh)} if λsh 6=0,
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holds with probability equal to 1. For γ > 1, we note that fλsh|θsh(λsh; γ) ≥ γ−0.5uλsh with

uλsh =

{
min{1, (2πw∗sh)−0.5}, if λsh = 0,

(2πw∗sh)−0.5 exp{−λ2
sh/(2w

∗
sh)} if λsh 6= 0.

Then,

E

{ ∏
(s,m)6=(j,h)

fλsm|θsm(λsm; γ∗h)

∣∣∣∣ w∗jh, γ∗h,Λ−jh} ≥75

E

{ p∏
s=1,m 6=h

fk(λsm)
∏
s 6=j

γ∗−0.5
h uλsh

∣∣∣∣ w∗jh, γ∗h,Λ−jh} =

γ
∗−0.5 (p−1)
h E

{ p∏
s=1,m6=h

fk(λsm)
∏
s 6=j

uλsh

∣∣∣∣ w∗jh,Λ−jh},
where the expectation is strictly positive and not depending on γh. Therefore, for γ sufficiently
large, fΛ−jh|w∗

jh
,γ∗
h
(Λ−jh; γ) ≥ cγ−α holds, with c, α > 0, so that (γh | wjh,Λ−jh) is power law

tail distributed. Similarly, if τ0 = rh (h = 1, . . . ,H),80

E

{ ∏
(s,m) 6=(j,h)

fλsm|θsm(λsm; τ∗0 ) | w∗jh, τ∗0 ,Λ−jh
}
≥

E

( ∏
(s,m)6=(j,h)

τ∗−0.5
0 uλsm | w∗jh, τ∗0 ,Λ−jh

)
=

τ
∗−0.5 (pH−1)
0 E

( ∏
(s,m)6=(j,h)

uλsm | w∗jh,Λ−jh
)
,

where

uλsm =

{
min{1, (2πw∗sm)−0.5}, if λsm = 0,

(2πw∗sm)−0.5 exp{−λ2
sm/(2w

∗
sm)}, if λsm 6= 0.

is strictly positive and does not depend on τ0. Then, if the number H of columns of ΛH is finite,
fΛ−jh|w∗

jh
,τ∗0

(Λ−jh; τ) ≥ cτ−α with c, α > 0 and τ sufficiently large, implying (τ0 | wjh,Λ−jh)

is power law tail distributed. Hence, if any of the scale parameters is power law tail distributed
for any prior on β, then its distribution, conditionally on Λ−jh and on the product of the other
two parameters, is power law tail distributed and, as a consequence, (λjh | Λ−jh) is power law
tail distributed. Since fλjh|Λ−jh(λ) ≥ c|λ|−α for certain c, α positive constants and |λ| > L suf-
ficiently large, in the same settings, we can write

fλjh|Λ−(jh)
(λ) = c|λ|−α{1 + t(|λ|)},

where t(|λ|) is a positive function. Then,85

∂[log{fλjh|Λ−(jh)
(λ)}]

∂λ
= −α

λ
+
∂t(λ)

∂λ
for λ > L and L� 0,

∂[log{fλjh|Λ−(jh)
(λ)}]

∂λ
=
α

λ
+
∂{−t(λ)}

∂λ
for λ < −L and L� 0,
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We now consider the sign of the derivative of t(|λ|). If t(|λ|) is not decreasing,

∂[log{fλjh|Λ−(jh)
(λ)}]

∂λ
≥ −α

λ
, for λ > L and L� 0,

∂[log{fλjh|Λ−(jh)
(λ)}]

∂λ
≤ α

λ
, for λ < −L and L� 0, 90

whereas if t(|λ|) is decreasing, its derivative goes to zero when |λ| goes to infinity. Therefore,

∂[log{fλjh|Λ−(jh)
(λ)}]

∂λ
≥ f ′lb(λ) for λ > L and L� 0,

∂[log{fλjh|Λ−(jh)
(λ)}]

∂λ
≤ −f ′lb(|λ|) for λ < −L and L� 0,

where f ′lb(λ) < 0 ∀λ > 0 and limλ→∞ f
′
lb(|λ|) = 0. The proof is concluded by using this result

along with the fact that fλjh|Λ−(jh)
(|λ|) is decreasing when λ→∞, 95

∂[log{fλjh|Λ−(jh)
(λ)}]

∂λ
≤ 0 for λ > L and L� 0

∂[log{fλjh|Λ−(jh)
(λ)}]

∂λ
≥ 0 for λ > −L and L� 0,

showing that the limit of the derivative for |λ| → ∞ is equal to zero. �

Proof of Lemma 2. In both the multiplicative gamma process and cumulative shrinkage pro-
cess, priors on Λ are exchangeable within columns, that is pr(|λjh| > ε | γh, τ0) = ζεh does not 100

depend on j. Then, the prior density of |suppε(λh)|, conditionally on γh and τ0 is a priori dis-
tributed as a sum of independent and identically distributed Bernoulli random variables Ber(ζεh).
Furthermore, ζεh does not depend on p. By applying the Chernoff’s method, we obtain

pr{|suppε(λh)| < asp | γh, τ0} ≤ exp
{
atsp + pζεh(e−t − 1)

}
,

for any t > 0 and with 1− e−t > 0. Hence,

pr{|suppε(λh)| > asp | γh, τ0} ≥ 1− exp[−p{(1− e−t)ζεh − atsp/p}],

where the limit of the lower bound is limp→∞ 1− exp[−p{(1− e−t)ζεh − atsp/p}] = 1, which 105

concludes the proof. �

Proof of Corollary 1. i. It is sufficient to prove the conditions required by Theorem 1. We have
E(γh) = E(ϑh)E(ρh) = E(ρh) bθ/(aθ − 1), where

E(ρh) = 1−
h∑
l=1

E(wl) = 1−
h−1∑
l=1

E(wl)− E(wh) = E(ρh−1)− E(wh).

Since the random variable wl is obtained as a product of positive random variables, E(wl) > 0
for every l = 1, . . . , h. Therefore E(γh) < E(γh−1) for each h = 2, . . . ,H . 110

ii. It is sufficient to prove the conditions required by Proposition 1. It is straightforward to
verify E(τ0) = 1 and E(φjh) ≤ 1 for j = 1, . . . , p and h = 1, . . . ,∞. The column scale expec-
tation is

E(γh) = E(ϑh)

(
α

1 + α

)(
α

1 + α

)h−1

,
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which can be written in a form abh−1. The elements σ−2
j are gamma distributed guaranteeing

finite expectation for all j = 1, . . . , p. �115

Proof of Corollary 2. It is sufficient to prove the conditions required by Theorem 2. The prob-
ability density function of the column scale γh (h = 1, 2, . . .) of the structured increasing shrink-
age prior evaluated at a certain γ > 0 is

fγh(γ) = pr(ρh = 1)fϑh(γ) ∝ γ−aθ−1 exp(−bθ/γ),

where fϑh(γ) is the inverse gamma probability density function evaluated at γ. The function
γ−aθ−1 exp(−bθ/γ) is of order O(γ−aθ−1) as γ goes to infinity. Since aθ > 0, we conclude120

that the column scale γh is power law tail distributed. The independence between γh and βh
(h = 1, 2, . . .) guarantees that the latter result hold for any possible prior distribution fβ on β.�

Proof of Corollary 3. It is sufficient to prove the conditions required by Theorem 3. The
structured increasing shrinkage prior is such that, for every j = 1, . . . , p and h ≥ 1, we have
g(xTj βh) ≤ cp < 1. The proof is obtained under the assumption cp = O{log(p)/p}. �125

S2. SIMULATION EXPERIMENTS

S2.1. Gibbs sampler for structured increasing shrinkage model for Gaussian data
We can rewrite the model for yij for the specific case of the structured increasing shrinkage

process and Gaussian data as

yij =
∞∑
h=1

√
ρh
√
φjh λ

∗
jhηih + εij λ∗jh ∼ N(0, ϑh),

where λ∗jh is a continuous random variable and we let βmh ∼ N(0, σ2
β). The notation (x | −) de-130

notes the full conditional distribution of x conditionally on everything else. Given H the number
of factors of the truncated model, the sampler cycles through the following steps.

Step S1. Update, for i = 1, . . . , n, the factor ηi according to the posterior full conditional

(ηi | −) ∼ NH

{
(IH + ΛT

HΣ−1ΛH)−1ΛT
HΣ−1yi, (IH + ΛT

HΣ−1ΛH)−1
}
.

Step S2. Update, for j in 1, . . . , p, the elements of Σ, by sampling

(σ−2
j | −) ∼ Ga

{
aσ +

n

2
, bσ +

1

2

n∑
i=1

(yij − λT
j ηi)

2

}
.

Step S3. Update βh (h = 1, . . . ,H) exploiting the Pólya-Gamma data-augmentation strategy135

(Polson et al., 2013) and the decompostition φjh = φ
(L)
jh φ

(C)
jh , with φ(L)

jh φ
(C)
jh independent a priori

and distributed as Ber{logit−1(xT
j βh)} and Ber(cp), respectively.

Substep S3.1. Update φ(L)
jh , for j = 1, . . . , p and h = 1, . . . ,H , setting φ(L)

jh = 1 if φjh = 1
and sampling from the full conditional distribution

pr(φ(L)
jh = l) ∝

{
1− logit−1(xT

j βh) for l = 0,

logit−1(xT
j βh)(1− cp) for l = 1,

if φjh = 0.140
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Substep S3.2. Let f(y) ∝
∑∞

n=0(−1)nAn(2πy3)−0.5 exp{−(2n+ b)2(8y)−1 − 0.5c2y}
indicate the probability density function of a Pólya-Gamma distributed random variable
y ∼ PG(b, c). For each h = 1, . . . ,H , generate p independent random variables dj(h) sampling
from the full conditional distribution (dj(h) | −) ∼ PG(1, xT

j βh). Let D(h) denote the p× p 145

diagonal matrix with entries dj(h) (j = 1, . . . , p).

Substep S3.3. Define the q × q diagonal matrix B = σ2
βIq. For each h = 1, . . . ,H , update

βh sampling from

(βh | −) ∼ Nq{(xTD(h)x+B−1)−1(xTκh), (xTD(h)x+B−1)−1},

where κh is a p-dimensional vector with the j-th entry equal to φ(L)
jh − 0.5. 150

Step S4. Update the elements λ∗jh by sampling from the independent full conditional posterior
distributions of the row vectors λ∗j = (λ∗j1, . . . , λ

∗
jH), for j = 1, . . . , p,

(λ∗j | −) ∼ NH

{
(D−1 + σ−2

j ηT

(j)η(j))
−1σ−2

j ηT

(j)y
(j), (D−1 + σ−2

j ηT

(j)η(j))
−1
}
,

where η(j) is the n×H matrix such that the generic element is η(j)ih = ηih
√
ρh
√
φjh, D−1 =

diag(ϑ−1
1 , . . . , ϑ−1

H ) and y(j) = (y1j , . . . , ynj)
T. Set λjh = λ∗jh

√
ρh
√
φjh. 155

Step S5. Update the column scales γh (for h = 1, . . . ,H), following the substeps below and
setting γh = ϑhρh. Consistently with Legramanti et al. (2020), define the independent indicators
zh (h = 1, . . . , p) with prior pr(zh = l) = wl.

Substep S5.1. Update the augmented data zh by sampling from the full conditional distribu-
tion 160

pr(zh = l) ∝

{
wl
∏n
i=1

∏p
j=1N(yij ;µ

(0)
ijh, σ

2
j ) for l = 1, . . . , h

wl
∏n
i=1

∏p
j=1N(yij ;µ

(1)
ijh, σ

2
j ) for l = h+ 1, . . . ,H,

(S1)

where N(x;µ, σ2) indicates the Gaussian probability density function with mean
µ and variance σ2. The mean values µ

(0)
ijh and µ

(1)
ijh are defined according to

µ
(z)
ijh =

∑H
l 6=h
√
ρl
√
φjlλ

∗
jlηil +

√
z
√
φjhλ

∗
jhηih. Set ρh = 1 if zh > h, else ρh = 0.

Substep S5.2. For h = 1, . . . ,H , update ϑ−1
h sampling from Ga(aθ + 0.5p, bθ + 165

0.5
∑p

j=1 λ
∗ 2
jh ).

Substep S5.3. For l = 1, . . . ,H − 1, sample vl from

(vl | −) ∼ Be
{

1 +

H∑
h=1

1(zh = l), α+ 1(zh > l)
}
,

set vH = 1 and update wl = vl
∏l−1
m=1(1− vm), for l = 1, . . . ,H .

170
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Table S1: Median and interquartile range of the LPML, Cov. MSE and of E(Ha | y) computed
in 25 replications assuming Scenario b and several combinations of (p, k, s)

(p, k, s) MGP CUSP SIS
Q0.5 IQR Q0.5 IQR Q0.5 IQR

LPML (16,4,0.6) -28.20 0.33 -28.20 0.33 -28.17 0.32
(32,8,0.4) -56.95 0.53 -57.00 0.51 -56.80 0.49

(64,12,0.3) -111.35 0.70 -111.71 0.74 -110.76 0.89
(128,16,0.2) -211.65 0.74 -215.94 1.57 -210.19 0.86

Cov. MSE (16,4,0.6) 0.25 0.12 0.25 0.12 0.23 0.10
(32,8,0.4) 0.32 0.08 0.33 0.10 0.30 0.12

(64,12,0.3) 0.37 0.10 0.43 0.11 0.22 0.09
(128,16,0.2) 0.23 0.03 0.32 0.04 0.09 0.01

E(Ha | y) (16,4,0.6) 8.91 1.52 4.00 0.00 4.00 0.00
(32,8,0.4) 11.27 1.48 7.00 1.00 8.00 0.00

(64,12,0.3) 14.72 1.49 11 .00 0.00 12.00 0.00
(128,16,0.2) 17.16 0.81 12.00 1.75 16.00 0.00

LPML, logarithm of the pseudo-marginal likelihood; Cov. MSE, covariance mean squared error; CUSP, cumulative
increasing shrinkage process; MGP, multiplicative gamma process; SIS, structured increasing shrinkage process;
Q0.5, median; IQR, interquartile range.

Step S6. Update independently the local scales, for j = 1, . . . , p and h = 1, . . . ,H , by sam-
pling from the full conditional distributions

pr(φjh = u) ∝

{
{1− logit−1(xT

j βh) cp}
∏n
i=1N(yij ;µ

(u)
ijh, σ

2
j ) for u = 0

logit−1(xT
j βh) cp

∏n
i=1N(yij ;µ

(u)
ijh, σ

2
j ) for u = 1.

with µ(u)
ijh =

∑H
l 6=h
√
ρl
√
φjlλ

∗
jlηil +

√
ρh
√
uλ∗jhηih.

S2.2. Simulation settings
The results reported in Section 4 are obtained running the algorithms for 25000 iterations175

discarding the first 10000 iterations. Then, we thin the Markov chain, saving every 5-th sample.
We adapt the number of active factors at iteration t with probability p(t) = exp(−1− 5 10−4t).
We set aσ = 1 and bσ = 0.3. In the structured increasing shrinkage algorithm, we choose the
offset constant cp = 2e log(p)/p which belongs to (0, 1) for every p ≥ 15.

In scenario d, the meta covariates in matrix x0 are a categorical variable with four balanced180

categories, a continuous variable sampled from a multivariate Gaussian distribution, and a con-
tinuous variable where the p elements are sampled from p gamma distributions.

To infer the structural zeros within each column of Λ in the cumulative shrinkage process and
in the multiplicative gamma process, we set λjh to zero when |λjh| (j = 1, . . . , p) is under a
certain threshold. We choose the threshold equal to 0.05, which is consistent with the value of185

the hyperparameter θ∞ used in the cumulative shrinkage process.
To address column order ambiguity and label switching, we compute the mean classification

error only after having ordered the columns of Λ(t) (for t = 1, . . . , S), for each model, increas-
ingly with respect to the number of zero entries identified.

S2.3. Simulation results190

We report additional results for the simulation study of Section 4 of the main paper.
In scenario b, we also apply the method proposed by Ročková & George (2016), which is

referred to as parameter expanded likelihood expected maximization. Hyperparameters are set
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Table S2: Median and interquartile range of the Cov. MSE and CE computed applying the
parameter expanded likelihood expected maximization method of Ročková & George (2016) in

25 replications under Scenario b and several combinations of (p, k, s)

(p, k, s) Cov. MSE CE
Q0.5 IQR Q0.5 IQR

(16,4,0.6) 0.55 0.16 0.77 0.14
(32,8,0.4) 0.66 0.11 0.76 0.10

(64,12,0.3) 0.64 0.11 0.90 0.10
(128,16,0.2) 0.42 0.03 1.06 0.20

Cov. MSE, covariance mean squared error; CE, classification error;
PXLEM, parameter expanded likelihood expected maximization; Q0.5,
median; IQR, interquartile range.

Table S3: Median and interquartile range of the LPML, Cov. MSE, E(Ha | y) and MCE com-
puted in 25 replications assuming Scenario c and several combinations of (p, k, s)

(p, k, s) MGP CUSP SIS
Q0.5 IQR Q0.5 IQR Q0.5 IQR

LPML (16,4,0.6) -27.62 0.24 -27.62 0.25 -27.59 0.24
(32,8,0.4) -56.16 0.64 -56.22 0.51 -55.89 0.59

(64,12,0.3) -109.64 0.69 -110.67 0.71 -109.06 0.65
(128,16,0.2) -209.57 0.88 -214.19 1.76 -208.34 1.04

Cov. MSE (16,4,0.6) 0.30 0.10 0.29 0.09 0.26 0.11
(32,8,0.4) 0.77 0.26 0.72 0.18 0.80 0.43

(64,12,0.3) 1.01 0.35 0.94 0.21 1.20 1.22
(128,16,0.2) 0.78 0.18 0.87 0.21 0.35 0.48

E(Ha | y) (16,4,0.6) 8.38 1.80 3.44 1.00 4.00 0.00
(32,8,0.4) 10.38 1.12 5.05 0.91 8.00 1.00

(64,12,0.3) 13.67 1.20 8.00 0.92 12.00 0.00
(128,16,0.2) 16.56 0.83 9.00 0.00 16.00 0.00

MCE (16,4,0.6) 0.98 0.17 0.53 0.20 0.24 0.06
(32,8,0.4) 0.65 0.07 0.44 0.08 0.19 0.07

(64,12,0.3) 0.59 0.04 0.48 0.04 0.18 0.06
(128,16,0.2) 0.48 0.02 0.44 0.01 0.06 0.10

LPML, logarithm of the pseudo-marginal likelihood; Cov. MSE, covariance mean squared error; MCE, mean
classification error; CUSP, cumulative increasing shrinkage process; MGP, multiplicative gamma process; SIS,
structured increasing shrinkage process; Q0.5, median; IQR, interquartile range.

as suggested by the authors. This approach focuses on finding a sparse mode based on an over-
parameterized factor model. The performance in terms of mean squared error in covariance esti- 195

mation and classification error in detecting sparsity in Λ is reported in Table S2. The results are
not competitive with the other approaches we have considered.
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Table S4: Median and interquartile range of the LPML, Cov. MSE, E(Ha | y) and MCE com-
puted in 25 replications assuming Scenario d and several combinations of (p, k, s)

(p, k, s) MGP CUSP SIS SISmc
Q0.5 IQR Q0.5 IQR Q0·5 IQR Q0.5 IQR

LPML (16,4,0.6) -27.74 0.43 -27.75 0.43 -27.71 0.40 -27.73 0.40
(32,8,0.4) -56.25 0.69 -56.35 0.72 -56.16 0.68 -56.12 0.65

(64,12,0.3) -109.72 0.61 -110.54 0.88 -109.27 0.46 -109.16 0.57
(128,16,0.2) -209.60 0.48 -213.50 1.21 -208.11 0.42 -208.03 0.47

Cov. MSE (16,4,0.6) 0.31 0.11 0.30 0.14 0.28 0.14 0.27 0.16
(32,8,0.4) 0.70 0.25 0.71 0.18 0.75 0.22 0.79 0.78

(64,12,0.3) 1.03 0.43 0.91 0.29 1.51 0.59 1.16 0.84
(128,16,0.2) 0.93 0.49 0.90 0.33 1.49 1.21 1.28 1.81

E(Ha | y) (16,4,0.6) 8.60 0.64 3.96 0.80 4.00 0.00 4.00 0.00
(32,8,0.4) 10.71 1.24 5.75 1.00 7.00 1.00 8.00 0.00

(64,12,0.3) 13.93 1.37 8.00 0.92 12.00 0.00 12.00 0.00
(128,16,0.2) 16.56 0.88 9.00 0.00 16.00 1.00 16.00 1.00

MCE (16,4,0.6) 0.94 0.13 0.64 0.19 0.26 0.08 0.23 0.13
(32,8,0.4) 0.67 0.10 0.49 0.09 0.20 0.08 0.20 0.10

(64,12,0.3) 0.58 0.05 0.47 0.04 0.21 0.06 0.21 0.08
(128,16,0.2) 0.49 0.02 0.43 0.02 0.18 0.11 0.17 0.11

LPML, logarithm of the pseudo-marginal likelihood; Cov. MSE, covariance mean squared error; MCE, mean classi-
fication error; CUSP, cumulative increasing shrinkage process; MGP, multiplicative gamma process; SIS, structured
increasing shrinkage process; SISmc, structured increasing shrinkage process with meta covariates; Q0.5, median;
IQR, interquartile range.
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Fig. S1: Boxplots of the logarithm of the pseudo-marginal likelihood for all combinations (p, k) in scenario a (top left
panel) and scenario b (top right panel), of the covariance mean square error in scenario a (bottom left panel), and of
the mean classification error in scenario b (bottom right panel). LPML, logarithm of the pseudo-marginal likelihood;
Cov. MSE, covariance mean squared error; MCE, mean classification error; CUSP, cumulative increasing shrinkage

process; MGP, multiplicative gamma process; SIS, structured increasing shrinkage process.



12 L. SCHIAVON ET AL

−28.5

−28.0

−27.5

−27.0

MGP CUSP SIS

(16,4,0.6)

LPML

−57.0

−56.5

−56.0

−55.5

MGP CUSP SIS

(32,8,0.4)

−112

−111

−110

−109

MGP CUSP SIS

(64,12,0.3)

−215.0

−212.5

−210.0

−207.5

MGP CUSP SIS

(128,16,0.2)

0.4

0.8

1.2

1.6

MGP CUSP SIS

(16,4,0.6)

MCE

0.2

0.4

0.6

0.8

MGP CUSP SIS

(32,8,0.4)

0.2

0.4

0.6

MGP CUSP SIS

(64,12,0.3)

0.1

0.2

0.3

0.4

0.5

MGP CUSP SIS

(128,16,0.2)

Scenario c

−28.5

−28.0

−27.5

−27.0

MGP CUSP SIS SIS mc

LPML

−57.5

−57.0

−56.5

−56.0

−55.5

−55.0

MGP CUSP SIS SIS mc

−112

−111

−110

−109

−108

MGP CUSP SIS SIS mc

−215.0

−212.5

−210.0

−207.5

MGP CUSP SIS SIS mc

0.0

0.3

0.6

0.9

1.2

MGP CUSP SIS SIS mc

MCE

0.2

0.4

0.6

0.8

MGP CUSP SIS SIS mc

0.2

0.4

0.6

MGP CUSP SIS SIS mc

0.1

0.2

0.3

0.4

0.5

MGP CUSP SIS SIS mc

Scenario d
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Supplementary material generalized infinite factorization 13

S2.4. Simulation study of sensitivity to hyperparameters and truncation level
We conduct further simulation experiments to assess the impact of some hyperparameters on

relevant prior and posterior summaries. Figure S3 displays the prior distribution, obtained sim- 200

ulating 10,000 samples from the prior, of the proportion of variance explained by the structured
increasing shrinkage factor model for varying α, {E(σ−2), var(σ−2)}, and {E(ϑ−1

h ), var(ϑ−1
h )}.

The hyperparameter α, representing the expected number of factors, positively affects the pro-
portion of explained variance. The influence of the hyperparameters regulating the distribution
of ϑh is even clearer, with concentrated prior on a large value of E(ϑ−1), inducing a smaller 205

proportion of variance explained by the factor model. The role of {E(σ−2), var(σ−2)} is less
clear, but suggests that sufficiently large mean and variance can guarantee higher flexibility.

The latter comment is confirmed by the study of the impact of α and {E(σ−2), var(σ−2)}
on the posterior bound of the truncation error and on the posterior distribution of the pro-
portion of variance explained by the factor model. Specifically, we generate synthetic data 210

sets with n = 100 observations with dimension p = 50 from the Gaussian linear factor model
yi ∼ Np(0,Λ0ΛT0 + Ip), with Λ0 a sparse p× k matrix with k = 50. We randomly set two thirds
of the elements of Λ0 equal to zero, drawing the non zero elements from a Gaussian distribution
with mean zero and variances θh sampled from an inverse gamma distribution θ−1

h ∼ Ga(2, 2).
We keep the number of active factors H fixed at 50, and set aθ = bθ = 2 and cp = 2e log(p)/p. 215

We run the Gibbs algorithm for the structured increasing shrinkage model for 15000 iterations,
discarding the first 5000 iterations. Then, we thin the Markov chain, saving every 5-th sample.

In Figure S4 the sampled posterior distribution of the proportion of variance explained by
the factor model tr(ΛΛT)/tr(Ω) is reported for varying α and {E(σ−2), var(σ−2)}. The same
proportion computed on the matrices generating the data is tr(Λ0ΛT

0 )/tr(Ω0) = 0.966, with Ω0 = 220

Λ0ΛT
0 + I50. A sufficiently concentrated prior on a large value of E(σ−2) seems more suitable

to model such data, even if we have incorrect expectations on the number of factors, i.e. α set
small.

Figure S5 displays the Monte Carlo approximation of the posterior probability of trun-
cation error pr{tr(ΩH)/tr(Ω) < T} for different values of H and T and varying α and 225

{E(σ−2), var(σ−2)}. If Λ0 is sparse, a small value of α induces good approximations even with
H smaller than the true number of factors. The inferred sparsity pattern in Λ is robust to the prior
distribution for σ−2.
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Fig. S3: Boxplots of the prior proportion of variance explained by the factor model tr(ΛΛT)/tr(Ω). The quantity is
obtained simulating 10,000 samples from the prior distribution with varying values of the parameters. The horizontal
axis characterize the effect of {E(σ−2), var(σ−2)}; differences for α ∈ (5, 10, 20) are reported in each column;

differences for {E(ϑ−1), var(ϑ−1)} ∈ {(2, 2), (1, 0.5), (0.5, 0.125)} are reported in each row.
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Fig. S5: Monte Carlo approximation of the posterior probability of truncation error pr(r < T | y), with r =
tr(ΩH)/tr(Ω), at varying of H . The quantity is computed for T equal to 0.75 (—), 0.9 (- - -), and 0.95 (– – –)
and varying α ∈ (5, 10, 20) over the columns and {E(σ−2), var(σ−2)} ∈ {(3.33, 11.11), (1, 1), (0.33, 0.11)} over

the rows of the figure.

S3. FINNISH BIRD CO-OCCURRENCE APPLICATION

S3.1. Gibbs algorithms of probit structured increasing shrinkage model230

In case of probit data (see Section 5 of the main paper) and the structured increasing shrinkage
process, we can rewrite the latent model for zij as

zij = wTi µj + εij ,

εij =

∞∑
h=1

√
ρh
√
φjh λ

∗
jhηih + εij , λ∗jh ∼ N(0, ϑh), εij ∼ N(0, 1),
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where λ∗jh is an absolutely continuous random variable. Let the notation (x | −) denote the full 235

conditional distribution of x conditionally on everything else. Given H the number of factors of
the truncated model, the sampler cycles through the following steps.

Step S1. Update µj , for every j = 1, . . . , p, by sampling from the independent full conditional
posterior distributions

(µj | −) ∼ Nc

[
(σ−2
µ Ic + wTw)−1{wT(z(j) − ηλj) + bxj}, (σ−2

µ Ic + wTw)−1
]
,

where z(j) = (z1j , . . . , znj)
T and η = (η1, . . . , ηn)T. 240

Step S2. Update bl (l = 1, . . . , c) sampling from conditionally independent posteriors

(bl | −) ∼ Nq

{
(σ−2
b Iq + σ−2

µ xTx)−1σ−2
µ (xTµ(l)), (σ−2

b Iq + σ−2
µ xTx)−1

}
,

where µ(l) = (µ1l, . . . , µpl)
T

Step S3. Update the elements zij (i = 1, . . . , n; j = 1 . . . , p) sampling independently from
the truncated normal

(zij | −) ∼ TN(λT
j ηi + wTi µj , 1, lij , uij),

where the lower bound lij is equal to 0 if yij = 1 and −∞ otherwise. The upper bound uij = 0 245

if yij = 0 and∞ otherwise. Then, set ε = z − wµ.

Step S4. Update, for i = 1, . . . , n, the factor ηi according to the posterior full conditional

(ηi | −) ∼ NH

{
(IH + ΛT

HΛH)−1ΛT
Hεi, (IH + ΛT

HΛH)−1
}
.

Step S5. Update βh (h = 1, . . . ,H) exploiting the Pólya-Gamma data-augmentation strategy
(Polson et al., 2013) and the decompostition φjh = φ

(L)
jh φ

(C)
jh , with φ(L)

jh φ
(C)
jh independent a priori

and distributed as Ber{logit−1(xT
j βh)} and Ber(cp), respectively. 250

Substep S5.1. Update φ(L)
jh , for j = 1, . . . , p and h = 1, . . . ,H , setting φ(L)

jh = 1 if φjh = 1
and sampling from the full conditional distribution

pr(φ(L)
jh = l) ∝

{
1− logit−1(xT

j βh) for l = 0,

logit−1(xT
j βh)(1− cp) for l = 1,

if φjh = 0.

Substep S5.2. Let f(y) ∝
∑∞

n=0(−1)nAn(2πy3)−0.5 exp{−(2n+ b)2(8y)−1 − 0.5c2y} 255

indicate the probability density function of a Pólya-Gamma distributed random variable
y ∼ PG(b, c). For each h = 1, . . . ,H , generate p independent random variables dj(h) sampling
from the full conditional distribution (dj(h) | −) ∼ PG(1, xT

j βh). Let D(h) denote the p× p
diagonal matrix with entries dj(h) (j = 1, . . . , p).

260

Substep S5.3. Define the q × q diagonal matrix B = σ2
βIq. For each h = 1, . . . ,H , update

βh sampling from

(βh | −) ∼ Nq{(xTD(h)x+B−1)−1(xTκh), (xTD(h)x+B−1)−1},

where κh is the p-dimensional vector with the j-th entry equal to φ(L)
jh − 0.5.



18 L. SCHIAVON ET AL

Step S6. Update the elements λ∗jh by sampling from the independent full conditional posterior265

distributions of the rows vector λ∗j = (λ∗j1, . . . , λ
∗
jH), for j = 1, . . . , p,

(λ∗j | −) ∼ NH

{
(D−1 + ηT

(j)η(j))
−1ηT

(j)ε
(j), (D−1 + ηT

(j)η(j))
−1
}
,

where η(j) is the n×H matrix such that the generic element is η(j)ih = ηih
√
ρh
√
φjh, D−1 =

diag(ϑ−1
1 , . . . , ϑ−1

H ) and ε(j) = (ε1j , . . . , εnj)
T. Set λjh = λ∗jh

√
ρh
√
φjh.

Step S7. Update the column scales γh (for h = 1, . . . ,H), following the substeps below and
setting γh = ϑhρh. Consistently with Legramanti et al. (2020), define the independent indicators270

uh (h = 1, . . . , p) with prior pr(uh = l) = wl.

Substep S7.1. Update the augmented data uh by sequentially sampling from the full condi-
tional distribution

pr(uh = l) ∝

{
wl
∏n
i=1

∏p
j=1N(εij ;µ

(0)
ijh, σ

2
j ) for l = 1, . . . , h

wl
∏n
i=1

∏p
j=1N(εij ;µ

(1)
ijh, σ

2
j ) for l = h+ 1, . . . ,H.

(S2)

The mean values µ
(0)
ijh and µ

(1)
ijh are defined according to µ

(u)
ijh =

∑H
l 6=h
√
ρl
√
φjlλ

∗
jlηil +

√
u
√
φjhλ

∗
jhηih. Set ρh = 1 if uh > h, else ρh = 0.275

Substep S7.2. For h = 1, . . . ,H , update ϑ−1
h sampling from Ga(aθ + 0.5p, bθ +

0.5
∑p

j=1 λ
∗ 2
jh ).

Substep S7.3. For l = 1, . . . ,H − 1, sample vl from280

(vl | −) ∼ Be
{

1 +

H∑
h=1

1(uh = l), α+ 1(uh > l)
}
,

set vH = 1 and update wl = vl
∏l−1
m=1(1− vm), for l = 1, . . . ,H .

Step S8. Update the local scales, independently for j = 1, . . . , p and sequentially over h =
1, . . . ,H , by sampling from the full conditional distributions

pr(φjh = u) ∝

{
{1− logit−1(xT

j βh) cp}
∏n
i=1N(εij ;µ

(u)
ijh, 1) for u = 0

logit−1(xT
j βh) cp

∏n
i=1N(εij ;µ

(u)
ijh, 1) for u = 1.

with µ(u)
ijh =

∑H
l 6=h
√
ρl
√
φjlλ

∗
jlηil +

√
ρh
√
uλ∗jhηih.285

The results reported in Section 5 are obtained running the algorithm for 40000 iterations dis-
carding the first 20000 iterations. Then, we thin the Markov Chain, saving every 5-th sample. We
adapt the number of active factors at iteration t with probability p(t) = exp(−1− 2.5 10(−4)t)
and, given the high value of p considered, we choose the offset constant cp = 2e log(p)/p which
belongs to (0, 1) for every p ≥ 15.290
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Fig. S6: Chain plots of the marginal posterior samples of 12 mean coefficients of the matrix µ obtained by the Gibbs
sampler, discarding the first 20000 iterations and saving every 5-th sample.
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Fig. S7: Chain plots of the marginal posterior samples of six elements of the covariance matrix obtained by the Gibbs
sampler, discarding the first 20000 iterations and saving every 5-th sample.

S3.2. Gibbs chains mixing
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Fig. S8: Posterior mean of µ and b for the structured increasing shrinkage model; rows of left matrix refer to the
50 birds species, and rows of right matrix to the ten species traits. Broadle: broadleaved forests; Conifer: coniferous

forests; Temp: temperature.

Fig. S9: Maps of the sampling units in Finland coloured accordingly to the values of the first and the third latent
factors sampled at iteration t∗. Red and blue spots represent the environments with positive and negative values of the

factors, respectively.

S3.3. Figures
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