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1 Proof of Main Results

The following propositions together give proof of the theorem. Let b : R(
p
2) → Rp be the map

that takes a θ from a log-ratio lasso feature space to the corresponding β in the standard

feature space:

b(θ)k =
k−1∑
j=1

−θj,k +
p∑

j=k+1

θk,j.

Proposition 1. For β = b(θ) we have
∑p

k=1 βk = 0.

Proof.

p∑
k=1

βk =

p∑
k=1

[
k−1∑
j=1

−θj,k +
p∑

j=k+1

θk,j]

=
∑

1≤j<k≤p

−θj,k +
∑

1≤j<k≤p

θj,k

= 0
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Proposition 2. The model corresponding to β = b(θ) and the model corresponding to θ have

the same sum of squared residuals.

Proof.

p∑
k=1

βk log(xi,k) =

p∑
k=1

[
k−1∑
j=1

−θj,k +
p∑

j=k+1

θj,k] log(xi,k)

=
∑

1≤j<k≤p

−θj,k log(xi,k) + θj,k log(xi,j)

=
∑

1≤j<k≤p

θj,k log
xi,j
xi,k

Thus the two models have the same fitted value for each observation l = 1, ..., n, and hence

the same sum of squared residuals.

Proposition 3. For any β such that
∑p

k=1 βk = 0, there exists a θ such that β = b(θ) with

the property that ‖β‖1 = 2 ‖θ‖1.

Proof. Without loss of generality, suppose β1, ..., βp+ ≥ 0 and βp++1, ..., βp < 0. Let θi,j = 0 if

i, j ≤ p+ or if i, j > p+. For 1 ≤ i ≤ p+ < j ≤ p, let θi,j =
2|βi||βj |
‖β‖1

.

Now βk =
∑k−1

i=1 −θi,k +
∑p

i=k+1 θk,i so for k ≤ p+ we have:

b(θ)k =
k−1∑
i=1

−θi,k +
p∑

i=k+1

θk,i

=

p∑
i=p++1

θk,i

=

p∑
i=p++1

2|βi||βk|
‖β‖1

= 2βk

p∑
i=p++1

|βi|
‖β‖1

= βk.

The last equality follows from the fact that ‖θ‖1 =
∑p

j=1 |βj| =
∑p+

j=1 βj −
∑p

j=p++1 βj and
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∑p
j=1 βj = 0. The analogous computation holds for k > p+, so β = b(θ).

Now notice:

‖β‖1 =
p∑

k=1

|βk|

=

p∑
k=1

|
k−1∑
i=1

−θi,k +
p∑

i=k+1

θk,i|

=

p+∑
k=1

|
p∑

i=p++1

θk,i|+
p∑

k=p++1

|
p+∑
i=1

−θi,k|

=
∑

1≤k<i≤p

|θk,i|+
∑

1≤i<k≤p

| − θi,k|

= 2 ‖θ‖1 .

Remark 1. We can see from this last proof that the log-ratio lasso fit is not identifiable: many

different values of θ correspond to both the same fit and the same 1-norm penalty.

Remark 2. The construction in this proposition gives us a way to find a solution to the

log-ratio lasso optimization problem (main text equation 2) from a solution to the linearly con-

strained optimization problem (main text equation 3). We take a solution β∗ of the linearly

constrained lasso optimization and construct the corresponding θ∗. By the preceding proposi-

tion, these two solutions have the same loss plus penalty, so by theorem 1, θ∗ is a solution to

the log-ratio lasso optimization problem (main text equation 2).

Proposition 4. Suppose θ is a solution to the log-ratio lasso optimization problem, and let

β = b(θ). Then ‖β‖1 = 2 ‖θ‖1.

Proof. Suppose not. Then |βk| 6=
∑

i<k |−θi,k|+
∑

k>i |θk,i| for some k. We will now show that

the 1-norm of θ can be reduced without changing the fitted values, which is a contradiction.

Suppose without loss of generality that there exist i < j < k such that θi,k < 0 < θj,k with
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|θi,k| > |θj,k|. Then consider a new fit θ̃ with θ̃ = θ except for the following:

θ̃i,k = θi,k + θj,k

θ̃j,k = 0

θ̃i,j = θi,j + θj,k.

θ̃ results in the same fit as θ but has a 1-norm reduced by θj,k.

Combining these four propositions proves the main theorem.

Corollary 1. The minimizer of the constrained lasso is unique if the matrix W has full rank.

Proof. From the KKT conditions of the standard lasso optimization, one can show that all

solutions θ of the log-ratio lasso have equivalent fitted values Zθ [see e.g. Tibshirani, Ryan J.

et al. (2013)]. Since W has full rank, there is a unique β such that Zθ = Wβ and the result

follows.

2 Including unpaired logarithm terms

In some circumstances, it may be desirable to search for a model that includes both log-ratios

and unpaired log terms:

yi =

p∑
j=1

βj log(xj) +

p∑
j<k

θj,k log(xi,j/xi,k).

The span of this model is again contained in the span of model (4), but in this case the analyst

wishes to favor the selection log-ratio terms wherever possible. Fitting this model requires

only a simple modification of the log-ratio lasso. We augment the feature matrix with the

vector of ones: xp+1 = 1. Since log(xi/xp+1) = log(xi), the log-ratio lasso with the augmented

feature matrix can select unpaired terms whenever it is beneficial to do so. This model fit gives

a compromise between the standard lasso on the logarithmically transformed features and the
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log-ratio lasso. The coefficient of xp+1 need not be zero, and the size of this coefficient is the

amount of deviation from a pure all-pairs log-ratio model. When including unpaired terms,

this is no longer a model for compositional data, so this should only be used in a setting where

the magnitude of the individual features is believed to carry information about the response.

3 Including shrinkage in the two-stage procedure

As an alternative, one can fit the sparse regression procedure in step 3 using the predicted

values ŷ from step 1 instead of the observed values y. This will result in a final model

that is more similar to the single-stage log-ratio lasso fit, but the terms will be paired into

ratios for easier interpretation. We will refer to this variant as conservative two-stage log-

ratio lasso, since by maintaining the shrinkage from the first stage it will usually have less

variance (at the price of more bias) than the standard two-stage procedure. As with all

sparse regression procedures, these methods are most appropriate when the underlying signal

is sparse, whereas other methods such as ridge regression are more appropriate for denser

signals. We empirically study the performance of both versions of the log-ratio lasso estimator

in the expanded simulation experiments in section 6 of the supplementary material.

4 Post-Selective Inference Technical Details

We will state the relevant technical results from Lee et al. (2016) and then customize them for

our setting. Let M̂ and ŝ be the support set and signs selected by the lasso. Tibshirani, Ryan

J. et al. (2016) and Lee et al. (2016) establish that the event {M̂ = M} can be expressed as

a polyhedron:

{M̂ =M} = {A(M, s)y ≤ b(M, s)}. (1)
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The matrices A(M, s) and vectors b(M, s) are given by the following:

A(M, s) :=


1
λ
X>−M(I − PM)

−1
λ
X>−M(I − PM)

−diag(s)(X>MXM)−1X>M



b(M, s) :=


1−X>−M(X>MXM)−1X>Ms

1 +X>−M(X>MXM)−1X>Ms

−λdiag(s)(X>MXM)−1s


where PM denotes the orthogonal projection onto the column span of XM . Using this result,

Lee et al. (2016) compute the conditional distribution of η>My given {M̂ =M} for any vector

ηM . That work explicitly treats the case where ηM is chosen to test hypotheses about the

partial regression coefficients β(M)
j , which is often interest. For our setting, we instead use

these results to test whether a log-ratio model is consistent with the observed lasso fit, which

we formulated as a formal hypothesis in (8). Taking ηM = 1>M(X>MXM)−1X>M , we have that

η>ME[y] = 1>M(X>MXM)−1X>ME[y]

= 1>ME[(X>MXM)−1X>My]

= 1>MβM .

Thus, this choice of ηM corresponds to testing the hypothesis in (8). From here, an application

of the Lee et al. (2016) machinery yields a pivotal quantity for η>My after conditioning on

{M̂ =M}, which we encapsulate in the following proposition.

Proposition 1 (Post-selective test of the log-ratio model, detailed version). Let F [a,b]

µ,σ2 be the

CDF of a N(µ, σ2) random variable truncated to the set [a, b]. Let z := (I − PηM )y be the

residual of the projection of y onto ηM , which is independent of η>My, and let c := ηM
‖ηM‖2

.
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Define:

V +
M,s(z) := max

j:(A(M,s)c)j<0

b(M, s)j − (A(M, s)z)j
(A(M, s)c)j

V −M,s(z) := min
j:(A(M,s)c)j>0

b(M, s)j − (A(M, s)z)j
(A(M, s)c)j

.

Then the following holds:

F
[V −M,s(z),V

+
M,s(z)]

1>β(M),‖ηM‖2
(η>My)|{M̂ =M} ∼ Unif(0, 1).

Proof. This is an application of Theorem 5.3 of Lee et al. (2016) with ηM = 1>M(X>MXM)−1XM

using the characterization of the lasso selection event in (1).

5 Solving the Constrained Lasso Optimization Problem

The constrained lasso optimization problem given in equation 3 is a convex optimization

problem in p variables. It can be cast as an optimization problem with a quadratic objective

function in 2p variables with only linear inequality constraints and a single linear equality

constraint:

minimize
β+
1 ,β
−
1 ,...,β

+
p ,β
−
p

1

2

n∑
i=1

[

p∑
j=1

(yi − β+
j log(xi,j) + β−j log(xi, j))

2] + λ(

p∑
j=1

β+
j + β−j )

subject to β+
j ≥ 0 for j = 1, ..., p

β−j ≥ 0 for j = 1, ..., p

p∑
j=1

β+
j − β−j = 0.

Such an optimization problem can be efficiently solved with standard optimization libraries

such as the popular open-sourced CVX[Grant & Boyd (2014)] for MATLAB or CVXPY[Diamond

& Boyd (2016)] for python.
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The constrained lasso optimization problem can also be solved efficiently using lasso solvers

such as glmnet which allow for weighted observations. One simply augments the data with an

additional data point with all features equal to 1, and response value zero. By assigning this

value a large weight, the resulting solution β will have
∑p

j=1 βj ≈ 0. The value of
∑p

j=1 βj

can be made arbitrarily small with large values of the weight. Similarly, for the logistic

regression analog of the constrained lasso, one simply augments the feature matrix with two

entries of large equal weight. One entry is assigned value 1 to all features and value 1 to

the response. The other entry is assigned value 1 to all features and value 0 to the response.

Because dedicated lasso solvers use specialized tricks to improve performance, this approach

will typically be much faster than using a general-purpose convex optimization solver. Lin

et al. (2014) give a detailed analysis of a coordinate descent algorithm for the constrained lasso

that is similar to this proposal in the special case where the lasso solver is using coordinate

descent [Friedman et al. (2010)].

6 Expanded Simulation Experiment

In this section we present an expanded version of the simulation experiment presented in

the main text. We include the shrinkage version of the two-stage procedure explained in the

supplamentary material as well as ridge regression.

We now examine the performance of our proposed methods for fitting log-ratio models

with simulation experiments. We examine the following seven methods:

1. Approximate forward stepwise (approx-fs): the approximate forward stepwise procedure

described in algorithm 2.

2. Forward stepwise selection (fs): forward stepwise selection applied on the logarithmically

transformed features.

3. Ridge regression (ridge): ridge regression applied to the logarithmically transformed

features.
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4. Single-stage log-ratio lasso (single-stage): the method described in (2), which we showed

is equivalent to the constrained lasso method of Lin et al. (2014).

5. Two-stage log-ratio lasso (two-stage): algorithm 1 using forward stepwise selection for

the pruning stage.

6. Two-stage log-ratio lasso (two-stage-conservative): the variation of algorithm 1 described

at the end of subsection 3.4, again using forward stepwise selection for the pruning stage.

7. Lasso (vanilla-lasso): the usual lasso estimator on the logarithmically transformed raw

features.

All tuning parameters are chosen by cross-validation. Methods 2,3, and 7 are fitting linear

models in the logarithmically transformed feature space of the form (4) whereas methods 1,4,5,

and 6 are fitting log-ratio models of the form (1).

6.1 Experiment 1: Two Log-ratio Signals

We first examine the performance of our estimator when the data is generated from a log-

ratio model. We consider the following model, consisting of two log-ratio terms of different

amplitudes:

yi = 2s log(
xi,1
xi,2

) + s log(
xi,3
xi,4

) + εi for i = 1, ..., n.

We take εi
iid∼ N(0, 1). In the following simulations we use n = 100, p = 30, Xi,j

iid∼ |N(0, 1)|.

The signal strength s is taken across a grid of values from 0 to 3. We present the result in

figure 1.

MSE, bias, and variance

We find that there is a large regime of signal strengths where the two-step procedure preforms

significantly outperforms the original lasso and ridge regression. For coefficients from .5 to

about 3, there is a MSE reduction of about 40% relative to the lasso. The two step procedure
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has very low bias in the sparse setting, because it sets many coefficients to zero. It has slightly

more variance than lasso, due to its discontinuous nature. We note that the conservative two-

stage procedure has lower variance and higher bias than the two-stage procedure, as expected.

We also note that the lasso and the single-stage log-ratio lasso are quite close, with the single-

stage log-ratio lasso performing slightly better. This is expected; the single-stage log-ratio

lasso has one extra piece of true information built into the procedure, the fact that the sum of

the coefficients must be zero. Approximate forward stepwise selection has competitive MSE

to the two-stage procedures. The approximate forward stepwise has superior performance

to standard forward stepwise in this case, because approximate forward stepwise is picking

out log-ratios, whereas forward stepwise is choosing single predictors. Overall, the two-stage

procedures have the best performance in terms of MSE.

Support recovery

We next consider the support recovery properties of these procedures. Ridge regression is

fitting a dense model, so it is omitted from the following discussion. The lasso and single-

stage procedure recovers the signals slightly more often than the two-step procedure. This

is expected, because the two-step procedure is a pruning of the single stage procedure. The

two-step procedure selects very few null variables. This explains why this procedure has much

better MSE and is an appealing aspect of this procedure in scientific contexts. The approx-

imate forward stepwise procedure selects slightly more nulls than the two-stage procedures,

and recovers the true signals slightly less frequently. Forward stepwise selection selects roughly

the same number of non-nulls as the two-stage procedures, but selects the true signals slightly

less often. Overall, the two-stage procedures have the best support recovery properties; these

procedures recover the true signals very frequently and rarely select null variables.
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6.2 Experiment 2: Robustness to Model Misspecification

We now generate data from a model that does not consist only of log-ratio terms. The data

generating process is now:

y = 2s log(
x1
x2

) + s log(
x3
x4

) + .3 log(x5) + ε.

Notice the inclusion of an unpaired raw term .3 log(x5), so in this case we say the log-ratio

model is misspecified. The amplitude of additional term is chosen to be large enough that it

can be detected with high probability by the standard cross-validated lasso. We present the

results in figure 2.

Even in the misspecified setting, we see that the two-step procedure has low MSE, again

significantly outperforming both lasso and ridge regression. Forward stepwise selection has

slightly better MSE that the two-stage procedures, and the approximate forward stepwise

procedure has slightly worse MSE. We again see that the lasso and the single-stage procedure

have similar performance. In this case, forward stepwise selection selects the fewest null

variables, followed closely by the two-stage procedures and approximate forward stepwise

selection. The two stage procedures recover the true signals slightly more often than the

forward stepwise and approximate forwards stepwise procedures. This simulation study gives

us some confirmation that even in the presence of moderate model misspecification, the log-

ratio lasso procedure will retain good performance.

7 Real Data Example: Zero Replacement Details

In our data set, many of the entries are zero, which means the the chemical marker was not

detected in the sample. In order to use the log-ratio lasso on this data set, we must first address

these zero values. Various strategies for dealing with zeros in compositional data hae been

explored in the literature. A useful survey of many methods is given by Martín-Fernández

et al. (2003), and a corresponding R implementation called zCompositions was developed in
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Palarea-Albaladejo & Martín-Fernández (2015).

On our data set, we compared three zero-replacement methods: additive imputation, mul-

tiplicative replacement, and imputation via a log-normal fit, the latter two were carried out

using the zCompositions package. We compared the predictive accuracy of standard lasso

and ridge regression (with penalty chosen by cross-validation) after these imputations, the

results are presented in table 8. Both methods had significantly higher test set accuracy us-

ing the additive imputation (see the table below), so we use this replacement strategy in the

paper. We speculate that the additive imputation is more heavily dampening the effects of

covariates that are close to 0, which have very large leverage when converted to the log scale.

Further exploration would be desirable, and we leave this as a direction for future work.

8 Software

A software implementation of the method and source code for the experiments and figures in

the paper are available in an supplement.
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Figure 1: Results of experiment 1: MSE and support recovery of log-ratio lasso in the sparse
log-ratio model. The “large signal recovery” and “small signal recovery” graphs report the
proportion of times that the true large signal and true small signal are selected, respectively.
The “nulls selected” graph shows the average fraction of null variables that are selected.
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Figure 2: Results of experiment 2: performance in the presence of model misspecification. The
“large signal recovery” and “small signal recovery” graphs report the proportion of times that
the true large log-ratio signal and true small log-ratio signal are selected, respectively. The
“nulls selected” graph shows the average fraction of null variables that are selected.
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lasso ridge regression
additive imputation 0.718 0.708
multiplicative imputation 0.649 0.633
log-normal imputation 0.649 0.653

Table 1: Test set MSE of lasso and ridge regression across imputation schemes.
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