

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

The impact of targeted diabetic retinopathy training for graders in Vietnam and the implications for future diabetic retinopathy screening programmes

Journal:	BMJ Open
Manuscript ID	bmjopen-2021-059205
Article Type:	Original research
Date Submitted by the Author:	11-Nov-2021
Complete List of Authors:	Curran, Katie; Queen's University Belfast School of Medicine Dentistry and Biomedical Sciences, Centre of Public Health Congdon, Nathan; Queen's University of Belfast; ORBIS International Hoang, Tung; Hanoi Medical University, Department of Ophthalmology; The University of Sydney Save Sight Institute Lohfeld, Lynne; Queen's University of Belfast; Eye Hospital of Wenzhou Medical University Nguyen, Van; Orbis International in Vietnam Nguyen, Quan; Ho Chi Minh Eye Hospital, Vitreo-Retina Department Dardis, Catherine; Belfast Health and Social Care Trust, Department of Ophthalmology Virgili, Gianni ; Queen's University of Belfast; Belfast Health and Social Care Trust, Department of Ophthalmology Piyasena, Prabhath; Queen's University of Belfast Tran, Huong; Orbis International in Vietnam Salongcay, Recivall; Queen's University Belfast Tung, Mai; Ho Chi Minh Eye Hospital, Vitreo-Retina Department Peto, Tunde; Queen's University of Belfast; Belfast Health and Social Care Trust, Department of Ophthalmology
Keywords:	Diabetic retinopathy < DIABETES & ENDOCRINOLOGY, OPHTHALMOLOGY, PUBLIC HEALTH, Quality in health care < HEALTH SERVICES ADMINISTRATION & MANAGEMENT

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

review only

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

3
4
5
6 7
7
8
9
10
11
12
13
14
15
16
16 17
18
19
~ ~
21 22
22 23
23 24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1 2

1 Title: The impact of targeted diabetic retinopathy training for graders in Vietnam and

- 2 the implications for future diabetic retinopathy screening programmes
 - Short title: Training diabetic retinopathy graders in Vietnam

4 Authors:

- 5 *Katie Curran, MPH, PhD¹ (<u>k.curran@qub.ac.uk</u>)
- 6 Nathan Congdon, MD, MPH^{1,2,3} (<u>Nathan.Congdon@orbis.org</u>)
- 7 Tung Thanh Hoang^{4,5} (<u>tung.hoang@sydney.edu.au</u>)
- 8 Lynne Lohfeld, MPH, PhD^{1,6} (<u>l.lohfeld@qub.ac.uk</u>)
- 9 Van Thu Nguyen, BA⁷ (<u>van.nguyen@orbis.org</u>)
- 10 Hue Thi Nguyen, MD, MPH⁷ (<u>hue.nguyen@orbis.org</u>)
- 11 Quan Nhu Nguyen, MD, PhD⁸ (<u>bsquan2009@gmail.com</u>)
- 12 Catherine Dardis, MSc⁹ (<u>cathy831oph@gmail.com</u>)
- 13 <u>Gianni Virgili MD^{1,9} (G.Virgili@qub.ac.uk)</u>
- 14 <u>Prabhath Piyasena, MB BS, PhD¹, (m.piyasena@qub.ac.uk)</u>
- 15 Huong Tran, MPA⁷ (<u>Huong.Tran@orbis.org</u>)
 - 16 Recivall Salongcay, MD, MPM¹ (R.SALONGCAY@qub.ac.uk)
 - 17 Mai Quoc Tung, MD, PhD⁸ (<u>maitungtn@gmail.com</u>)

BMJ Open

2 3 4 5	18	Tunde Peto, MD, PhD ^{1,9} (<u>T.Peto@qub.ac.uk</u>)
6 7 8	19	Affiliations:
9 10 11	20	¹ Centre for Public Health, Queen's University of Belfast, Belfast, UK
12 13 14 15	21	² Orbis International, New York, USA
16 17 18	22	³ Zhongshan Ophthalmic Centre, Guangzhou, China
19 20 21 22	23	⁴ Ophthalmology Department, Hanoi Medical University, Hanoi, Vietnam
23 24 25	24	⁵ Save Sight Institute, The University of Sydney School of Medicine, Sydney, Australia
26 27 28 29	25	⁶ Eye Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
30 31 32	26	⁷ Orbis International in Vietnam, Hanoi, Vietnam
33 34 35 36	27	⁸ Vitreo-Retina Department, Ho Chi Minh Eye Hospital, Ho Chi Minh City, Vietnam
37 38 39	28	⁹ Department of Ophthalmology, Belfast Health and Social Care Trust, NI
40 41 42	29	*Corresponding author Katie Curran
43 44 45 46	30	Katie Curran
47 48 49	31	Centre for Public Health
50 51 52	32	Institute of Clinical Sciences, A
53 54 55	33	Queen's University Belfast
56 57 58	34	BT12 6BA
59 60	35	Email: <u>k.curran@qub.ac.uk</u>

BMJ Open

36 Keywords: Diabetic retinopathy, diabetic retinopathy training, screening

Word Count: 2265

38 Abstract

Objectives: To compare the accuracy of trained level 1 diabetic retinopathy (DR) graders
(nurses, endocrinologists, one general practitioner), level 2 graders (mid-level
ophthalmologists) and level 3 graders (senior ophthalmologists) in Vietnam against a
reference standard from the UK, and assess the impact of supplementary targeted grader
training.

Methods: DR training was delivered to new Vietnamese graders in February 2018 by National Health System (NHS) UK graders. Two-field retinal images were taken by trained screeners and graded by 14 trained graders in Vietnam between August-October 2018 and then re-graded retrospectively by an NHS-certified reference standard UK optometrist (Phase I). Further directed DR training based on Phase I results was delivered to Vietnamese graders between March-November 2019. After training was delivered, a randomised subset of images from January-October 2020 was graded by 6 of the original cohort (Phase II). The reference grader re-graded all images from Phase I and II retrospectively in masked fashion. Sensitivity was calculated at the two different time points and Chi Squared was used to test significance.

Results: In Phase I, the sensitivity for detecting any DR for all grader groups in Vietnam
was low and improved in Phase II after additional training was delivered. The greatest
improvement was seen among level 1 graders (P<0.001) and the lowest improvement was
observed among level 3 graders (P=0.326). There was an improvement in sensitivity for
detecting DR and referable diabetic macular oedema between all grader levels and whilst the

BMJ Open

3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
20 21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
44 45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

58 differences were statistically significant, the post-training values were suboptimal (41.8% to 61.5%). The main disagreement was the detection of ungradable images. 59 **Conclusions:** This is among the first studies to demonstrate that targeted training 60 interventions can improve accuracy of DR grading in a low-middle income country. These 61 findings have important implications for improving service delivery in DR screening 62 programmes in low-resource settings. 63 **Article Summary** 64 Strengths and limitations of this study 65 This is the first study describing the impact of a training intervention to improve the 66 • quality of DR grading in an LMIC. 67 68 Reinforcing training to identify ungradable images has been acknowledged. • The sample size was smaller in Phase II compared to Phase I, however, there were no 69 • 70 statistically significant differences between the groups. 71 72

74 Introduction

The prevalence of diabetes among adults in Vietnam is approximately 6% and has almost doubled over the past decade.[1] Early detection through diabetic eye screening programmes (DESPs) is important to reduce the risk of avoidable blindness due to diabetic retinopathy (DR). Since the introduction of systematic DESPs in the UK, a high-income country (HIC), diabetic retinopathy (DR) is no longer the leading cause of blindness among working age adults.[2] The key to such successful DESPs is implementing accurate, innovative and costeffective models tailored to fit healthcare systems and contexts.

Investing in training personnel to increase human resources and procuring appropriate
diagnostic and treatment equipment are essential to ensure that service providers can deliver
optimum care for people with DR. In low-middle income countries (LMICs), there is often
insufficient capacity to implement robust DESPs due to the lack of skilled human resources
and infrastructure.[3,4] In Vietnam, there are only 14 ophthalmologists per million population
compared to 49 per million in the UK.[5]

All screening programmes must provide evidence of their ability to detect the targeted condition and ensure that the service performs efficiently to improve screening accuracy when it falls short. To date, there is insufficient evidence on DR grading accuracy using non-mydriatic digital imaging by trained graders in LMICs, and even less about the capacity of DESPs in LMICs to improve where poor accuracy is detected. The current retrospective study is designed to assess accuracy of a range of graders in a non-governmental organisation (NGO)-supported DESP in Vietnam, and to study the efficacy of a quality-improvement intervention.

96 Methods

Page 7 of 25

BMJ Open

Study participants: The 14 participants from Vietnam in Phase I included: Level 1 DR graders (6 nurses, 1 general practitioner and 2 endocrinologists, all with < 1 year grading experience, 55.6% female), Level 2 DR graders (3 newly-qualified ophthalmologists with < 1 year formal DR grading experience, 100% female), and Level 2 DR graders (2 senior ophthalmologists with >5 years' experience providing treatment for sight threatening DR, but with <1 year formal DR grading experience, 100% male). In Phase II, 6/14 graders (3 Level 1, 2 Level 2, 1 Level 3) from Phase I were included. The reference standard from the UK (KC) was a fully-qualified optometrist trained in DR grading and certified by the UK NHS DESP.[6] Vietnamese Level 1, 2 and 3 graders are equivalent to primary, secondary and arbitration graders, respectively, in UK DESPs.[7] In the current study, Vietnamese Level 1 and Level 2 graders graded all fundus images for DR. All images having disagreement between graders, and an additional randomly-selected 40% of all images, were sent for arbitration grading by Level 3 graders in Vietnam. All graders in Vietnam were masked to any prior diagnoses or grades of the reference standard, while the reference standard was also masked to results of grading in Vietnam.

DR training for graders in Vietnam: As part of a DESP project supported by NGO Orbis International, a team of five Vietnamese doctors and medical administrators visited a Northern Ireland (NI) DESP in September 2017 to receive training on screening, programme administration and quality control methods. In February 2018, a senior UK NHS grader from the Belfast Trust (CD) and a fully-qualified optometrist, trained in DR grading and certified by the NHS (KC), visited Vietnam to deliver DR training to graders involved in the DESPs. Training focused on ocular anatomy, retinal diseases, DR signs and grading (based on the UK National Screening Committee (NSC) classification system), and appropriate referral pathways and management.[8]

1 2		
2 3 4	121	Image acquisition and management: Images were captured by trained nurses and
5 6	122	technicians in Vietnam. Two-field, 45° digital colour photographs (one disc-centred and one
7 8 9	123	macula-centred) were taken using a non-mydriatic camera (Canon CR2-AF, Canon Medical
10 11	124	Systems. Europe), in accordance with the UK's NHS DESP.[9] Nurses and technicians were
12 13	125	trained to repeat inadequate images as a quality control measure and take anterior segment
14 15 16	126	photographs where adequate fundus images were not possible. Images were anonymised and
17 18	127	uploaded to a cloud-based software system (Spectra)® for analysis by trained DR graders in
19 20	128	Vietnam. The images were transferred to a Queen's University Belfast (QUB) server for re-
21 22	129	grading by the reference standard.
23 24		
25 26	130	Assessment of gradeability: Image quality was defined as 'adequate' or 'inadequate' in
27 28 29	131	accordance with NHS DESP guidelines as outlined below;
30 31	132	• Adequate disc-centred image: complete optic disc >2DD from edge of image and fine
32 33		
34 35	133	vessels visible on surface of the disc.[9]
36 37	134	• Adequate macula-centred image: centre of fovea >2DD from edge of image and
38 39	135	vessels visible within 1DD of centre of fovea.[9]
40 41	100	
42 43	136	The disc-centred and macula-centred images for each eye were viewed as a pair and graded at
44 45	137	an individual eye level. The presence of DR and diabetic macular oedema (DMO) was also
46 47	138	determined at a patient level and based on the worst affected eye. Ungradable images were
48 49	139	referred for further slit-lamp examination. Where images were considered inadequate but
50 51	140	referable disease was detectable, the referable grade was recorded and the patients were moved
52 53 54	141	onto the appropriate referable grade pathway.[9]
55		
56 57	142	Consecutive patients diagnosed with diabetes and undergoing evaluation for possible DR at
58 59 60	143	Ho Chi Minh City General Hospital and Ho Chi Minh Eye Hospital (tertiary hospitals), Tien
00		

Page 9 of 25

BMJ Open

1	
2	
3	
4	
5	
6	
0 7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
30 37	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
55 54	
54 55	
55 56	
57	
58	
59	
60	

	144	Giang General Hospital (provincial hospital) and Cai Ba General Hospital (district hospital)
	145	in Vietnam were recruited. Fundus images from August to October 2018 (Phase I) were
	146	graded by 14 graders in Vietnam and then re-graded retrospectively by a reference standard
)	147	from the UK in Phase I. Targeted remedial training, based on specific findings from the
<u>)</u> }	148	Phase I analysis, was delivered in March 2019 and November 2019 by UK graders and Orbis.
 ;	149	Additionally, regular testing and training for quality assurance purposes was also introduced,
) 7 }	150	similar to UK DESP models. To evaluate the impact of this quality-improvement
)	151	intervention, a new subset of images was graded by six of the original cohort of graders
<u>)</u>	152	between January-October 2020 (Phase II) and re-graded by the reference standard from the
5 - :	153	UK (KC) in September 2021.
, ; ,		
3	154	Statistical analysis: Data were entered into Microsoft Excel version 16.0 and then
)	155	transferred to Stata 16.0 (StataCorp LLC) for analysis. Intra and inter-grader agreement was
<u>)</u> 5	156	calculated using kappa and a stratified random sampling technique was utilised to ensure a
¦ ;	157	representative sample of images was re-graded (Supplementary Files S1 and S2). Diagnostic
, 7 5	158	test accuracy (DTA) comparing graders in Vietnam with the UK reference standard was
))	159	assessed by calculating sensitivity, specificity, positive predicative values (PPV) and negative
)	160	predictive values (NPV). Sensitivity was calculated at the two different time points (Phase I
3 	161	and Phase II) and Chi Squared was used to test significance.
5		
7 3	162	Patients or the public were not involved in the design, or conduct, or reporting, or
)	163	dissemination plans of our research.
<u>)</u> 5	164	Results
+ ;	165	Patient characteristics: In Phase I, 65.4% of patients were female with a mean age 59.4
) 7 2	166	years. In Phase II, 40.0% were female with a mean age of 59.8 years. Figures 1 and 2
,)		

1		
2 3	407	describe angular and a function to and another a firm and in Dhase Land H of the
4 5	167	describe enrolment of patients and capture and grading of images in Phase I and II of the
5 6 7	168	study respectively.
8 9	169	Figure 1
10	170	
11 12		
13		
14 15		
16		
17 18		
19		
20 21		
22		
23 24		
25		
26 27		
28		
29 30		
31		
32 33		
34		
35 36		
37		
38 39		
40		
41 42		
43		
44 45		
46		
47 48		
49		
50 51		
52		
53 54		
55		
56 57		
58		
59 60		
00		

1 2			
1 2 3 4 5 6 7 8 9 10	171	Figure 2	
6 7	172		
8 9			
10 11 12			
13 14 15			
16 17			
18 19 20			
21 22			
23 24 25			
26 27			
28 29 30			
31 32 33			
34 35			
36 37 38			
39 40			
41 42 43			
41 42 43 44 45 46			
47 48			
49 50 51			
52 53			
54 55 56			
57 58			
59 60			

173 Initial grading performance analysis (Phase I): The sensitivity for detecting any DR was

174 low against the reference standard in the UK for all grader groups in Vietnam. The sensitivity

175 for detecting referable DR and referable DMO was even lower for all grader groups (Table

176 l).

177 Table 1. Diagnostic test accuracy of DR graders in Vietnam against a reference

178 standard from the UK, including ungradable images.

	Level 1 graders (n=410 patient images)*	Level 2 graders (n=410 patient images)*	Level 3 graders (n=260 patient images)†
Any DR	mages)	magesj	intages)
Sensitivity (%) (95% CI)	41.8 (33.9, 50.1)	42.5 (34.5, 50.7)	42.2 (33.1, 51.8)
Specificity (%) (95% CI)	87.9 (83.3, 91.7)	98.8 (96.6, 99.8)	100 (97.5, 100)
PPV (%) (95% CI)	67.4 (57.0, 76.6)	95.6 (87.6, 99.1)	100 (92.7, 100)
NPV (%) (95% CI)	71.7 (66.4, 76.7)	74.3 (69.3, 78.8)	68.2 (61.5, 74.5)
Referable DR		0	
Sensitivity (%) (95% CI)	19.2 (9.63, 32.5)	13.5 (5.59, 25.8)	10.5 (2.94, 24.8)
Specificity (%) (95% CI)	97.2 (94.9, 98.7)	100 (99.0, 100)	99.5 (97.5, 100)
PPV (%) (95% CI)	50.0 (27.2, 72.8)	100 (59.0, 100)	80.0 (28.4, 99.5)
NPV (%) (95% CI)	89.2 (85.7, 92.1)	88.8 (85.3, 91.7)	86.7 (81.9, 90.6)
Referable DMO			· · · · · · · · · · · · · · · · · · ·
Sensitivity (%) (95% CI)	5.8 (1.91, 13.0)	20.9 (12.9, 31.0)	16.9 (8.76, 28.3)
Specificity (%) (95% CI)	97.2 (94.8, 98.7)	99.4 (97.8, 99.9)	100 (98.1, 100)
PPV (%) (95% CI)	35.7 (12.8, 64.9)	90.0 (68.3, 98.8)	100 (71.5, 100)
NPV (%) (95% CI)	79.5 (75.2, 83.4)	82.6 (78.4, 86.2)	78.3 (72.7, 83.3)
Abbreviations: UK = U Macular Oedema, CI = Grading criteria: UK Na system.	Jnited Kingdom, DR Confidence Intervals,	Ĩ	
Criteria: Any DR, is defined as g			
Referable DR is defined Referable DMO is defin	U	U	

Page 13 of 25

1 2

BMJ Open

3	
4	
4	
5	
5 6 7 8	
7	
8	
9	
10	
11	
12	
13	
14	
14	
15	
16 17 18	
17	
18	
19	
20	
21	
22	
23	
24	
24	
25	
26	
27	
28	
29	
30	
31	
32	
32	
34	
54 25	
35	
36 37	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52	
54	
55	
56	
57	
58	
59	
60	

60

180	Subsequent grading performance after retraining (Phase II): Subsequently, a further
181	subset of images from 115 consecutive patients from January to October 2020 were graded
182	by 6 of the original cohort of 14 Vietnamese graders, and were regraded in the UK to
183	evaluate graders' performance after targeted training was delivered and quality control
184	measures were instituted. The greatest improvement in sensitivity for detecting any DR was
185	seen among level 1 graders (difference: +45.4%, 95%CI +33.1% to +57.8%; P<0.001). The
186	specificity increased from 87.9% in phase I to 95.6% in phase II which helps to avoid over
187	referrals (difference: +7.7%, 95%CI +1.4% to +13.9%; p=0.069). The lowest improvement in
188	sensitivity for detecting any DR was observed between level 3 graders in Vietnam
189	(difference; +9.0%, 95%CI: -9.0% to +27.1%; p=0.326), although their specificity remained
190	100% at phase I and phase II. There was an improvement in sensitivity for detecting DR and
191	referable DMO between all grader levels and whilst there were statistically significant
192	differences, sensitivities after training were still insufficient and comprised between about
193	40% and 61.5% (Table 2).

Table 2: Diagnostic test accuracy of DR graders in Vietnam against a reference standard from the UK after additional DR training was delivered.

	Level 1 graders	Level 2	Level 3 graders
	(n=115 patient	graders (n=115	(n=62 patient
	images)	patient images)	images)
Any DR			
Sensitivity (%) (95% CI)	87.2 (74.3, 95.2)	68.1 (52.9, 80.9)	51.3 (34.8, 67.6)
Specificity (%) (95% CI)	95.6 (87.6, 99.1)	95.6 (87.6, 99.1)	100 (84.6, 100)
PPV (%) (95% CI)	93.2 (81.3, 98.6)	91.4 (76.9, 98.2)	100 (83.2, 100)
NPV (%) (95% CI)	91.5 (82.5, 96.8)	81.3 (71.0, 89.1)	53.7 (37.4, 69.3)
P-value comparing sensitivity to	P=0.000	P=0.002	P=0.326
Phase I			
Referable DR			
Sensitivity (%) (95% CI)	53.3 (26.6, 78.7)	40.0 (16.3, 67.7)	58.3 (27.7, 84.8)
Specificity (%) (95% CI)	90.0 (82.4, 95.1)	93.0 (86.1, 97.1)	100 (92.7, 100)
PPV (%) (95% CI)	44.4 (21.5, 69.2)	46.2 (19.2, 74.9)	100 (59.0, 100)
NPV (%) (95% CI)	92.8 (85.7, 97.0)	91.2 (83, 95.9)	90.7 (79.7, 96.9)
P-value comparing sensitivity to	P=0.009	P=0.022	P=0.001
Phase I			
Referable DMO			

3				
		Sensitivity (%) (95% CI) 56.3 (29.9, 80.2)	43.8 (19.8, 70.1)	61.5 (31.6, 86.1)
4 5		Specificity (%) (95% CI) 97.0 (91.4, 99.4)	93.9 (87.3, 97.7)	100 (92.6, 100)
6			53.8 (25.1, 80.8)	100 (63.1, 100)
7			91.2 (83.9, 95.9)	90.6 (79.3, 96.9)
8		P-value comparing sensitivity to P=0.000	P=0.051	P=0.002
9		Phase I		
10 11		Abbreviations: UK = United Kingdom, DR = Diabetic	c Retinopathy, DM	O = Diabetic
12		Macular Oedema, CI = Confidence Intervals,	1 57	
13		Grading criteria: UK National Diabetic Eye Screening	Programme (NDE	SP) classification
14		system.		
15		Criteria:		
16 17		Any DR is defined as grades R1, R2, R3s, R3a and U.		
18		Referable DR is defined as grades R2, R3a and U		
19		Referable DMO is defined as grades M2, N5a and U		
20		Chi-squared used to compare sensitivity between Phase	I and II	
21	100			
22 23	196			
23 24	197	The main discordance is detecting ungradable images,	which does not im	prove much with
25	197	The main discordance is detecting ungradable images,	which does not mig	
26	198	training; therefore, training should be reinforced to ung	radable images for	the future
27	150	training, therefore, training should be reinforced to dig	radable infages for	
28 29	199	(Supplementary File S3).		
30	200	(Suppremental) 1 no 50).		
31				
32	200	Discussion		
33 34				
35	201	Results from our study demonstrate extremely poor sen	sitivity and specifi	icity for detecting
	201			
35 36 37	201 202			
35 36 37 38	202	all levels of DR, especially referable DR, in the early st	tages of programm	e delivery. This
35 36 37 38 39		all levels of DR, especially referable DR, in the early st	tages of programm	e delivery. This
35 36 37 38	202 203	all levels of DR, especially referable DR, in the early st translates into increased costs to the health care system	tages of programm due to missed opp	e delivery. This ortunities for early
35 36 37 38 39 40 41 42	202	all levels of DR, especially referable DR, in the early st translates into increased costs to the health care system	tages of programm due to missed opp	e delivery. This ortunities for early
35 36 37 38 39 40 41 42 43	202 203 204	all levels of DR, especially referable DR, in the early st translates into increased costs to the health care system treatment and un-necessary examinations for false-posi	tages of programm due to missed opp tive referrals. The	e delivery. This ortunities for early quality of patient
35 36 37 38 39 40 41 42 43 44	202 203	all levels of DR, especially referable DR, in the early st translates into increased costs to the health care system treatment and un-necessary examinations for false-posi	tages of programm due to missed opp tive referrals. The	e delivery. This ortunities for early quality of patient
35 36 37 38 39 40 41 42 43 44 45	202 203 204 205	all levels of DR, especially referable DR, in the early st translates into increased costs to the health care system treatment and un-necessary examinations for false-posi care also suffers. Didactic DR training was delivered to	tages of programm due to missed opp tive referrals. The graders in Vietnam	e delivery. This ortunities for early quality of patient m over a two-year
35 36 37 38 39 40 41 42 43 44	202 203 204	all levels of DR, especially referable DR, in the early st translates into increased costs to the health care system treatment and un-necessary examinations for false-posi care also suffers. Didactic DR training was delivered to	tages of programm due to missed opp tive referrals. The graders in Vietnam	e delivery. This ortunities for early quality of patient m over a two-year
35 36 37 38 39 40 41 42 43 44 45 46 47 48	202 203 204 205 206	all levels of DR, especially referable DR, in the early st translates into increased costs to the health care system treatment and un-necessary examinations for false-posi care also suffers. Didactic DR training was delivered to period by trained DR graders from the UK and Vietnam	tages of programm due to missed opp tive referrals. The graders in Vietnan n. Training was spe	e delivery. This ortunities for early quality of patient m over a two-year ecifically targeted to
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49	202 203 204 205	all levels of DR, especially referable DR, in the early st translates into increased costs to the health care system treatment and un-necessary examinations for false-posi care also suffers. Didactic DR training was delivered to period by trained DR graders from the UK and Vietnan	tages of programm due to missed opp tive referrals. The graders in Vietnan n. Training was spe	e delivery. This ortunities for early quality of patient m over a two-year ecifically targeted to
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50	202 203 204 205 206 207	all levels of DR, especially referable DR, in the early st translates into increased costs to the health care system treatment and un-necessary examinations for false-posi care also suffers. Didactic DR training was delivered to period by trained DR graders from the UK and Vietnan address problems identified in the Phase I testing, and c	tages of programm due to missed opp tive referrals. The graders in Vietnan n. Training was spe quality control testi	e delivery. This ortunities for early quality of patient m over a two-year ecifically targeted to ing using
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51	202 203 204 205 206	all levels of DR, especially referable DR, in the early st translates into increased costs to the health care system treatment and un-necessary examinations for false-posi care also suffers. Didactic DR training was delivered to period by trained DR graders from the UK and Vietnan address problems identified in the Phase I testing, and c	tages of programm due to missed opp tive referrals. The graders in Vietnan n. Training was spe quality control testi	e delivery. This ortunities for early quality of patient m over a two-year ecifically targeted to ing using
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50	202 203 204 205 206 207 208	all levels of DR, especially referable DR, in the early st translates into increased costs to the health care system treatment and un-necessary examinations for false-posi care also suffers. Didactic DR training was delivered to period by trained DR graders from the UK and Vietnan address problems identified in the Phase I testing, and c international test and training (iTAT) were also underta	tages of programm due to missed opp tive referrals. The graders in Vietnan n. Training was spe quality control testi- tken. This study de	e delivery. This ortunities for early quality of patient m over a two-year ecifically targeted to ing using emonstrates that
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54	202 203 204 205 206 207	all levels of DR, especially referable DR, in the early st translates into increased costs to the health care system treatment and un-necessary examinations for false-posi care also suffers. Didactic DR training was delivered to period by trained DR graders from the UK and Vietnan address problems identified in the Phase I testing, and c international test and training (iTAT) were also underta	tages of programm due to missed opp tive referrals. The graders in Vietnan n. Training was spe quality control testi- tken. This study de	e delivery. This ortunities for early quality of patient m over a two-year ecifically targeted to ing using emonstrates that
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55	202 203 204 205 206 207 208	all levels of DR, especially referable DR, in the early st translates into increased costs to the health care system treatment and un-necessary examinations for false-posi care also suffers. Didactic DR training was delivered to period by trained DR graders from the UK and Vietnan address problems identified in the Phase I testing, and of international test and training (iTAT) were also underta these steps led to improved grading accuracy for all cla	tages of programm due to missed opp tive referrals. The o graders in Vietnan n. Training was spe quality control testi tken. This study de sses of patients and	e delivery. This ortunities for early quality of patient m over a two-year ecifically targeted to ing using monstrates that d graders; however,
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56	202 203 204 205 206 207 208 209	all levels of DR, especially referable DR, in the early st translates into increased costs to the health care system treatment and un-necessary examinations for false-posi care also suffers. Didactic DR training was delivered to period by trained DR graders from the UK and Vietnan address problems identified in the Phase I testing, and c international test and training (iTAT) were also underta these steps led to improved grading accuracy for all cla	tages of programm due to missed opp tive referrals. The o graders in Vietnan n. Training was spe quality control testi tken. This study de sses of patients and	e delivery. This ortunities for early quality of patient m over a two-year ecifically targeted to ing using monstrates that d graders; however,
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57	202 203 204 205 206 207 208 209	all levels of DR, especially referable DR, in the early st translates into increased costs to the health care system treatment and un-necessary examinations for false-posi care also suffers. Didactic DR training was delivered to period by trained DR graders from the UK and Vietnan address problems identified in the Phase I testing, and c international test and training (iTAT) were also underta these steps led to improved grading accuracy for all cla results remain suboptimal for a screening programme.	tages of programm due to missed opp tive referrals. The o graders in Vietnan n. Training was spe quality control testi tken. This study de sses of patients and The main discordan	e delivery. This ortunities for early quality of patient m over a two-year ecifically targeted to ing using monstrates that d graders; however, nce was detection of
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56	202 203 204 205 206 207 208 209 210	all levels of DR, especially referable DR, in the early st translates into increased costs to the health care system treatment and un-necessary examinations for false-posi care also suffers. Didactic DR training was delivered to period by trained DR graders from the UK and Vietnan address problems identified in the Phase I testing, and c international test and training (iTAT) were also underta these steps led to improved grading accuracy for all cla results remain suboptimal for a screening programme.	tages of programm due to missed opp tive referrals. The o graders in Vietnan n. Training was spe quality control testi tken. This study de sses of patients and The main discordan	e delivery. This ortunities for early quality of patient m over a two-year ecifically targeted to ing using monstrates that d graders; however, nce was detection of

Page 15 of 25

1

BMJ Open

2	
3 4	212
5 6	213
7 8	214
9 10 11	215
11 12 13	216
13 14 15	217
16 17	
18 19	218
20 21	219
22 23 24	220
24 25 26	221
27 28	222
29 30	223
31 32	224
33 34 35	225
36 37	226
38 39	
40 41	227
42 43	228
44 45 46	229
40 47 48	230
49 50	231
51 52	232
53 54	233
55 56	234
57 58 59	235
59 60	

Results can be poor in these settings for a variety of reasons, quality assessment is crucial, 212 and programmatic changes based on models such as the UK DESP can be successful in 213 enhancing grader accuracy in LMICs settings. However, it is fundamental for countries to 214 adapt their own DR classification system and referral pathways to meet their requirements. 215 Most importantly, the role of affiliated hospitals (and partnerships, coordination among 216 training institutions and practical hospitals) are crucial for DR grading quality improvement 217 218 Studies in LMICs and HICs have assessed the accuracy of non-medical graders and medical graders in the detection of DR and found that both grader types are capable of achieving 219 moderate-high sensitivity for detecting DR.[7, 10-13] Previous studies have briefly described 220 what training interventions were used to train their graders, although no study has outlined 221 whether additional training methods were employed to improve grading accuracy if needed. 222 In the UK, the DR grading course by the Gloucestershire Retinal Education Group is 223 compulsory for graders in addition to monthly iTAT.[6] This formal training qualification 224 and continuous monitoring and evaluation are crucial to achieve optimal sensitivity, which 225 may be more challenging in terms of costs and capacity for LMICs. 226 Strengths: To our knowledge, this is the first study describing the impact of a training 227 intervention to improve the quality of DR grading in an LMIC. The inclusion of ungradable 228 images in this study was a logical decision, particularly when the prevalence of cataract 229 (which often renders DR images ungradable) is high in LMICs.[10] Dense cataracts normally 230 obstruct the view of the fundus, making it difficult to obtain clear fundus photographs and 231 assign a DR grade. In these instances, referring patients to an eye clinic for further 232 assessment and treatment as needed is required. Determining sensitivity and specificity at the 233

Vietnam, both eyes are typically examined for DR and a single outcome is assigned to the

patient level is also important from a DESP implementation perspective. In the UK and

patient, as was done here. For these reasons, we feel our analytic approach, and thus results,are relevant to these settings.

Limitations: Limitations for this study have also been acknowledged. Data from this study represent routine clinical practice. In daily DR screening, not all patients undergoing primary (Level 1) and secondary (Level 2) grading proceed to arbitration grading (Level 3). This means a proportion of images were not graded by arbitration graders as outlined in figure 1 and figure 2. Second, only 6/14 graders from Phase I were included in Phase II grading; however the distribution of grader levels was similar. Third, though the proportion of patients excluded was small, we are unable to fully characterise the reasons for these exclusions, due to the nature of the study as a programmatic evaluation. Some potential reasons for this are a patient's unwillingness to participate in the study, graders having forgotten to ask for patient consent to participate in the study, and patient inability to comply with image capture. Fourth, pupil status was not recorded in this study and this can be important for LMICs. Finally, it was not practical for the UK reference standard to examine patients clinically in Vietnam; however, the method of grading by a certified DR grader or clinical specialist is widely used as the reference standard in many screening programmes.

Conclusions: This paper shows how grading accuracy was particularly low among all grader groups in Vietnam in the first six months of DESP implementation. Many factors may have contributed to poor grader performance, including inadequate training and feedback, insufficient time to participate in quality assurance testing and competing work responsibilities. After additional training, testing and quality assurance systems were implemented in Vietnam, DTA improved among all grader groups, however a significant amount of work is still needed. In particular, training graders to detect ungradable cases is crucial. A qualitative study to determine why the initial training intervention was less

Page 17 of 25

1 2

BMJ Open

3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

successful should be explored. Since further improvements are required, understanding how
other countries implement such programmes would be beneficial. Future studies should
outline what DR training interventions were used, state relevant training courses and explain
what quality assurance measures are in place. The findings from this study are important for
DESP programme planners in Vietnam and other LMICs, highlighting the importance of
quality monitoring and directed re-training as needed.

Acknowledgements: The authors are very grateful to all participants in Vietnam and
Northern Ireland who generously gave their time for this study and to Orbis International.

Author contributions: All authors have made substantial contributions to the conception of
the design of the work. KC and GV analysed and interpreted the data. All authors read and
approved the final manuscript.

Funding: The project was funded by the Department for the Economy (DfE) – Global
Challenges Research Fund (GCRF) Awards (Grant number N/A). None of the funders were
involved in the design or conduct of the study; preparation, review or approval of the
manuscript; or decision to submit the manuscript for publication. Nathan Congdon is
supported by the Ulverscroft Foundation (UK). Katie Curran is funded by the Wellcome
Trust.

277 Competing Interests: Nathan Congdon is employed as a Research Director by Orbis278 International.

279 **Patient consent for publication:** Not required.

Ethics approval: This research adhered to the tenets of the Declaration of Helsinki. Ethical
approval was granted by the Hanoi Medical University Institutional Review Board in Bio-

2 3 4	
5 6	
7 8	
9 10	
11 12	
13	
15	
11 12 13 14 15 16 17	
18 19	
20 21	
22	
22 23 24 25	
26	
27 28	
20	
31 22	
33	
34 35	
36 37	
30 31 32 33 34 35 36 37 38 39	
40 41	
42 43	
44	
45 46	
47 48	
49 50	
50 51 52	
53	
54 55	
56 57	
58 50	

60

1 2

> Medical Research, Vietnam (No. 0518/HMU IRB). Written informed consent was obtained from all participants prior to their being interviewed.

Data sharing statement: All datasets relevant to the study are included in the article oruploaded as supplementary information.

286 **References**

- Ngoc NB, Lin ZL, Ahmed W. Diabetes: What challenges lie ahead for Vietnam? *Ann Glob Heal*. 2020;86(1):1–9.
- 289 2. Liew G, Michaelides M, Bunce C. A comparison of the causes of blindness
 290 certifications in England and Wales in working age adults (16-64 years), 1999-2000
 291 with 2009-2010. *BMJ* Open. 2014;4(2):1–6.
- 292 3. Burgess PI, Msukwa G, Beare NAV. Diabetic retinopathy in sub-Saharan Africa:
 293 Meeting the challenges of an emerging epidemic. *BMC Med.* 2013;11(1):1.
- Adriono G, Wang D, Octavianus C, Congdon N. Use of eye care services among
 diabetic patients in urban Indonesia. *Arch Ophthalmol* (Chicago, Ill 1960).
- 296 2011;129(7):930–5.
- ³ 297 5. International Council of Ophthalmology. Number of Ophthalmologists in Practic and
 ⁵ 298 Training Worldwide [Internet]. 2012 [cited 2020 Aug 13]. Available from:
 - 299 http://www.icoph.org/ophthalmologists-worldwide.html
- 300 6. Gloucestershire Retinal Education Group. Diabetic Retinopathy Grading Course
- 3 301 [Internet]. 2020. [cited 2021 April] Available from: <u>https://drscreening.org/diabetic-</u> 5 302 retinopathy-grading-course
- ⁵⁸₅₉ 303 7. Widdowson S, Taylor D. The management of grading quality: Good practice in the

Page 19 of 25

BMJ Open

1			
2 3 4	304		quality assurance of grading. [Internet] 2015. [cited 2021 April] Available from:
5 6	305		https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachmen
7 8 9	306		t_data/file/512832/The_Management_of_Grading.pdf
10 11 12	307	8.	Public Health England. NHS Diabetic Eye Screening Programme Grading definitions
13 14	308		for referable disease. [Internet] 2021 (cited 2021 September] Available from:
15 16	309		https://www.gov.uk/government/publications/diabetic-eye-screening-retinal-image-
17 18	310		grading-criteria/nhs-diabetic-eye-screening-programme-grading-definitions-for-
19 20 21	311		referable-disease
22 23	312	9.	NHS DESP Core Team. Diabetic Eye Screening Programme Pathway for Adequate /
24 25 26	313		Inadequate Images and where images cannot be taken Outlines pathway and business
27 28	314		rules for image capture exceptions and ungradable images. [Internet] 2013.[cited 2021
29 30	315		April] Available from: https://www.gov.uk/government/publications/diabetic-eye-
31 32 33	316		screening-pathway-for-images-and-where-images-cannot-be-taken
34 35 36	317	10.	Murthy GVS, John N, Shamanna BR, Pant HB. Elimination of avoidable blindness
37	318		due to cataract: Where do we prioritize and how should we monitor this decade. Indian
20	010		
38 39 40 41	319		J Ophthalmol. 2012;60(5):438–45.
39 40 41 42 43		11.	<i>J Ophthalmol.</i> 2012;60(5):438–45. McKenna M, Chen T, McAneney H, Membrillo MAV, Jin L, Xiao W, et al. Accuracy
39 40 41 42 43 44 45	319	11.	
39 40 41 42 43 44	319 320	11.	McKenna M, Chen T, McAneney H, Membrillo MAV, Jin L, Xiao W, et al. Accuracy
 39 40 41 42 43 44 45 46 47 48 49 50 	319 320 321	11.	McKenna M, Chen T, McAneney H, Membrillo MAV, Jin L, Xiao W, et al. Accuracy of trained rural ophthalmologists versus non-medical image graders in the diagnosis of
 39 40 41 42 43 44 45 46 47 48 49 	319320321322		McKenna M, Chen T, McAneney H, Membrillo MAV, Jin L, Xiao W, et al. Accuracy of trained rural ophthalmologists versus non-medical image graders in the diagnosis of diabetic retinopathy in rural China. <i>Br J Ophthalmol</i> . 2018;102(11):1471–6.
 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 	 319 320 321 322 323 		McKenna M, Chen T, McAneney H, Membrillo MAV, Jin L, Xiao W, et al. Accuracy of trained rural ophthalmologists versus non-medical image graders in the diagnosis of diabetic retinopathy in rural China. <i>Br J Ophthalmol</i> . 2018;102(11):1471–6. Amirul Islam FM. Accuracy and reliability of retinal photo grading for diabetic
 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 	 319 320 321 322 323 324 		McKenna M, Chen T, McAneney H, Membrillo MAV, Jin L, Xiao W, et al. Accuracy of trained rural ophthalmologists versus non-medical image graders in the diagnosis of diabetic retinopathy in rural China. <i>Br J Ophthalmol</i> . 2018;102(11):1471–6. Amirul Islam FM. Accuracy and reliability of retinal photo grading for diabetic retinopathy: Remote graders from a developing country and standard retinal photo
 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 	 319 320 321 322 323 324 325 	12.	 McKenna M, Chen T, McAneney H, Membrillo MAV, Jin L, Xiao W, et al. Accuracy of trained rural ophthalmologists versus non-medical image graders in the diagnosis of diabetic retinopathy in rural China. <i>Br J Ophthalmol.</i> 2018;102(11):1471–6. Amirul Islam FM. Accuracy and reliability of retinal photo grading for diabetic retinopathy: Remote graders from a developing country and standard retinal photo grader in Australia. <i>PLoS One.</i> 2017;12(6):1–12.

using non-mydriatic fundus camera. Singapore Med J. 2012;53(11):715-9.

Figure 1: Flow diagram to illustrate enrolment of patients and management of images in Phase I from August to October 2018 (Initial grading performance analysis). Level 1 and level 2 graders graded the same set of photographs and level 3 graders graded a subset of these photographs: All disagreements between Level 1 and 2 graders and a 40% random sample of all images.

Figure 2: Flow diagram illustrating the enrolment of patients and management of images included in Phase II from January 2020 to October 2020 (Follow-up grading performance analysis after re-

training). Level 1 and level 2 graders graded the same set of photographs and level 3 graders graded a

subset of these images.

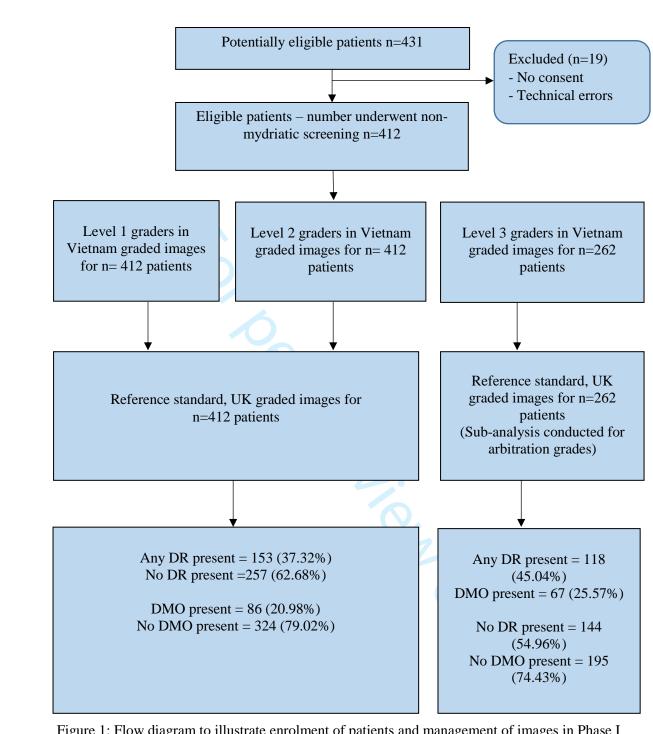


Figure 1: Flow diagram to illustrate enrolment of patients and management of images in Phase I from August to October 2018 (Initial grading performance analysis). Level 1 and level 2 graders graded the same set of photographs and level 3 graders graded a subset of these photographs: All disagreements between Level 1 and 2 graders and a 40% random sample of all images.

Figure 2: Flow diagram illustrating the enrolment of patients and management of images included in Phase II from January 2020 to October 2020 (Follow-up grading performance analysis after retraining). Level 1 and level 2 graders graded the same set of photographs and level 3 graders graded a subset of these images.

Supplementary Material

Table S1: Reference standards intra-rater agreement score using kappa statistic (first attempt versus second attempt)

	Intra-rater agreement (reference standard, UK), k (95% CI) (by eyes, n=106)	Intra-rater agreement (reference standard, UK), k (95% CI) (by worst eye, n=53)			
Overall Diabetic					
Retinopathy Grading:					
Any DR	0.96 (0.91,1.00)	0.92 (0.82, 1.00)			
Treatable DR	0.81 (0.60, 1.00)	0.74 (0.47, 1.00)			
Referable Maculopathy	0.97 (0.92, 1.0)0	1.00 (1.00, 1.00)			
Abbreviations: CI=confidence i macular oedema	c retinopathy, DMO=diabetic				
Any DR defined as R1, R2, R3s, R3a and U					
Treatable DR defined as R3a	Treatable DR defined as R3a				
Referable DMO defined as M1 and U					

Table S2 Using kappa statistic to determine the inter-rater agreement between the reference standard and one senior grader from QUB grading centre

	Inter-rater agreement (reference standard vs a senior grader QUB), k (95% CI) (by eyes, n=106)	Inter-rater agreement (reference standard vs a senior grader QUB (by worst), k (95% CI) (by worst eye, n=53)			
Overall Diabetic					
Retinopathy Grading:					
Any DR	0.79 (0.67, 0.91)	0.74 (0.55, 0.92)			
Treatable DR	0.71 (0.48, 0.95)	0.68 (0.39, 0.97)			
Referable Maculopathy	0.75 (0.61, 0.90)	0.74 (0.55, 0.93)			
Abbreviations: CI=confidence interval, k=kappa, DR=Diabetic retinopathy, DMO=diabetic macular oedema					
Any DR defined as R1, R2, R3s, R3a and U					
Treatable DR defined as R3a					
Referable DMO defined as M1 and U					

Intra and inter-grader agreement

To ensure there was good intra-grader reliability as a reference standard, a stratified random sample of images were regraded. There was approximately one month between the first and second attempts to reduce the possibility of bias caused by memory. Additionally, inter-grader agreement was calculated using kappa to ensure there was good grading agreement between the reference standard and one senior grader from the Ophthalmic Reading Centre at QUB, Belfast. Any disagreements were discussed with

a retinal specialist until consensus was reached. Overall, the intra-grader agreement and inter-grader

agreement ranged from substantial to almost perfect.

Table S3: The prevalence of any diabetic retinopathy (DR), referable DR, any maculopathy and ungradable cases with the reference grader from Phase I and Phase II

Diabetic Retinopathy	Phase I	Phase II (post remedial	P-Value
grades		training)	
R0 (n,%)	257 (62.68)	68 (59.13)	
R1 (n,%)	100 (24.39)	32 (27.83)	
R2 (n,%)	11 (2.68)	2 (1.74)	
R3a (n,%)	10 (2.44)	7 (6.09)	P=0.347
R3s (n,%)	1 (0.24)	0 (0.00)	
U (n,%)	31 (7.56)	6 (5.22)	
Any DR	6		
- Yes (n,%)	153 (37.32)	47 (40.87)	P=0.488
- No (n,%)	257 (62.68)	68(59.12)	
Referable DR			
- Yes (n,%)	52 (12.68)	15 (13.04)	P=0.918
- No (n,%)	358 (87.32)	100 (86.96)	
Any DMO			
- M0 (n,%)	324 (79.02)	99 (86.09)	
- M1 (n,%)	43 (10.49)	10 (8.70)	P=0.173
- U (n,%)	43 (10.49)	6 (5.22)	
Abbreviations: DR=diabetic retinopathy, DMO=Diabetic Macular Oedema, U=ungradable			
Chi-Squares used to test si	gnificance.	-	

Page 25 of 25

Section & Topic	No	Item	Reported on page
TITLE OR ABSTRACT			
	1	Identification as a study of diagnostic accuracy using at least one measure of accuracy	1
		(such as sensitivity, specificity, predictive values, or AUC)	
ABSTRACT			
	2	Structured summary of study design, methods, results, and conclusions	3-4
		(for specific guidance, see STARD for Abstracts)	
INTRODUCTION			
	3	Scientific and clinical background, including the intended use and clinical role of the index test	5-6
	4	Study objectives and hypotheses	5
METHODS			
Study design	5	Whether data collection was planned before the index test and reference standard	5
		were performed (prospective study) or after (retrospective study)	
Participants	6	Eligibility criteria	5-6
	7	On what basis potentially eligible participants were identified	5-6
		(such as symptoms, results from previous tests, inclusion in registry)	
	8	Where and when potentially eligible participants were identified (setting, location and dates)	5-6
	9	Whether participants formed a consecutive, random or convenience series	6
Test methods	10a	Index test, in sufficient detail to allow replication	5-6
	10b	Reference standard, in sufficient detail to allow replication	5-6
	11	Rationale for choosing the reference standard (if alternatives exist)	5-6
	12a	Definition of and rationale for test positivity cut-offs or result categories	8
	1	of the index test, distinguishing pre-specified from exploratory	•
	12b	Definition of and rationale for test positivity cut-offs or result categories	8
	12-	of the reference standard, distinguishing pre-specified from exploratory	C
	13a	Whether clinical information and reference standard results were available to the performers/readers of the index test	6
	176	Whether clinical information and index test results were available	6
	13b	to the assessors of the reference standard	D
Analysis	14	Methods for estimating or comparing measures of diagnostic accuracy	8
Analysis	14	How indeterminate index test or reference standard results were handled	Supplementary fil
	15	How missing data on the index test and reference standard results were handled	NA
	10	Any analyses of variability in diagnostic accuracy, distinguishing pre-specified from	8
	1/	exploratory	0
	18	Intended sample size and how it was determined	NA
RESULTS			
Participants	19	Flow of participants, using a diagram	9-10
T unicipantis	20	Baseline demographic and clinical characteristics of participants	5-6,8
	 21a	Distribution of severity of disease in those with the target condition	9-10,
			Supplementary fil
	21b	Distribution of alternative diagnoses in those without the target condition	9-10,
			Supplementary fil
	22	Time interval and any clinical interventions between index test and reference standard	6-7
Test results	23	Cross tabulation of the index test results (or their distribution)	10-11
		by the results of the reference standard	
	24	Estimates of diagnostic accuracy and their precision (such as 95% confidence intervals)	10-11
	25	Any adverse events from performing the index test or the reference standard	NA
DISCUSSION			
	26	Study limitations, including sources of potential bias, statistical uncertainty, and	15
		generalisability	
	27	Implications for practice, including the intended use and clinical role of the index test	15-16
OTHER			
INFORMATION			
	28	Registration number and name of registry For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	NA

1	29	Where the full study protocol can be accessed	NA
2	30	Sources of funding and other support; role of funders	16
3 -			
4			
5			
6			
7			
8			
9			
10			
11			
12			
13 14			
14			
16			
17			
18			
19			
20			
21			
22			
23			
24 25			
25 26			
20 27			
28			
29			
30			
31			
32			
33			
34			
35			
36 27			
37 38			
39			
40			
41			
42			
43			
44			
45			
46			
47			
48 49			
49 50			
51			
52			
53			
54			
55			
56			
57			
58			
59		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	
60		rorpeerreview only - http://onljopen.onlj.com/site/about/guidelines.xittill	

BMJ Open

The impact of targeted diabetic retinopathy training for graders in Vietnam and the implications for future diabetic retinopathy screening programmes: a diagnostic test accuracy study

Journal:	BMJ Open
Manuscript ID	bmjopen-2021-059205.R1
Article Type:	Original research
Date Submitted by the Author:	13-May-2022
Complete List of Authors:	Curran, Katie; Queen's University Belfast School of Medicine Dentistry and Biomedical Sciences, Centre of Public Health Congdon, Nathan; Queen's University of Belfast; ORBIS International Hoang, Tung; Hanoi Medical University, Department of Ophthalmology; The University of Sydney Save Sight Institute Lohfeld, Lynne; Queen's University of Belfast; Eye Hospital of Wenzhou Medical University Nguyen, Van; Orbis International in Vietnam Nguyen, Hue; Orbis International in Vietnam Nguyen, Quan; Ho Chi Minh Eye Hospital, Vitreo-Retina Department Dardis, Catherine; Belfast Health and Social Care Trust, Department of Ophthalmology Virgili, Gianni ; Queen's University of Belfast; Belfast Health and Social Care Trust, Department of Ophthalmology Piyasena, Prabhath; Queen's University of Belfast Tran, Huong; Orbis International in Vietnam Salongcay, Recivall; Queen's University Belfast Tung, Mai; Ho Chi Minh Eye Hospital, Vitreo-Retina Department Peto, Tunde; Queen's University of Belfast; Belfast Health and Social Care Trust, Department of Ophthalmology
Primary Subject Heading :	Ophthalmology
Secondary Subject Heading:	Diabetes and endocrinology, Medical education and training
Keywords:	Diabetic retinopathy < DIABETES & ENDOCRINOLOGY, OPHTHALMOLOGY, PUBLIC HEALTH, Quality in health care < HEALTH SERVICES ADMINISTRATION & MANAGEMENT

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

terez on

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

3
4 5 7 8 9 10
6
0
/
8
9
10
11
12
13
14
15
16
17
10
10
19
20
21
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
23
24
25
26
27
28
29
20
30 21
31
32
33
34
35
36
36 37
38
39
40
41
41
43
44
45
46
47
48
49
50
51
52
53
54
54 55
56
57
58
59
60

1	Title: The impact of targeted diabetic retinopathy training for graders in Vietnam and
2	the implications for future diabetic retinopathy screening programmes: a diagnostic test

3 accuracy study

4 Short title: Training diabetic retinopathy graders in Vietnam

Authors: 5

- *Katie Curran, MPH, PhD¹ (k.curran@qub.ac.uk) 6
- 7 Nathan Congdon, MD, MPH^{1,2,3} (Nathan.Congdon@orbis.org)
- Tung Thanh Hoang^{4,5} (<u>tung.hoang@sydney.edu.au</u>) 8
- Lynne Lohfeld, MPH, PhD^{1,6} (<u>1.lohfeld@qub.ac.uk</u>) 9
- Van Thu Nguyen, BA⁷ (van.nguyen@orbis.org) 10
- Hue Thi Nguyen, MD, MPH⁷ (hue.nguyen@orbis.org) 11
- Quan Nhu Nguyen, MD, PhD⁸ (bsquan2009@gmail.com) 12
- Catherine Dardis, MSc⁹ (<u>cathy831oph@gmail.com</u>) 13
- Gianni Virgili MD^{1,9} (G.Virgili@qub.ac.uk) 14
- Prabhath Piyasena, MB BS, PhD¹, (m.piyasena@qub.ac.uk) 15
- Huong Tran, MPA⁷ (Huong.Tran@orbis.org) 16
- 17 Recivall Salongcay, MD, MPM¹ (R.SALONGCAY@qub.ac.uk)
- Mai Quoc Tung, MD, PhD⁸ (maitungtn@gmail.com) 18

BMJ Open

2 3 4 5	19	Tunde Peto, MD, PhD ^{1,9} (<u>T.Peto@qub.ac.uk</u>)
6 7 8	20	Affiliations:
9 10 11	21	¹ Centre for Public Health, Queen's University of Belfast, Belfast, UK
12 13 14 15	22	² Orbis International, New York, USA
16 17 18	23	³ Zhongshan Ophthalmic Centre, Guangzhou, China
19 20 21 22	24	⁴ Ophthalmology Department, Hanoi Medical University, Hanoi, Vietnam
23 24 25	25	⁵ Save Sight Institute, The University of Sydney School of Medicine, Sydney, Australia
26 27 28 29	26	⁶ Eye Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
30 31 32	27	⁷ Orbis International in Vietnam, Hanoi, Vietnam
33 34 35 36	28	⁸ Vitreo-Retina Department, Ho Chi Minh Eye Hospital, Ho Chi Minh City, Vietnam
37 38 39	29	⁹ Department of Ophthalmology, Belfast Health and Social Care Trust, NI
40 41 42	30	*Corresponding author Katie Curran
43 44 45 46	31	Katie Curran
47 48 49	32	Centre for Public Health
50 51 52	33	Institute of Clinical Sciences, A
53 54 55	34	Queen's University Belfast
56 57 58	35	BT12 6BA
59 60	36	Email: <u>k.curran@qub.ac.uk</u>

3	
4	
5	
6	
7 8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
17 18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

37 Keywords: Diabetic retinopathy, diabetic retinopathy training, screening

Word Count: 2545

39 Abstract

38

Objectives: To compare the accuracy of trained level 1 diabetic retinopathy (DR) graders
(nurses, endocrinologists, one general practitioner), level 2 graders (mid-level
ophthalmologists) and level 3 graders (senior ophthalmologists) in Vietnam against a
reference standard from the UK, and assess the impact of supplementary targeted grader
training.

45 **Design:** Diagnostic test accuracy study.

46 Setting: Secondary care hospitals in Southern Vietnam

Participants: DR training was delivered to Vietnamese graders in February 2018 by National 47 Health System (NHS) UK graders. Two-field retinal images (412 patient images) were 48 graded by 14 trained graders in Vietnam between August-October 2018 and then re-graded 49 retrospectively by an NHS-certified reference standard UK optometrist (Phase I). Further 50 directed DR training based on Phase I results was delivered to graders in November 2019. 51 After training, a randomised subset of images from January-October 2020 (115 patient 52 images) was graded by 6 of the original cohort (Phase II). The reference grader re-graded all 53 images from Phase I and II retrospectively in masked fashion. 54

55 Primary and secondary outcome measures: Sensitivity was calculated at the two different
56 time points and Chi-Squared was used to test significance.

BMJ Open

2
3
4
4 5 6 7 8
6
7
8
9 10
10
11
12
13
13 14 15
16
17
18
16 17 18 19
20
21
22
23
24
25
26 27
27
29
30
31
32
33
34
35
36
37 38
30 39
40
41
42
43
44
45
46
47
48 49
49 50
50 51
52
53
54
55
56
57
58
59

57	Results: In Phase I, the sensitivity for detecting any DR for all grader groups in Vietnam
58	was low and improved in Phase II after additional training was delivered. The greatest
59	improvement was seen among level 1 graders (P<0.001) and the lowest improvement was
60	observed among level 3 graders (P=0.326). There was an improvement in sensitivity for
61	detecting any DR and referable diabetic macular oedema between all grader levels and whilst
62	the differences were statistically significant, the post-training values were suboptimal (41.8%
63	to 61.5%). The main disagreement was the detection of ungradable images.
64	Conclusions: This study demonstrates that targeted training interventions can improve
65	accuracy of DR grading in a low-middle income country. These findings have important
66	implications for improving service delivery in DR screening programmes in low-resource
67	settings.
68	Article Summary Strengths and limitations of this study
69	Strengths and limitations of this study
70	• Graders in Vietnam were trained to detect DR based on the UK's DR screening model
70 71	 Graders in Vietnam were trained to detect DR based on the UK's DR screening model This study describes the impact of a training intervention to improve DR grading in
71	• This study describes the impact of a training intervention to improve DR grading in
71 72	• This study describes the impact of a training intervention to improve DR grading in Vietnam
71 72 73	• This study describes the impact of a training intervention to improve DR grading in Vietnam
71 72 73 74	• This study describes the impact of a training intervention to improve DR grading in Vietnam
71 72 73 74	• This study describes the impact of a training intervention to improve DR grading in Vietnam

77 Introduction

The prevalence of diabetes among adults in Vietnam is approximately 6% and has almost doubled over the past decade.[1] Early detection through diabetic eye screening programmes (DESPs) is important to reduce the risk of avoidable blindness due to diabetic retinopathy (DR). Since the introduction of systematic DESPs in the UK, a high-income country (HIC), diabetic retinopathy (DR) is no longer the leading cause of blindness among working age adults.[2] The key to such successful DESPs is implementing accurate, innovative and costeffective models tailored to fit healthcare systems and contexts.

Investing in training personnel to increase human resources and procuring appropriate
diagnostic and treatment equipment are essential to ensure that service providers can deliver
optimum care for people with DR. In low-middle income countries (LMICs), there is often
insufficient capacity to implement robust DESPs due to the lack of skilled human resources
and infrastructure.[3,4] In Vietnam, there are only 14 ophthalmologists per million population
compared to 49 per million in the UK.[5]

All screening programmes must provide evidence of their ability to detect the targeted condition and ensure that the service performs efficiently to improve screening accuracy when it falls short. To date, there is insufficient evidence on DR grading accuracy using non-mydriatic digital imaging by trained graders in LMICs, and even less about the capacity of DESPs in LMICs to improve where poor accuracy is detected. The current retrospective study is designed to assess accuracy of a range of graders in a non-governmental organisation (NGO)-supported DESP in Vietnam, and to study the efficacy of a quality-improvement intervention.

99 Methods

Page 7 of 37

BMJ Open

Study participants: The 14 participants from Vietnam in Phase I included: Level 1 DR graders (6 nurses, 1 general practitioner and 2 endocrinologists, all with < 1 year grading experience, 55.6% female), Level 2 DR graders (3 newly-qualified ophthalmologists with < 1 year formal DR grading experience, 100% female), and Level 3 DR graders (2 senior ophthalmologists with >5 years' experience providing treatment for sight threatening DR, but with <1 year formal DR grading experience, 100% male). In Phase II, 6/14 graders (3 Level 1, 2 Level 2, 1 Level 3) from Phase I were included. The reference standard from the UK (KC) was a fully-qualified optometrist trained in DR grading and certified by the UK NHS DESP.[6] Vietnamese Level 1, 2 and 3 graders are equivalent to primary, secondary and arbitration graders, respectively, in UK DESPs.[7] In the current study, Vietnamese Level 1 and Level 2 graders graded all fundus images for DR. All images having disagreement between graders, and an additional randomly-selected 40% of all images, were sent for arbitration grading by Level 3 graders in Vietnam. All graders in Vietnam were masked to any prior diagnoses or grades of the reference standard, while the reference standard was also masked to results of grading in Vietnam. Fundus images were graded for 412 patients in phase I and 115 patients in phase II (Figure 1 and figure 2).

DR training for graders in Vietnam: As part of a DESP project supported by NGO Orbis International, a team of five Vietnamese doctors and medical administrators visited a Northern Ireland (NI) DESP in September 2017 to receive training on screening, programme administration and quality control methods. In February 2018, a senior UK NHS grader from the Belfast Trust (CD) and a fully-qualified optometrist, trained in DR grading and certified by the NHS (KC), visited Vietnam to deliver DR training to graders involved in the DESPs. (See supplementary material, figure S1 for training timeline). Training focused on ocular anatomy, retinal diseases, DR signs and grading (based on the UK National Screening

Committee (NSC) classification system), and appropriate referral pathways and management
(Supplementary material, Table S1).[8]

Image acquisition and management: Images were captured by trained nurses and technicians in Vietnam. Two-field, 45° digital colour photographs (one disc-centred and one macula-centred) were taken using a tabletop non-mydriatic fundus camera (Canon CR2-AF, Canon Medical Systems. Europe), in accordance with the UK's NHS DESP.[9] Nurses and technicians were trained to repeat inadequate images as a quality control measure and take anterior segment photographs where adequate fundus images were not possible. Images were anonymised and uploaded to a cloud-based software system (Spectra)[®] for analysis by trained DR graders in Vietnam. The images were transferred to a Queen's University Belfast (QUB) server for re-grading by the reference standard.

Assessment of gradeability: Image quality was defined as 'adequate' or 'inadequate' in
accordance with NHS DESP guidelines as outlined below;

• Adequate disc-centred image: complete optic disc >2DD from edge of image and fine vessels visible on surface of the disc.[9]

Adequate macula-centred image: centre of fovea >2DD from edge of image and
 vessels visible within 1DD of centre of fovea.[9]

The disc-centred and macula-centred images for each eye were viewed as a pair and graded at an individual eye level. The presence of DR and diabetic macular oedema (DMO) was also determined at a patient level and based on the worst affected eye. Participants with ungradable images were referred for further slit-lamp examination. Where images were considered inadequate but referable disease was detectable, the referable grade was recorded and the patients were moved onto the appropriate referable grade pathway.[9] Page 9 of 37

BMJ Open

Consecutive patients diagnosed with diabetes and undergoing evaluation for possible DR at Ho Chi Minh City General Hospital and Ho Chi Minh Eye Hospital (tertiary hospitals), Tien Giang General Hospital (provincial hospital) and Cai Ba General Hospital (district hospital) in Vietnam were recruited. Fundus images from August to October 2018 (Phase I) were graded by 14 graders in Vietnam and then re-graded retrospectively by a reference standard from the UK in Phase I. Targeted remedial training, based on specific findings from the Phase I analysis, was delivered in March 2019 and November 2019 by UK graders and Orbis. (Supplementary material, figure S1) Additionally, regular testing and training for quality assurance purposes was also introduced, similar to UK DESP models. To evaluate the impact of this quality-improvement intervention, a new subset of images was graded by six of the original cohort of graders between January-October 2020 (Phase II) and re-graded by the reference standard from the UK (KC) in September 2021.

Statistical analysis: Data were entered into Microsoft Excel version 16.0 and then transferred to Stata 17.0 (StataCorp LLC) for analysis. Intra and inter-grader agreement was calculated using kappa and a stratified random sampling technique was utilised to ensure a representative sample of images was re-graded (Supplementary tables S2 and S3). Diagnostic test accuracy (DTA) comparing graders in Vietnam with the UK reference standard was assessed by calculating sensitivity, specificity, positive predicative values (PPV) and negative predictive values (NPV). Sensitivity was calculated at the two different time points (Phase I and Phase II) and Chi Squared was used to test significance.

Patients or the public were not involved in the design, or conduct, or reporting, ordissemination plans of our research.

Results

2	
3	
4	
4 5	
ر ح	
6	
7	
8	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
18	
10	
20	
20	
21	
22	
23	
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38	
25	
26	
20	
27	
28	
29	
30	
31	
32	
33	
24	
24	
35	
36	
37	
38	
39	
40	
41 42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	

1

174

Patient characteristics: In Phase I, 65.4% of patients were female with a mean age 59.4
years. In Phase II, 40.0% were female with a mean age of 59.8 years. Figures 1 and 2
describe enrolment of patients and capture and grading of images in Phase I and II of the
study respectively.

to been teriew only

$\begin{array}{c}1\\2\\3\\4\\5\\6\\7\\8\\9\\10\\11\\2\\3\\14\\15\\16\\7\\8\\9\\0\\11\\22\\23\\4\\5\\26\\27\\28\\9\\0\\11\\22\\33\\4\\5\\36\\7\\8\\9\\40\\41\\42\\43\\45\\6\\7\\8\\9\\40\\41\\42\\43\\45\\6\\7\\8\\9\\40\\41\\42\\43\\45\\6\\7\\8\\9\\40\\41\\42\\43\\45\\6\\7\\8\\9\\40\\41\\42\\43\\45\\6\\7\\8\\9\\40\\41\\42\\43\\45\\6\\7\\8\\9\\40\\41\\42\\43\\45\\6\\7\\8\\9\\40\\41\\42\\43\\45\\6\\7\\8\\9\\40\\41\\42\\43\\45\\6\\7\\8\\9\\40\\41\\42\\43\\45\\6\\7\\8\\9\\40\\41\\42\\43\\45\\6\\7\\8\\9\\40\\41\\42\\43\\45\\6\\7\\8\\9\\40\\41\\42\\43\\45\\6\\7\\8\\9\\40\\41\\42\\43\\45\\6\\7\\8\\9\\40\\41\\42\\43\\45\\6\\7\\8\\9\\40\\41\\42\\43\\45\\6\\7\\8\\9\\40\\41\\42\\43\\45\\6\\7\\8\\9\\40\\41\\42\\43\\45\\46\\47\\45\\46\\47\\46\\47\\46\\47\\46\\47\\47\\47\\46\\47\\47\\47\\46\\47\\47\\47\\47\\47\\47\\47\\47\\47\\47\\47\\47\\47\\$	175	Figure 1	
41 42 43 44 45 46			

3 4	177	Figure 2
5		
6	178	

to beet terien only

2	
3 4	179
5 6	180
7 8	181
9 10 11	182
12 13	183
14 15	404
16 17	184
18 19	185
20 21	
22 23 24	
24 25 26	
27 28	
29 30	
31 32	
33 34	
35 36	
37 38 20	
39 40 41	
42 43	
44 45	
46 47	
48 49	
50 51	
52 53	
54 55	
56 57	
58 59 60	
00	

79 Initial grading performance analysis (Phase I): The sensitivity for detecting any DR was

180 low against the reference standard in the UK for all grader groups in Vietnam. The sensitivity

181 for detecting referable DR and referable DMO was even lower for all grader groups (Table

- 1). (See supplementary table S4 for prevalence of DR and table S5 for grading performance,
- 183 excluding ungradable images)

184 Table 1. Diagnostic test accuracy of DR graders in Vietnam against a reference

185 standard from the UK, including ungradable images.

	Level 1 graders (n=410 patient images)*	Level 2 graders (n=410 patient images)*	Level 3 graders (n=260 patient images)†
Any DR			
Sensitivity (%) (95% CI)	41.8 (33.9, 50.1)	42.5 (34.5, 50.7)	42.2 (33.1, 51.8)
Specificity (%) (95% CI)	87.9 (83.3, 91.7)	98.8 (96.6, 99.8)	100 (97.5, 100)
PPV (%) (95% CI)	67.4 (57.0, 76.6)	95.6 (87.6, 99.1)	100 (92.7, 100)
NPV (%) (95% CI)	71.7 (66.4, 76.7)	74.3 (69.3, 78.8)	68.2 (61.5, 74.5)
Referable DR		6	<u> </u>
Sensitivity (%) (95% CI)	19.2 (9.63, 32.5)	13.5 (5.59, 25.8)	10.5 (2.94, 24.8)
Specificity (%) (95% CI)	97.2 (94.9, 98.7)	100 (99.0, 100)	99.5 (97.5, 100)
PPV (%) (95% CI)	50.0 (27.2, 72.8)	100 (59.0, 100)	80.0 (28.4, 99.5)
NPV (%) (95% CI)	89.2 (85.7, 92.1)	88.8 (85.3, 91.7)	86.7 (81.9, 90.6)
Referable DMO			
Sensitivity (%) (95% CI)	5.8 (1.91, 13.0)	20.9 (12.9, 31.0)	16.9 (8.76, 28.3)
Specificity (%) (95% CI)	97.2 (94.8, 98.7)	99.4 (97.8, 99.9)	100 (98.1, 100)
PPV (%) (95% CI)	35.7 (12.8, 64.9)	90.0 (68.3, 98.8)	100 (71.5, 100)
NPV (%) (95% CI)	79.5 (75.2, 83.4)	82.6 (78.4, 86.2)	78.3 (72.7, 83.3)
Abbreviations: UK = U Macular Oedema, CI = 0 Grading criteria: UK Na	Inited Kingdom, DR Confidence Intervals,	= Diabetic Retinopath	y, DMO = Diabetic
system (See supplement Any DR, is defined as g	ary material, Table S	1 for more details).	(INDEST) CLASSIFICATION
Referable DR is defined Referable DMO is defined	as grades R2, R3a an	nd U	

*Missing (n=2, 0.5%), †missing (n=2, 0.8%)

Sensitivity is the ability of a test to correctly identify patients with a disease and specificity is the ability of a test to correctly identify people without the disease

Positive predictive value (PPV) is the proportion of those who test positive who have the condition (true positives) and negative predictive value (NPV) is the proportion of those who test negative who do not have the condition (true negatives). Subsequent grading performance after retraining (Phase II): Subsequently, a further subset of images from 115 consecutive patients from January to October 2020 were graded by 6 of the original cohort of 14 Vietnamese graders, and were regraded in the UK to evaluate graders' performance after targeted training was delivered and quality control measures were instituted. The greatest improvement in sensitivity for detecting any DR was seen among level 1 graders (difference: +45.4%, 95%CI +33.1% to +57.8%; P<0.001). The specificity increased from 87.9% in phase I to 95.6% in phase II which helps to avoid over referrals (difference: +7.7%, 95%CI +1.4% to +13.9%; p=0.069). The lowest improvement in sensitivity for detecting any DR was observed between level 3 graders in Vietnam (difference; +9.0%, 95%CI: -9.0% to +27.1%; p=0.326), although their specificity remained 100% at phase I and phase II. There was an improvement in sensitivity for detecting DR and referable DMO between all grader levels and whilst there were statistically significant

differences, sensitivities after training were still insufficient and comprised between about 40% and 61.5% (Table 2). (See supplementary table S4 for prevalence of DR and table S6 for

grading performance, excluding ungradable images).

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

206 Table 2: Diagnostic test accuracy of DR graders in Vietnam against a reference

207 standard from the UK after additional DR training was delivered.

	Level 1 graders (n=115 patient	graders (n=115	Level 3 graders (n=62 patient
	• `		(in of patient
	images)	patient images)	images)
Any DR			
Sensitivity (%) (95% CI)	87.2 (74.3, 95.2)	68.1 (52.9, 80.9)	51.3 (34.8, 67.6)
Specificity (%) (95% CI)	95.6 (87.6, 99.1)	95.6 (87.6, 99.1)	100 (84.6, 100)
PPV (%) (95% CI)	93.2 (81.3, 98.6)	91.4 (76.9, 98.2)	100 (83.2, 100)
NPV (%) (95% CI)	91.5 (82.5, 96.8)	81.3 (71.0, 89.1)	53.7 (37.4, 69.3)
P-value comparing sensitivity to	P=0.000	P=0.002	P=0.326
Phase I			
Referable DR			
Sensitivity (%) (95% CI)	53.3 (26.6, 78.7)	40.0 (16.3, 67.7)	58.3 (27.7, 84.8)
Specificity (%) (95% CI)	90.0 (82.4, 95.1)	93.0 (86.1, 97.1)	100 (92.7, 100)
PPV (%) (95% CI)	44.4 (21.5, 69.2)	46.2 (19.2, 74.9)	100 (59.0, 100)
NPV (%) (95% CI)	92.8 (85.7, 97.0)	91.2 (83, 95.9)	90.7 (79.7, 96.9)
P-value comparing sensitivity to	P=0.009	P=0.022	P=0.001
Phase I			
Referable DMO			
Sensitivity (%) (95% CI)	56.3 (29.9, 80.2)	43.8 (19.8, 70.1)	61.5 (31.6, 86.1)
Specificity (%) (95% CI)	97.0 (91.4, 99.4)	93.9 (87.3, 97.7)	100 (92.6, 100)
PPV (%) (95% CI)	75.0 (42.8 94.5)	53.8 (25.1, 80.8)	100 (63.1, 100)
VPV (%) (95% CI)	93.2 (86.5, 97.2)	91.2 (83.9, 95.9)	90.6 (79.3, 96.9)
P-value comparing sensitivity to	P=0.000	P=0.051	P=0.002
Phase I			
Abbreviations: UK = United King		c Retinopathy, DM	O = Diabetic
Aacular Oedema, CI = Confidence			
Grading criteria: UK National Diab	• •		SP) classification
ystem (See supplementary materia	l, Table S1 for mor	e details).	
Criteria:			
Any DR is defined as grades R1, R	2, R3s, R3a and U.		
Referable DR is defined as grades I	R2, R3a and U		
Referable DMO is defined as grade	s M1 and U		
Chi-squared used to compare sensit	ivity between Phas	e I and II.	
Sensitivity is the ability of a test to	correctly identify p	atients with a disea	se and specificity
he ability of a test to correctly iden	tify people without	t the disease	
Positive predictive value (PPV) is t	he proportion of the	ose who test positiv	e who have the
ondition (true positives) and negat	ive predictive value	e (NPV) is the prop	ortion of those wh
est negative who do not have the c	-		

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

Results from our study demonstrate extremely poor sensitivity and specificity for detecting all levels of DR, especially referable DR, in the early stages of programme delivery. This translates into increased costs to the health care system due to missed opportunities for early treatment and un-necessary examinations for false-positive referrals. The quality of patient care also suffers. Didactic DR training was delivered to graders in Vietnam over a two-year period by trained DR graders from the UK and Vietnam. Training was specifically targeted to address problems identified in the Phase I testing [10], and quality control testing using international test and training (iTAT) were also undertaken. The iTAT is an online platform offering monthly quality assurance and training for graders who work in DR screening. It is a useful platform for graders to improve their skills in the detection of DR from ophthalmic images. In the UK, it is compulsory for graders to complete monthly test sets (each set consisting of 20 retinal images with a range of DR severities). If graders fall below the agreed threshold, additional training and support is provided.[7] This study demonstrates that these steps led to improved grading accuracy for all classes of patients and graders; however, results remain suboptimal for a screening programme. We found that the main discordance was the graders' ability to detect ungradable images, therefore, targeted training must be given to ensure patients are referred to the next level (slit-lamp examination). According to the UK National Institute for Clinical Excellence (NICE) guidelines, DR screening tests must have at least 80% sensitivity and 95% specificity with a technical failure of 5% or less. These requirements may not be applicable to LMICs, especially at the start of the programme where a relatively low number of patients are being screened.

Results can be poor in these settings for a variety of reasons, quality assessment is crucial,
 and programmatic changes based on models such as the UK DESP can be successful in
 enhancing grader accuracy in LMICs settings. However, it is fundamental for countries to
 adapt their own DR classification system and referral pathways to meet their requirements.

Page 17 of 37

BMJ Open

1	
2	
3	
4	
5	
3 4 5 6 7 8 9 10	
0	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27	
21	
22	
23	
24	
25	
26	
27	
28	
20	
 30 31 32 33 34 35 36 37 	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52 53	
54	
55	
56	
57	
58	
59	
60	

	235	As an example, the UK system (England, Wales and Northern Ireland) uses the grade M0 for
	236	no maculopathy and M1 for referable maculopathy. In Scotland, M0 denotes no
	237	maculopathy, M1 observable maculopathy and M2 referable maculopathy allowing some
0 1	238	monitoring of maculopathy to take place on screening level. This reduces the burden on the
2 3	239	hospital system. The implication for LMICs is that being aware of hospital capacity at the
4 5	240	planning stage might mean that they need to safely adapt an accepted grading system to their
6 7 8	241	needs. Most importantly, the role of affiliated hospitals (and partnerships, coordination
9 0	242	among training institutions and practical hospitals) are crucial for DR grading quality
2 2	243	improvement.
3 4		
4 5 6	244	Studies in LMICs and HICs have assessed the accuracy of non-medical graders and medical
.7 .8	245	graders in the detection of DR and found that both grader types are capable of achieving
9 0	246	moderate-high sensitivity for detecting DR.[11-15] Some studies have described what
1 2 3	247	training interventions were used to train their graders and key elements may be incorporated
4 5	248	into our training programme in the future.[15-16]
6		
7 8 9	249	In the UK, the DR grading course by the Gloucestershire Retinal Education Group is is
0 1	250	required for grader certication. The high costs of this course may be more challenging in
2 -3 -4	251	LMICs due to limited funding.[6]
5 6 7	252	Strengths: This study describes the impact of a training intervention to improve the quality
.9	253	of DR grading in an LMIC. The inclusion of ungradable images in this study was a logical
0 1	254	decision, particularly when the prevalence of cataract (which often renders DR images
2 3	255	ungradable) is high in LMICs.[11] Dense cataracts normally obstruct the view of the fundus,
4 5 6	256	making it difficult to obtain clear fundus photographs and assign a DR grade. In these
7 8	257	instances, referring patients to an eye clinic for further assessment and treatment as needed is
9 0	258	required. Determining sensitivity and specificity at the patient level is also important from a

BMJ Open

DESP implementation perspective. In the UK and Vietnam, both eyes are typically examined for DR and a single outcome is assigned to the patient, as was done here. For these reasons, we feel our analytic approach, and thus results, are relevant to these settings.

Limitations: Limitations for this study have also been acknowledged. Data from this study represent routine clinical practice. In daily DR screening, not all patients undergoing primary (Level 1) and secondary (Level 2) grading proceed to arbitration grading (Level 3). This means a proportion of images were not graded by arbitration graders as outlined in figure 1 and figure 2. Second, only 6/14 graders from Phase I were included in Phase II grading; however the distribution of grader levels was similar. Third, though the proportion of patients excluded was small, we are unable to fully characterise the reasons for these exclusions, due to the nature of the study as a programmatic evaluation. Some potential reasons for this are a patient's unwillingness to participate in the study, graders having forgotten to ask for patient consent to participate in the study, and patient inability to comply with image capture. Fourth, pupil status (size and cataract status) was not recorded in this study and this can be important for LMICs. Finally, it was not practical for the UK reference standard to examine patients clinically in Vietnam; however, the method of grading by a certified DR grader or clinical specialist is widely used as the reference standard in many screening programmes.

Conclusions: This paper shows how grading accuracy was particularly low among all grader
 groups in Vietnam in the first six months of DESP implementation. Many factors may have
 contributed to poor grader performance, including inadequate training and feedback,
 insufficient time to participate in quality assurance testing and competing work
 responsibilities. After additional training, testing and quality assurance systems were
 implemented in Vietnam, DTA improved among all grader groups, however a significant
 amount of work is still needed. In particular, training graders to detect ungradable cases is

Page 19 of 37

BMJ Open

1 2 3 4 5	
6 7 8 9 10 11 12	
13 14 15 16 17 18	
19 20 21 22 23 24	
25 26 27 28 29 30	
31 32 33 34 35 36	
 37 38 39 40 41 42 	
43 44 45 46 47 48	
49 50 51 52 53 54	
55 56 57 58 59 60	

283	crucial. With continuous quality improvement, monthly international test and training,
284	periodic DR workshops and reviewal of certification, we would expect the DR sensitivity and
285	specificity to improve. A qualitative study to determine why the initial training intervention
286	was less successful should be explored. Since further improvements are required,
287	understanding how other countries implement such programmes would be beneficial. Future
288	studies should outline what DR training interventions were used, state relevant training
289	courses and explain what quality assurance measures are in place. The findings from this
290	study are important for DESP programme planners in Vietnam and other LMICs,
291	highlighting the importance of quality monitoring and directed re-training as needed.
292	Acknowledgements: The authors are very grateful to all participants in Vietnam and
293	Northern Ireland who generously gave their time for this study and to Orbis International.
294	Author contributions: All authors (KC, NC, TTH, LL, VTN, HTN, QHN, CD, GV, PP, HT, RS,
295	MQT, TP) have made substantial contributions to the conception of the design of the work. KC and
296	GV analysed and interpreted the data. All authors (KC, NC, TTH, LL, VTN, HTN, QHN, CD, GV,
297	PP, HT, RS, MQT, TP) read and approved the final manuscript.
298	Funding: The project was funded by the Department for the Economy (DfE) – Global
299	Challenges Research Fund (GCRF) Awards (Grant number: DFEGCRF17-18/Peto). None of
300	the funders were involved in the design or conduct of the study; preparation, review or
301	approval of the manuscript; or decision to submit the manuscript for publication. Nathan
302	Congdon is supported by the Ulverscroft Foundation (UK) (No award/grant number). Katie
303	Curran is funded by the Wellcome Trust (No award/grant number).
304	Competing Interests: Nathan Congdon is employed as a Research Director by Orbis
305	International.

1 2 3 4 5	306	Patie	ent consent for publication: Not required.
6 7 8	307	Ethio	cs approval: This research adhered to the tenets of the Declaration of Helsinki. Ethical
9 10	308	appro	oval was granted by the Hanoi Medical University Institutional Review Board in Bio-
11 12	309	Medi	ical Research, Vietnam (No. 0518/HMU IRB). Written informed consent was obtained
13 14 15 16	310	from	all participants prior to their being interviewed.
16 17 18	311	Data	sharing statement: All datasets relevant to the study are included in the article or
19 20	312	uploa	aded as supplementary information.
21 22 23 24	313	Refe	rences
25 26 27	314	1.	Ngoc NB, Lin ZL, Ahmed W. Diabetes: What challenges lie ahead for Vietnam? Ann
27 28 29 30 31 32 33	315		<i>Glob Heal</i> . 2020;86(1):1–9.
	316	2.	Liew G, Michaelides M, Bunce C. A comparison of the causes of blindness
34	317		certifications in England and Wales in working age adults (16-64 years), 1999-2000
35 36 37	318		with 2009-2010. <i>BMJ</i> Open. 2014;4(2):1–6.
38 39	319	3.	Burgess PI, Msukwa G, Beare NAV. Diabetic retinopathy in sub-Saharan Africa:
40 41 42	320		Meeting the challenges of an emerging epidemic. <i>BMC Med.</i> 2013;11(1):1.
43 44 45	321	4.	Adriono G, Wang D, Octavianus C, Congdon N. Use of eye care services among
46 47	322		diabetic patients in urban Indonesia. Arch Ophthalmol (Chicago, Ill 1960).
48 49 50	323		2011;129(7):930–5.
51 52	324	5.	International Council of Ophthalmology. Number of Ophthalmologists in Practice and
53 54 55	325		Training Worldwide [Internet]. 2012 [cited 2020 Aug 13]. Available from:
56 57	326		http://www.icoph.org/ophthalmologists-worldwide.html
58 59 60	327	6.	Gloucestershire Retinal Education Group. Diabetic Retinopathy Grading Course

Page 21 of 37

1

BMJ Open

2 3	220		[Internet] 2020 [sited 2021 April] Assilette forms https://documentine.org/dichetic
4 5	328		[Internet]. 2020. [cited 2021 April] Available from: https://drscreening.org/diabetic-
6 7	329		retinopathy-grading-course
8 9	330	7.	Widdowson S, Taylor D. The management of grading quality: Good practice in the
10 11 12	331		quality assurance of grading. [Internet] 2015. [cited 2021 April] Available from:
13 14	332		https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachmen
15 16 17	333		t_data/file/512832/The_Management_of_Grading.pdf
18 19	334	8.	Public Health England. NHS Diabetic Eye Screening Programme Grading definitions
20 21 22	335		for referable disease. [Internet] 2021 (cited 2021 September] Available from:
23 24	336		https://www.gov.uk/government/publications/diabetic-eye-screening-retinal-image-
25 26	337		grading-criteria/nhs-diabetic-eye-screening-programme-grading-definitions-for-
27 28 29	338		referable-disease
30 31	339	9.	NHS DESP Core Team. Diabetic Eye Screening Programme Pathway for Adequate /
32 33 34	340		Inadequate Images and where images cannot be taken Outlines pathway and business
35 36	341		rules for image capture exceptions and ungradable images. [Internet] 2013.[cited 2021
37 38	342		April] Available from: https://www.gov.uk/government/publications/diabetic-eye-
39 40 41	343		screening-pathway-for-images-and-where-images-cannot-be-taken
42 43	344	10.	Curran K, Congdon N, Peto T, Dardis C, Nguyen NN, Hoange TT et al. Capturing the
44 45 46	345		clinical decision-making processes of expert and novice diabetic retinal graders using a
47 48	346		'think-aloud' approach. Eye. 2022;36:1019-1026
49 50 51	347	11.	Murthy GVS, John N, Shamanna BR, Pant HB. Elimination of avoidable blindness
52 53	348		due to cataract: Where do we prioritize and how should we monitor this decade. Indian
54 55 56	349		J Ophthalmol. 2012;60(5):438–45.
57 58 50	350	12.	McKenna M, Chen T, McAneney H, Membrillo MAV, Jin L, Xiao W, et al. Accuracy
59 60	351		of trained rural ophthalmologists versus non-medical image graders in the diagnosis of

Page 22 of 37

BMJ Open

1

1 2		
2 3 4 5	352	diabetic retinopathy in rural China. Br J Ophthalmol. 2018;102(11):1471-6.
6 7	353	13. Amirul Islam FM. Accuracy and reliability of retinal photo grading for diabetic
8 9	354	retinopathy: Remote graders from a developing country and standard retinal photo
10 11 12	355	grader in Australia. PLoS One. 2017;12(6):1-12.
13 14 15	356	14. Bhargava M, Cheung CYL, Sabanayagam C, Kawasaki R, Harper CA, Lamoureux EL,
16 17	357	et al. Accuracy of diabetic retinopathy screening by trained non-physician graders
18 19	358	using non-mydriatic fundus camera. <i>Singapore Med J.</i> 2012;53(11):715–9.
20 21 22	359	15. Rani PK, Peguda HK, Chandrashekher M, Swarna S, Jonnadula GB, James J et al.
23 24	360	Capacity building for diabetic retinopathy screening by optometrists in India: Model
25 26 27	361	description and pilot results. Indian J Ophthalmol 2021.69:655-659.
28 29	362	16. Srinivasan S, Shetty S, Natarajan V, Sharma T, Raman R. Development and
30 31	363	Validation of a Diabetic Retinopathy Referral Algorithm Based on Single-Field
32 33 34	364	Fundus Photography. PLoS One 2016.11:e0163108.
35		
36 37 38	365	Figure 1: Flow diagram to illustrate enrolment of patients and management of images in Phase I from
39 40	366	August to October 2018 (Initial grading performance analysis). Level 1 and level 2 graders graded the
41 42	367	same set of photographs and level 3 graders graded a subset of these photographs: All disagreements
43 44 45	368	between Level 1 and 2 graders and a 40% random sample of all images.
46 47	369	Figure 2: Flow diagram illustrating the enrolment of patients and management of images included in
48 49	370	Phase II from January 2020 to October 2020 (Follow-up grading performance analysis after re-
50 51	371	training). Level 1 and level 2 graders graded the same set of photographs and level 3 graders graded a
52 53 54	372	subset of these images.
55 56 57 58 59 60	373	

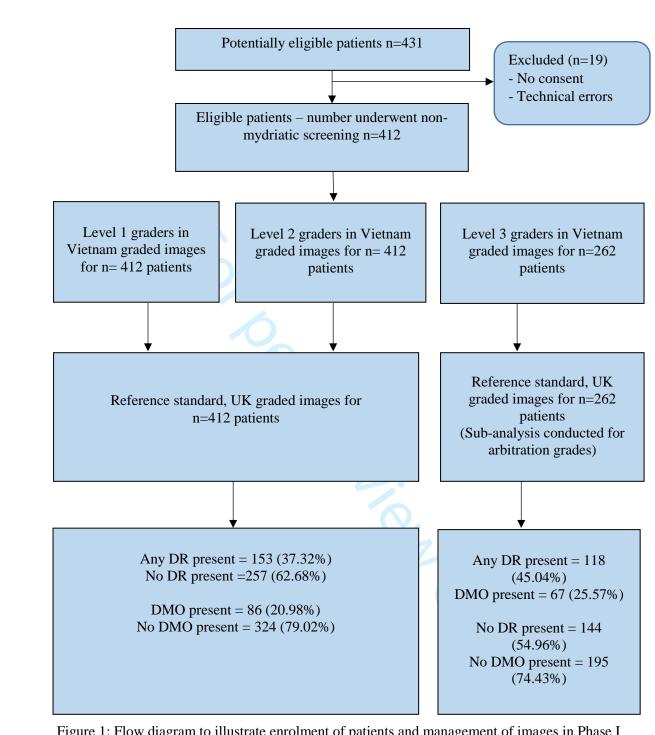


Figure 1: Flow diagram to illustrate enrolment of patients and management of images in Phase I from August to October 2018 (Initial grading performance analysis). Level 1 and level 2 graders graded the same set of photographs and level 3 graders graded a subset of these photographs: All disagreements between Level 1 and 2 graders and a 40% random sample of all images.

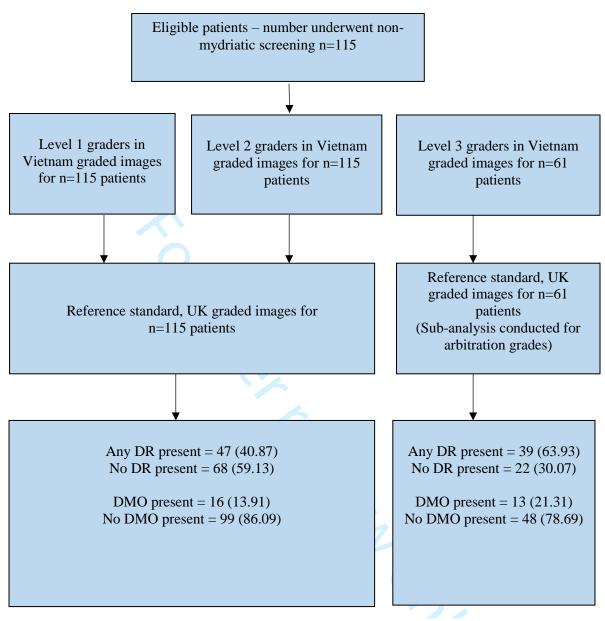


Figure 2: Flow diagram illustrating the enrolment of patients and management of images included in Phase II from January 2020 to October 2020 (Follow-up grading performance analysis after retraining). Level 1 and level 2 graders graded the same set of photographs and level 3 graders graded a subset of these images.

SUPPLEMENTARY MATERIAL

September 2017 (5 days)

- Five Vietnamese doctors and medical administrators visited Northern Ireland to receive screener/graders training in administration and failsafe methods.
- These doctors delivered training to new graders in Vietnam following their visit to Northern Ireland.

January 2018 (1 week) – Delivered in person in Vietnam by two UK graders (senior ophthalmic nurse and optometrist, certified in DR grading)

- Observation in retina clinics.
- Hands on training with tabletop CR-2 Canon Fundus Cameras.
- Topics covered: ocular anatomy, retinal disease, DR signs, DR grading (based on the UK DESP grading classification system) and appropriate referral pathways and management (PowerPoint presentation and interactive sessions).
- All graders received a module workbook.
- •Certifcation provided by Orbis.

March 2018 - Grading began in Vietnam

- Graders began grading as part of pilot DESP.
- Ongoing training was delivered by the Orbis team and the lead ophthalmologist for DR screening in Vietnam over the course of the following months.

June 2018 (1-2 days) – Delivered by Orbis partners

• UK graders developed a PowerPoint presentation based on DR case examples and this was delivered by Orbis.

March 2019 (2 days) - Delivered by UK grader in Vietnam

• More training on DR case examples.

November 2019 (3 days) - Delivered in person in Vietnam by two UK graders (senior ophthalmic nurse and optometrist, certified in DR grading)

- Refresher DR training, incorporating think-aloud techniques into practical teaching sessions.
- Pre and post training assessments.
- Encouraged use of international test and training (iTAT) for quality assurance purposes. Practical sessions on iTAT.

Figure S1: A flow chart to highlight the training timeframe for graders in Vietnam

Diabetic retinopathy workshop for graders in Vietnam

and support. DAY 4- Thursday 1 MORNING 9:00 - 9:30 (C 9:30 - 10.30 I 10.30-10.45 7 10.45-11.30 H I AFTERNOON 13.30-14:00 N 14:00-14:45 I 14:45-15:00 7 15:00-16:00 H	Check in ntroduction on Diabetic Retinopathy Fea Break Basic Screening Component Lunch NHS Grading System mage Quality Fea Break	UK graders and Orbis team UK graders and Orbis team UK graders and Orbis team
9:30 – 10.30 I 10.30-10.45 7 10.45-11.30 H I AFTERNOON 13.30-14:00 N 14:00-14:45 I 14:45-15:00 7 15:00-16:00 I 16:0-16:30 H	Check in ntroduction on Diabetic Retinopathy Fea Break Basic Screening Component Lunch NHS Grading System mage Quality Fea Break	UK graders and Orbis team UK graders and Orbis
MORNING 9:00 - 9:30 0 9:30 - 10.30 1 10.30-10.45 7 10.45-11.30 F I 1 AFTERNOON 1 14:00-14:45 1 14:45-15:00 7 15:00-16:00 1 16:0-16:30 F	Check in ntroduction on Diabetic Retinopathy Fea Break Basic Screening Component Lunch NHS Grading System mage Quality Fea Break	and Orbis team UK graders and Orbis
9:30 – 10.30 I 10.30-10.45 7 10.45-11.30 H I AFTERNOON 13.30-14:00 N 14:00-14:45 I 14:45-15:00 7 15:00-16:00 I 16:0-16:30 H	ntroduction on Diabetic Retinopathy Fea Break Basic Screening Component Lunch NHS Grading System mage Quality Fea Break	and Orbis team UK graders and Orbis
10.30-10.45 7 10.45-11.30 H I I AFTERNOON 13.30-14:00 14:00-14:45 I 14:45-15:00 7 15:00-16:00 I 16:0-16:30 H	Fea Break Basic Screening Component Lunch NHS Grading System mage Quality Fea Break	and Orbis team UK graders and Orbis
10.30-10.45 7 10.45-11.30 H I I AFTERNOON 13.30-14:00 14:00-14:45 I 14:45-15:00 7 15:00-16:00 I 16:0-16:30 H	Fea Break Basic Screening Component Lunch NHS Grading System mage Quality Fea Break	UK graders and Orbis
I AFTERNOON 13.30-14:00 N 14:00-14:45 I 14:45-15:00 7 15:00-16:00 I 16:0-16:30 H	Lunch NHS Grading System mage Quality Fea Break	and Orbis
I AFTERNOON 13.30-14:00 N 14:00-14:45 I 14:45-15:00 7 15:00-16:00 I 16:0-16:30 H	Lunch NHS Grading System mage Quality Fea Break	and Orbis
13.30-14:00 N 14:00-14:45 I 14:45-15:00 T 15:00-16:00 I 16:0-16:30 H	mage Quality Fea Break	and Orbis
13.30-14:00 N 14:00-14:45 I 14:45-15:00 T 15:00-16:00 I 16:0-16:30 H	mage Quality Fea Break	and Orbis
14:00-14:45I14:45-15:00715:00-16:00I16:0-16:30H	mage Quality Fea Break	and Orbis
14:45-15:00715:00-16:00I16:0-16:30H	Tea Break	team
16:0-16:30 H	maga Cupding	team
	mage Grading	
DAY 5- Friday 2nd	Hospital pathway	_
	February	
MORNING		
9:00-9:30	Other ocular findings	UK graders
	Practice on grading	and Orbis team
11:30-12:00 V	Wrap up	

Refresher training programme for DR graders in Vietnam (delivered by UK graders and Orbis)

in November 2019

Time	Topics	Method	Who	Preparation
	-	DAY 1		1
8:45- 9:15	Introduction/ Pre course quiz		Orbis VN/ UK graders	UK graders
9:15- 9:45	Diabetic Retinopathy (DR) - New Challenges of Blindness Prevention Objective: Understand the problem of DR and current efforts to manage vision loss. Aim to motivate graders to be involved in DESP	Presentation	Orbis VN	Orbis
9:45- 10:15	Retina Anatomy <i>Objective : Understand the</i> <i>pathobiology of diabetic</i> <i>complications and</i> <i>pathogenesis of retinal</i> <i>damage</i>	Presentation	Ho Chi Minh Eye Hospital	Orbis
10:30- 11:15	Diabetic Retinopathy (DR) Pathophysiology <i>Objective : Understand</i> <i>Diabetic Retinopathy</i>	Presentation	UK graders	UK graders
11:15- 12:00	Grading system and DR Grading pathway (UK system)/ How to systematically grade a retinal image Objective : Understanding the grading system and referral pathway (UK standard)	Presentation	UK graders	UK graders
13:30- 14:15	Image quality <i>Objective : Understand the</i> <i>requirements/criteria of</i> <i>image quality for accurate</i> <i>grading</i>	Presentation	UK graders	UK graders
14:15- 14:45	Spectra Software Objective : How to use the current Spectra software for uploading, grading, and managing DR cases	Demonstration	Senior graders of Tien Giang and Ho Chi Minh Eye Hospital	

15:00- 17:00	Practical Training Parallel session:1- Taking retina images of the patients following 	Practical training	Current graders of Tien Giang and Ho Chi Minh Eye Hospital, and UK graders	2 fundus cameras: 4 Groups: make sure every participant is able to practice at least once
15:00- 17:00	Parallel session : 1- Grading DR in the Spectra Objective: Practical experience of how to do DR grading	Practical training	Current graders of Tien Giang and Ho Chi Minh Eye Hospital, and UK graders	3-4 accounts of Spectra 4 Groups : make sure every participant is able to practice at least once
		DAY 2	1	
08:45- 09:00	Recap of day 1/ introduction to day 2		Orbis	
9:00- 9:30	Analysis of retinal fundus images for grading of diabetic retinopathy severity Objective : How to read the image and protocol for retinal image analysis		Ophthalmologist Ho Chi Minh Eye Hospital	
9:30- 10:15	DR Screening Procedure: Best Practice <i>Objective: Discuss how to</i> <i>build the "best screening</i> <i>procedures" into DESPs.</i>	Presentation	UK graders	UK graders
10:30- 11:15	Other Ocular Findings Objective: Awareness of other ocular pathology during DR screening	Presentation	UK graders	UK graders
11:15- 12:15	Image grading case studies competition	Practical	UK graders	We need to organise people into groups of 3 with one experienced grader in each group

13:30- 14:30	Counselling and delivering messages to patients during the DR screening <i>Objective: Important to</i> <i>provide counselling for the</i> <i>patients and deliver</i> <i>messages effectively.</i>	Presentation/ practical training	Orbis Vietnam	
14:30- 16:30	Practical Training Parallel session:1- Taking retina images of the patients following the procedure ,and provide counseling to the patientsObjective: Experience on how to take good fundus photographs	Practical training	Current graders of Tien Giang and Ho Chi Minh Eye Hospital, and UK graders	2 fundus camera 4 Group: make sure every participants are able to practice at least one time
	Parallel session : 1- Grading DR in the Spectra Objective: Practical experience on DR grading	Practical training	Current graders of Tien Giang and Ho Chi Minh Eye Hospital, and UK graders	-4 accounts of Spectra 4 Groups: make sure every participant is able to practice at least one time.
		DAY 3	· 	
08:45-	Part 1 (Fi Recap of day 2/ introduction	nal practical trai	ining)	
9:00	to day 3			
09:00- 09:30	Quality Assurance in Diabetic Screening Objective : Understand why quality assurance is important and the correct steps required to ensure good quality assurance procedures are in place	Presentation	UK graders	UK graders
09:30- 10:30	Practice : Grading in iTAT <i>Objective: Know the Online</i> <i>training for DR grading and</i> <i>the importance of lifelong</i> <i>learning for DR grading</i>	Practice	Current graders of Tien Giang and Ho Chi Minh Eye Hospital, and support from UK graders	ITAT accounts for practicing

10:45- 12:30	AssessmentParallel session:1- Taking retina images of the patients following the procedure ,and 	Practical Training	Current graders of Tien Giang and Ho Chi Minh Eye Hospital, and UK graders	2 fundus cameras 4 Group and 4 accounts of Spectra 4 Groups
		DAY 3	~~)	
13:30- 14:15	Post course Quiz and results	k (Future plannin	UK graders	UK graders
14:15- 15:00	Teaching Methodology for adults <i>Objective : How to train new</i> <i>graders effectively</i>	Think aloud work shop	Orbis VN Supported by UK graders	UK graders
15:15- 16:00	Supportive Supervision Methodology: Developing quality improvement Objective: How to plan, implement the supervision trips to correct / improve other graders' performances. Provide checklist tools	Think aloud work shop	Orbis VN Supported by UK graders	UK graders
16:00- 16:45	Feedbacks and Plan for next steps	Discussion		
16:45- 17:00	Certificates for Vietnamese graders in attendance	6	20,	

NSC	International Term	Symptoms	Features	Action
RO	No DR	None	No signs of diabetic retinopathy	Annual rescreen
RI	Mild none- proliferative (mild pre-proliferative)	None	Haemorrhages & microaneurysms, only	Annual rescree
R2	Moderate none- proliferative, moderate pre- proliferative	None	Extensive Microaneurysms, intraretinal haemorrhages, hard exudates, venous abnormalities, large blot haemorrhages, cotton wool spots (small infarcts), venous beading, venous loop, venous reduplication.	Refer routinely to HES
R3s	Stable proliferative diabetic retinopathy		No haemorrhages or exudates or new vessels, laser scars	Annual rescree
R3a	Active proliferative diabetic retinopathy	Floaters, central loss of vision	New vessel formation either at the disc (NVD) or elsewhere (NVE). Extensive fibrovascular proliferation, retinal detachment, pre-retinal or vitreous haemorrhage.	Urgent referral to HES
M 0			No maculopathy	Annual rescree
M 1	Diabetic maculopathy	Blurred central vision	The macula is defined as a circle centred on the fovea, with a radius of the distance to the disc margin. If the leakage involves or is near the fovea the condition is termed clinically significant macular oedema (CSME). Exudative maculopathy presents with leakage, retinal thickening, microaneurysms, hard exudates at the macula. Ischaemic form can have a featureless macular with NVE and poor vision. Milder forms: • exudate < or = 1DD of centre of fovea • circinate or group of exudates within macula • any microaneurysm or haemorrhage < or = 1DD of centre of fovea only is associated with a best VA of < or = 6/12 retinal thickening < or =	Refer to HES

Table S1: UK DR Grading Classification Scale

			1DD of centre of fovea (if stereos available)	
Р	Photocoagulation	Reduced night vision, glare	Small retinal scars throughout the peripheral retina.	
U	Ungradable		Ungradable is usually due to cataract, small pupils, other lesions usually referred for assessment	Refer for slit lamp examination

Abbreviations: DR = diabetic retinopathy, NPDR = none-proliferative retinopathy, NVE = new vessels elsewhere, IRMAs = intraretinal microvascular abnormalities (part of severe pre-proliferative retinopathy, vessels will not leak with angiogram, otherwise they would be 'new vessels' making the condition 'proliferative'), MO=macular oedema, MA= microaneurysm, DD=disc diameter, HES= hospital eye service

	Intra-rater agreement (reference standard, UK), k (95% CI) (by eyes, n=106)	Intra-rater agreement (reference standard, UK), k (95% CI) (by worst eye, n=53)
Overall Diabetic		
Retinopathy Grading:		
Any DR	0.96 (0.91,1.00)	0.92 (0.82, 1.00)
Treatable DR	0.81 (0.60, 1.00)	0.74 (0.47, 1.00)
Referable Maculopathy	0.97 (0.92, 1.0)0	1.00 (1.00, 1.00)
macular oedema	e interval, k=kappa, DR=Diabeti	c retinopathy, DMO=diabetic
Any DR defined as R1, R2, F		
Treatable DR defined as R3a		
Referable DMO defined as M	11 and U	

 Table S2: Reference standards intra-rater agreement score using kappa statistic (first attempt versus second attempt)

Table S3: Using kappa statistic to determine the inter-rater agreement between the reference standard and one senior grader from QUB grading centre

	Inter-rater agreement (reference standard vs a senior grader QUB), k (95% CI) (by eyes, n=106)	Inter-rater agreement (reference standard vs a senior grader QUB (by worst), k (95% CI) (by worst eye, n=53)
Overall Diabetic		
Retinopathy Grading:		
Any DR	0.79 (0.67, 0.91)	0.74 (0.55, 0.92)
Treatable DR	0.71 (0.48, 0.95)	0.68 (0.39, 0.97)
Referable Maculopathy	0.75 (0.61, 0.90)	0.74 (0.55, 0.93)
Abbreviations: CI=confidence i	nterval, k=kappa, DR=Diabeti	c retinopathy, DMO=diabetic
macular oedema		
Any DR defined as R1, R2, R3s	s, R3a and U	
Treatable DR defined as R3a		
Referable DMO defined as M1	and U	

Intra and inter-grader agreement

To ensure there was good intra-grader reliability as a reference standard, a stratified random sample of images were regraded. There was approximately one month between the first and second attempts to reduce the possibility of bias caused by memory. Additionally, inter-grader agreement was calculated using kappa to ensure there was good grading agreement between the reference standard and one senior grader from the Ophthalmic Reading Centre at QUB, Belfast. Any disagreements were discussed with

a retinal specialist until consensus was reached. Overall, the intra-grader agreement and inter-grader

agreement ranged from substantial to almost perfect.

Table S4: The prevalence of any diabetic retinopathy (DR), referable DR, any maculopathy and ungradable cases with the reference grader from Phase I and Phase II

Diabetic Retinopathy	Phase I	Phase II (post remedial	P-Value
grades		training)	
R0 (n,%)	257 (62.68)	68 (59.13)	
R1 (n,%)	100 (24.39)	32 (27.83)	
R2 (n,%)	11 (2.68)	2 (1.74)	
R3a (n,%)	10 (2.44)	7 (6.09)	P=0.347
R3s (n,%)	1 (0.24)	0 (0.00)	
U (n,%)	31 (7.56)	6 (5.22)	
Any DR	6		
- Yes (n,%)	153 (37.32)	47 (40.87)	P=0.488
- No (n,%)	257 (62.68)	68(59.12)	
Referable DR			
- Yes (n,%)	52 (12.68)	15 (13.04)	P=0.918
- No (n,%)	358 (87.32)	100 (86.96)	
Any DMO			
- M0 (n,%)	324 (79.02)	99 (86.09)	
- M1 (n,%)	43 (10.49)	10 (8.70)	P=0.173
- U (n,%)	43 (10.49)	6 (5.22)	
Abbreviations: DR=diabe	tic retinopathy, DMO=Diabetic	Macular Oedema, U=ungrad	able
Chi-Squares used to test si	gnificance.	-	

Table S5. Diagnostic test accuracy of DR graders in Vietnam against a reference standard from the UK, excluding ungradable images.

Any DRSensitivity (%) (95% CI)47.9 (38.8, 57.2)50.8 (41.6, 60.0)49.0 (38.7, 59Specificity (%) (95% CI)89.7 (85.1, 93.0)98.8 (96.3, 99.7)100 (96.8, 10PPV (%) (95% CI)69.0 (57.9, 78.4)95.3 (86.2, 98.8)100 (90.6, 10NPV (%) (95% CI)78.2 (72.9, 82.7)80.9 (76.0, 85.0)74.6 (67.8, 80Referable DRSensitivity (%) (95% CI)98.9 (96.9, 99.6)100 (98.7, 100)99.5 (97.1, 99PPV (%) (95% CI)66.7 (35.4, 88.7)100 (51.7, 100)80.0 (29.9, 99NPV (%) (95% CI)96.4 (93.8, 97.9)96.0 (93.3, 97.6)94.0 (89.9, 90Referable DMOSensitivity (%) (95% CI)9.3 (3.0, 23.1)37.2 (23.4, 53.3)26.5 (13.5, 44Specificity (%) (95% CI)9.3 (3.0, 23.1)37.2 (23.4, 53.3)26.5 (13.5, 44Specificity (%) (95% CI)9.1 (97.0, 99.8)99.4 (97.5, 99.9)100 (97.6, 10PPV (%) (95% CI)57.1 (20.2, 88.2)88.9 (63.9, 98.1)100 (62.9, 10NPV (%) (95% CI)57.1 (20.2, 88.2)88.9 (63.9, 98.1)100 (62.9, 10NPV (%) (95% CI)88.9 (85.1, 92.0)92.3 (88.9, 94.7)88.6 (83.5, 92Abbreviations: UK = United Kingdom, DR = Diabetic Retinopathy, DMO = DiabeticMacular Odema, CI = Confidence Intervals,Grading criteria: UK National Diabetic Eye Screening Programme (NDESP) classificatisystem (See supplementary material, Table S1 for more details).Any DR, is defined as grades R1, R2, R3s and R3a.Referable DMO is defined as grades R2 and R3a.Referable DMO is defined a	Any DRSensitivity (%) (95% CI)47.9 (38.8, 57.2)50.8 (41.6, 60.0)49.0 (38.7, 59Specificity (%) (95% CI)89.7 (85.1, 93.0)98.8 (96.3, 99.7)100 (96.8, 10PPV (%) (95% CI)69.0 (57.9, 78.4)95.3 (86.2, 98.8)100 (90.6, 10NPV (%) (95% CI)78.2 (72.9, 82.7)80.9 (76.0, 85.0)74.6 (67.8, 80Referable DRSensitivity (%) (95% CI)98.9 (96.9, 99.6)100 (98.7, 100)99.5 (97.1, 99PPV (%) (95% CI)66.7 (35.4, 88.7)100 (51.7, 100)80.0 (29.9, 98NPV (%) (95% CI)96.4 (93.8, 97.9)96.0 (93.3, 97.6)94.0 (89.9, 96Referable DMOSensitivity (%) (95% CI)9.3 (3.0, 23.1)37.2 (23.4, 53.3)26.5 (13.5, 44Specificity (%) (95% CI)9.3 (3.0, 23.1)37.2 (23.4, 53.3)26.5 (13.5, 44Specificity (%) (95% CI)9.1 (97.0, 99.8)99.4 (97.5, 99.9)100 (97.6, 10PPV (%) (95% CI)57.1 (20.2, 88.2)88.9 (63.9, 98.1)100 (62.9, 10NPV (%) (95% CI)57.1 (20.2, 88.2)88.9 (63.9, 98.1)100 (62.9, 10NPV (%) (95% CI)57.1 (20.2, 88.2)88.9 (63.9, 98.1)100 (62.9, 10NPV (%) (95% CI)57.1 (20.2, 88.2)88.9 (63.9, 94.7)88.6 (83.5, 92.7)Abbreviations: UK = United Kingdom, DR = Diabetic Retinopathy, DMO = DiabeticMacular Oedema, CI = Confidence Intervals,Grading criteria: UK National Diabetic Eye Screening Programme (NDESP) classificatisystem (See supplementary material, Table S1 for more details).Any DR, is defined as grades R1, R2, R3s and R3a.	Any DRSensitivity (%) (95% CI)47.9 (38.8, 57.2)50.8 (41.6, 60.0)49.0 (38.7, 59Specificity (%) (95% CI)89.7 (85.1, 93.0)98.8 (96.3, 99.7)100 (96.8, 10PPV (%) (95% CI)69.0 (57.9, 78.4)95.3 (86.2, 98.8)100 (90.6, 10NPV (%) (95% CI)78.2 (72.9, 82.7)80.9 (76.0, 85.0)74.6 (67.8, 80Referable DRSensitivity (%) (95% CI)98.9 (96.9, 99.6)100 (98.7, 100)99.5 (97.1, 99PPV (%) (95% CI)66.7 (35.4, 88.7)100 (51.7, 100)80.0 (29.9, 98NPV (%) (95% CI)96.4 (93.8, 97.9)96.0 (93.3, 97.6)94.0 (89.9, 96Referable DMOSensitivity (%) (95% CI)9.3 (3.0, 23.1)37.2 (23.4, 53.3)26.5 (13.5, 44Specificity (%) (95% CI)9.3 (3.0, 23.1)37.2 (23.4, 53.3)26.5 (13.5, 44Specificity (%) (95% CI)9.1 (97.0, 99.8)99.4 (97.5, 99.9)100 (97.6, 10PPV (%) (95% CI)57.1 (20.2, 88.2)88.9 (63.9, 98.1)100 (62.9, 10NPV (%) (95% CI)57.1 (20.2, 88.2)88.9 (63.9, 98.1)100 (62.9, 10NPV (%) (95% CI)57.1 (20.2, 88.2)88.9 (63.9, 98.1)100 (62.9, 10NPV (%) (95% CI)57.1 (20.2, 88.2)88.9 (63.9, 94.7)88.6 (83.5, 92.7)Abbreviations: UK = United Kingdom, DR = Diabetic Retinopathy, DMO = DiabeticMacular Oedema, CI = Confidence Intervals,Grading criteria: UK National Diabetic Eye Screening Programme (NDESP) classificatisystem (See supplementary material, Table S1 for more details).Any DR, is defined as grades R1, R2, R3s and R3a.		Level 1 graders (n=373 patient images)	Level 2 graders (n=373 patient images)*	Level 3 grad (n=235 pation images)†
Sensitivity (%) (95% CI)47.9 (38.8, 57.2)50.8 (41.6, 60.0)49.0 (38.7, 59Specificity (%) (95% CI)89.7 (85.1, 93.0)98.8 (96.3, 99.7)100 (96.8, 10PPV (%) (95% CI)69.0 (57.9, 78.4)95.3 (86.2, 98.8)100 (90.6, 10NPV (%) (95% CI)78.2 (72.9, 82.7)80.9 (76.0, 85.0)74.6 (67.8, 80Referable DRSensitivity (%) (95% CI)98.9 (96.9, 99.6)100 (98.7, 100)99.5 (97.1, 99PPV (%) (95% CI)66.7 (35.4, 88.7)100 (51.7, 100)80.0 (29.9, 91NPV (%) (95% CI)96.4 (93.8, 97.9)96.0 (93.3, 97.6)94.0 (89.9, 96Referable DMOSensitivity (%) (95% CI)99.1 (97.0, 99.8)99.4 (97.5, 99.9)100 (97.6, 10PPV (%) (95% CI)95.1 (20.2, 88.2)88.9 (63.9, 98.1)100 (62.9, 10NPV (%) (95% CI)57.1 (20.2, 88.2)88.9 (63.9, 98.1)100 (62.9, 10NPV (%) (95% CI)57.1 (20.2, 88.2)88.9 (63.9, 98.1)100 (62.9, 10NPV (%) (95% CI)57.1 (20.2, 88.2)88.9 (63.9, 94.7)88.6 (83.5, 92Abbreviations: UK = United Kingdom, DR = Diabetic Retinopathy, DMO = DiabeticMacular Oedema, CI = Confidence Intervals,Grading criteria: UK National Diabetic Eye Screening Programme (NDESP) classificatisystem (See supplementary material, Table S1 for more details).Any DR, is defined as grades R1, R2, R3s and R3a.Referable DMO is defined as grades M1Sensitivity is the ability of a test to correctly identify patients with a disease and specific is the ability of a test to correctly identify patients with a disease and	Sensitivity (%) (95% CI)47.9 (38.8, 57.2)50.8 (41.6, 60.0)49.0 (38.7, 59Specificity (%) (95% CI)89.7 (85.1, 93.0)98.8 (96.3, 99.7)100 (96.8, 10PPV (%) (95% CI)69.0 (57.9, 78.4)95.3 (86.2, 98.8)100 (90.6, 10NPV (%) (95% CI)78.2 (72.9, 82.7)80.9 (76.0, 85.0)74.6 (67.8, 80Referable DR </th <th>Sensitivity (%) (95% CI)47.9 (38.8, 57.2)50.8 (41.6, 60.0)49.0 (38.7, 59Specificity (%) (95% CI)89.7 (85.1, 93.0)98.8 (96.3, 99.7)100 (96.8, 10PPV (%) (95% CI)69.0 (57.9, 78.4)95.3 (86.2, 98.8)100 (90.6, 10NPV (%) (95% CI)78.2 (72.9, 82.7)80.9 (76.0, 85.0)74.6 (67.8, 80Referable DRSensitivity (%) (95% CI)38.1 (19.0, 61.3)28.6 (12.2, 52.3)22.2 (7.4, 48.Specificity (%) (95% CI)98.9 (96.9, 99.6)100 (98.7, 100)99.5 (97.1, 99PPV (%) (95% CI)66.7 (35.4, 88.7)100 (51.7, 100)80.0 (29.9, 98NPV (%) (95% CI)96.4 (93.8, 97.9)96.0 (93.3, 97.6)94.0 (89.9, 96Referable DMOSensitivity (%) (95% CI)9.3 (3.0, 23.1)37.2 (23.4, 53.3)26.5 (13.5, 44Specificity (%) (95% CI)9.1 (97.0, 99.8)99.4 (97.5, 99.9)100 (97.6, 10PPV (%) (95% CI)9.1 (20.2, 88.2)88.9 (63.9, 98.1)100 (62.9, 10NPV (%) (95% CI)9.1 (20.2, 88.2)88.9 (63.9, 98.1)100 (62.9, 10Specificity (%) (95% CI)9.1 (20.2, 88.2)88.9 (63.9, 94.7)88.6 (83.5, 92Abbreviations: UK = United Kingdom, DR = Diabetic Retinopathy, DMO = DiabeticMacular Oedema, CI = Confidence Intervals,Grading criteria: UK National Diabetic Eye Screening Programme (NDESP) classificativeNPV (%) (95% CI)State sto correctly id</th> <th>Any DR</th> <th>8.2/</th> <th>8/</th> <th></th>	Sensitivity (%) (95% CI)47.9 (38.8, 57.2)50.8 (41.6, 60.0)49.0 (38.7, 59Specificity (%) (95% CI)89.7 (85.1, 93.0)98.8 (96.3, 99.7)100 (96.8, 10PPV (%) (95% CI)69.0 (57.9, 78.4)95.3 (86.2, 98.8)100 (90.6, 10NPV (%) (95% CI)78.2 (72.9, 82.7)80.9 (76.0, 85.0)74.6 (67.8, 80 Referable DR Sensitivity (%) (95% CI)38.1 (19.0, 61.3)28.6 (12.2, 52.3)22.2 (7.4, 48.Specificity (%) (95% CI)98.9 (96.9, 99.6)100 (98.7, 100)99.5 (97.1, 99PPV (%) (95% CI)66.7 (35.4, 88.7)100 (51.7, 100)80.0 (29.9, 98NPV (%) (95% CI)96.4 (93.8, 97.9)96.0 (93.3, 97.6)94.0 (89.9, 96 Referable DMO Sensitivity (%) (95% CI)9.3 (3.0, 23.1)37.2 (23.4, 53.3)26.5 (13.5, 44Specificity (%) (95% CI)9.1 (97.0, 99.8)99.4 (97.5, 99.9)100 (97.6, 10PPV (%) (95% CI)9.1 (20.2, 88.2)88.9 (63.9, 98.1)100 (62.9, 10NPV (%) (95% CI)9.1 (20.2, 88.2)88.9 (63.9, 98.1)100 (62.9, 10Specificity (%) (95% CI)9.1 (20.2, 88.2)88.9 (63.9, 94.7)88.6 (83.5, 92Abbreviations: UK = United Kingdom, DR = Diabetic Retinopathy, DMO = DiabeticMacular Oedema, CI = Confidence Intervals,Grading criteria: UK National Diabetic Eye Screening Programme (NDESP) classificativeNPV (%) (95% CI)State sto correctly id	Any DR	8.2/	8/	
Specificity (%) (95% CI) $89.7 (85.1, 93.0)$ $98.8 (96.3, 99.7)$ $100 (96.8, 10)$ PPV (%) (95% CI) $69.0 (57.9, 78.4)$ $95.3 (86.2, 98.8)$ $100 (90.6, 10)$ NPV (%) (95% CI) $78.2 (72.9, 82.7)$ $80.9 (76.0, 85.0)$ $74.6 (67.8, 80)$ Referable DRSensitivity (%) (95% CI) $38.1 (19.0, 61.3)$ $28.6 (12.2, 52.3)$ $22.2 (7.4, 48)$ Specificity (%) (95% CI) $98.9 (96.9, 99.6)$ $100 (98.7, 100)$ $99.5 (97.1, 99)$ PPV (%) (95% CI) $96.4 (93.8, 97.9)$ $96.0 (93.3, 97.6)$ $94.0 (89.9, 90)$ Referable DMOSensitivity (%) (95% CI) $9.3 (3.0, 23.1)$ $37.2 (23.4, 53.3)$ $26.5 (13.5, 4.4)$ Specificity (%) (95% CI) $9.3 (3.0, 23.1)$ $37.2 (23.4, 53.3)$ $26.5 (13.5, 4.4)$ Specificity (%) (95% CI) $9.3 (3.0, 23.1)$ $37.2 (23.4, 53.3)$ $26.5 (13.5, 4.4)$ Specificity (%) (95% CI) $9.3 (3.0, 23.1)$ $37.2 (23.4, 53.3)$ $26.5 (13.5, 4.4)$ Specificity (%) (95% CI) $9.3 (3.0, 23.1)$ $37.2 (23.4, 53.3)$ $26.5 (13.5, 4.4)$ Specificity (%) (95% CI) $9.3 (3.0, 23.1)$ $37.2 (23.4, 53.3)$ $26.5 (13.5, 4.4)$ Specificity (%) (95% CI) $9.3 (3.0, 23.1)$ $37.2 (23.4, 53.3)$ $26.5 (13.5, 4.4)$ Specificity (%) (95% CI) $9.3 (3.0, 23.1)$ $37.2 (23.4, 53.3)$ $26.5 (13.5, 4.4)$ Specificity (%) (95% CI) $9.3 (3.0, 23.1)$ $37.2 (23.4, 53.3)$ $26.5 (13.5, 4$	Specificity (%) (95% CI) $89.7 (85.1, 93.0)$ $98.8 (96.3, 99.7)$ $100 (96.8, 10)$ PPV (%) (95% CI) $69.0 (57.9, 78.4)$ $95.3 (86.2, 98.8)$ $100 (90.6, 10)$ NPV (%) (95% CI) $78.2 (72.9, 82.7)$ $80.9 (76.0, 85.0)$ $74.6 (67.8, 80)$ Referable DRSensitivity (%) (95% CI) $38.1 (19.0, 61.3)$ $28.6 (12.2, 52.3)$ $22.2 (7.4, 48)$ Specificity (%) (95% CI) $98.9 (96.9, 99.6)$ $100 (98.7, 100)$ $99.5 (97.1, 99)$ PPV (%) (95% CI) $96.4 (93.8, 97.9)$ $96.0 (93.3, 97.6)$ $94.0 (89.9, 96)$ Referable DMOSensitivity (%) (95% CI) $99.3 (3.0, 23.1)$ $37.2 (23.4, 53.3)$ $26.5 (13.5, 44)$ Specificity (%) (95% CI) $99.1 (97.0, 99.8)$ $99.4 (97.5, 99.9)$ $100 (97.6, 10)$ PPV (%) (95% CI) $99.1 (97.0, 99.8)$ $99.4 (97.5, 99.9)$ $100 (62.9, 10)$ NPV (%) (95% CI) $99.1 (97.0, 99.8)$ $99.4 (97.5, 99.9)$ $100 (97.6, 10)$ PPV (%) (95% CI) $99.1 (97.0, 99.8)$ $99.4 (97.5, 99.9)$ $100 (97.6, 10)$ PPV (%) (95% CI) $88.9 (85.1, 92.0)$ $92.3 (88.9, 94.7)$ $88.6 (83.5, 92)$ Abbreviations: UK = United Kingdom, DR = Diabetic Retinopathy, DMO = DiabeticMacular Odema, CI = Confidence Intervals,Grading criteria: UK National Diabetic Eye Screening Programme (NDESP) classificatisystem (See supplementary material, Table S1 for more details).Any DR, is defined	Specificity (%) (95% CI) $89.7 (85.1, 93.0)$ $98.8 (96.3, 99.7)$ $100 (96.8, 10)$ PPV (%) (95% CI) $69.0 (57.9, 78.4)$ $95.3 (86.2, 98.8)$ $100 (90.6, 10)$ NPV (%) (95% CI) $78.2 (72.9, 82.7)$ $80.9 (76.0, 85.0)$ $74.6 (67.8, 80)$ Referable DRSensitivity (%) (95% CI) $38.1 (19.0, 61.3)$ $28.6 (12.2, 52.3)$ $22.2 (7.4, 48.5)$ Specificity (%) (95% CI) $98.9 (96.9, 99.6)$ $100 (98.7, 100)$ $99.5 (97.1, 99)$ PPV (%) (95% CI) $96.4 (93.8, 97.9)$ $96.0 (93.3, 97.6)$ $94.0 (89.9, 96)$ Referable DMOSensitivity (%) (95% CI) $99.3 (3.0, 23.1)$ $37.2 (23.4, 53.3)$ $26.5 (13.5, 44)$ Specificity (%) (95% CI) $99.1 (97.0, 99.8)$ $99.4 (97.5, 99.9)$ $100 (97.6, 10)$ PPV (%) (95% CI) $99.1 (97.0, 99.8)$ $99.4 (97.5, 99.9)$ $100 (97.6, 10)$ PPV (%) (95% CI) $99.1 (97.0, 99.8)$ $99.4 (97.5, 99.9)$ $100 (97.6, 10)$ PPV (%) (95% CI) $99.1 (97.0, 99.8)$ $99.4 (97.5, 99.9)$ $100 (97.6, 10)$ PPV (%) (95% CI) $99.1 (97.0, 99.8)$ $99.4 (97.5, 99.9)$ $100 (97.6, 10)$ PPV (%) (95% CI) $99.1 (97.0, 99.8)$ $99.4 (97.5, 99.9)$ $100 (97.6, 10)$ PPV (%) (95% CI) $99.1 (97.0, 99.8)$ $99.4 (97.5, 99.9)$ $100 (97.6, 10)$ PPV (%) (95% CI) $99.1 (97.0, 99.8)$ $99.4 (97.5, 99.9)$ $100 (97.6, 10)$ PPV (%) (95% CI) <td></td> <td>47.9 (38.8, 57.2)</td> <td>50.8 (41.6, 60.0)</td> <td>49.0 (38.7, 59</td>		47.9 (38.8, 57.2)	50.8 (41.6, 60.0)	49.0 (38.7, 59
PPV (%) (95% CI) $69.0 (57.9, 78.4)$ $95.3 (86.2, 98.8)$ $100 (90.6, 10)$ NPV (%) (95% CI) $78.2 (72.9, 82.7)$ $80.9 (76.0, 85.0)$ $74.6 (67.8, 80)$ Referable DRSensitivity (%) (95% CI) $38.1 (19.0, 61.3)$ $28.6 (12.2, 52.3)$ $22.2 (7.4, 48)$ Specificity (%) (95% CI) $98.9 (96.9, 99.6)$ $100 (98.7, 100)$ $99.5 (97.1, 99)$ PPV (%) (95% CI) $66.7 (35.4, 88.7)$ $100 (51.7, 100)$ $80.0 (29.9, 99)$ NPV (%) (95% CI) $96.4 (93.8, 97.9)$ $96.0 (93.3, 97.6)$ $94.0 (89.9, 90)$ Referable DMOSensitivity (%) (95% CI) $9.3 (3.0, 23.1)$ $37.2 (23.4, 53.3)$ $26.5 (13.5, 44)$ Specificity (%) (95% CI) $9.3 (3.0, 23.1)$ $37.2 (23.4, 53.3)$ $26.5 (13.5, 44)$ Specificity (%) (95% CI) $9.3 (3.0, 23.1)$ $37.2 (23.4, 53.3)$ $26.5 (13.5, 44)$ Specificity (%) (95% CI) $9.3 (3.0, 23.1)$ $37.2 (23.4, 53.3)$ $26.5 (13.5, 44)$ Specificity (%) (95% CI) $9.3 (3.0, 23.1)$ $37.2 (23.4, 53.3)$ $26.5 (13.5, 44)$ Specificity (%) (95% CI) $9.3 (3.0, 23.1)$ $37.2 (23.4, 53.3)$ $26.5 (13.5, 44)$ Specificity (%) (95% CI) $9.3 (3.0, 23.1)$ $37.2 (23.4, 53.3)$ $26.5 (13.5, 44)$ Specificity (%) (95% CI) $9.3 (3.0, 23.1)$ $37.2 (23.4, 53.3)$ $26.5 (13.5, 44)$ Specificity (%) (95% CI) $9.3 (3.0, 23.1)$ $37.2 (23.4, 53.3)$ $26.5 (13.5, 44)$ Specificity (%) (95% CI) $8.9 (85.1, 92.0)$ $92.3 (88.9, 94.7)$ $88.6 (83.5, 92)$ Abbreviations: UK = United Kingdom, DR =	PPV (%) (95% CI)69.0 (57.9, 78.4)95.3 (86.2, 98.8)100 (90.6, 10NPV (%) (95% CI)78.2 (72.9, 82.7)80.9 (76.0, 85.0)74.6 (67.8, 80Referable DRSensitivity (%) (95% CI)38.1 (19.0, 61.3)28.6 (12.2, 52.3)22.2 (7.4, 48Specificity (%) (95% CI)98.9 (96.9, 99.6)100 (98.7, 100)99.5 (97.1, 99PPV (%) (95% CI)66.7 (35.4, 88.7)100 (51.7, 100)80.0 (29.9, 98NPV (%) (95% CI)96.4 (93.8, 97.9)96.0 (93.3, 97.6)94.0 (89.9, 96Referable DMOSensitivity (%) (95% CI)9.3 (3.0, 23.1)37.2 (23.4, 53.3)26.5 (13.5, 44Specificity (%) (95% CI)9.3 (3.0, 23.1)37.2 (23.4, 53.3)26.5 (13.5, 44Specificity (%) (95% CI)9.1 (97.0, 99.8)99.4 (97.5, 99.9)100 (97.6, 10PPV (%) (95% CI)57.1 (20.2, 88.2)88.9 (63.9, 98.1)100 (62.9, 10NPV (%) (95% CI)57.1 (20.2, 88.2)88.9 (63.9, 98.1)100 (62.9, 10NPV (%) (95% CI)88.9 (85.1, 92.0)92.3 (88.9, 94.7)88.6 (83.5, 92Abbreviations: UK = United Kingdom, DR = Diabetic Retinopathy, DMO = DiabeticMacular Oedema, CI = Confidence Intervals,Grading criteria: UK National Diabetic Eye Screening Programme (NDESP) classificatisystem (See supplementary material, Table S1 for more details).Any DR, is defined as grades R1, R2, R3s and R3a.Referable DMO is defined as grades M1Sensitivity is the ability of a test to correctly identify patients with a disease and specificis the ability of a test to correctly identify pat	PPV (%) (95% CI)69.0 (57.9, 78.4)95.3 (86.2, 98.8)100 (90.6, 10)NPV (%) (95% CI)78.2 (72.9, 82.7)80.9 (76.0, 85.0)74.6 (67.8, 80)Referable DRSensitivity (%) (95% CI)38.1 (19.0, 61.3)28.6 (12.2, 52.3)22.2 (7.4, 48.Specificity (%) (95% CI)98.9 (96.9, 99.6)100 (98.7, 100)99.5 (97.1, 99)PPV (%) (95% CI)66.7 (35.4, 88.7)100 (51.7, 100)80.0 (29.9, 98.NPV (%) (95% CI)96.4 (93.8, 97.9)96.0 (93.3, 97.6)94.0 (89.9, 96Referable DMOSensitivity (%) (95% CI)9.3 (3.0, 23.1)37.2 (23.4, 53.3)26.5 (13.5, 44Specificity (%) (95% CI)9.3 (3.0, 23.1)37.2 (23.4, 53.3)26.5 (13.5, 44Specificity (%) (95% CI)9.1 (97.0, 99.8)99.4 (97.5, 99.9)100 (97.6, 10)PPV (%) (95% CI)57.1 (20.2, 88.2)88.9 (63.9, 98.1)100 (62.9, 10)NPV (%) (95% CI)57.1 (20.2, 88.2)88.9 (63.9, 98.1)100 (62.9, 10)NPV (%) (95% CI)88.9 (85.1, 92.0)92.3 (88.9, 94.7)88.6 (83.5, 92)Abbreviations: UK = United Kingdom, DR = Diabetic Retinopathy, DMO = DiabeticMacular Oedema, CI = Confidence Intervals,Grading criteria: UK National Diabetic Eye Screening Programme (NDESP) classificationsystem (See supplementary material, Table S1 for more details).Any DR, is defined as grades R1, R2, R3s and R3a.Referable DMO is defined as grades M1Sensitivity is the ability of a test to correctly identify patients with a disease and specificis the ability of a test to correctly identify pati	• • • • • • • • • • • • • • • • • • • •			
NPV (%) (95% CI) $78.2 (72.9, 82.7)$ $80.9 (76.0, 85.0)$ $74.6 (67.8, 80)$ Referable DRSensitivity (%) (95% CI) $38.1 (19.0, 61.3)$ $28.6 (12.2, 52.3)$ $22.2 (7.4, 48)$ Specificity (%) (95% CI) $98.9 (96.9, 99.6)$ $100 (98.7, 100)$ $99.5 (97.1, 99)$ PPV (%) (95% CI) $66.7 (35.4, 88.7)$ $100 (51.7, 100)$ $80.0 (29.9, 99)$ NPV (%) (95% CI) $96.4 (93.8, 97.9)$ $96.0 (93.3, 97.6)$ $94.0 (89.9, 90)$ Referable DMOSensitivity (%) (95% CI) $9.3 (3.0, 23.1)$ $37.2 (23.4, 53.3)$ $26.5 (13.5, 4.6)$ Specificity (%) (95% CI) $9.1 (97.0, 99.8)$ $99.4 (97.5, 99.9)$ $100 (97.6, 10)$ PPV (%) (95% CI) $57.1 (20.2, 88.2)$ $88.9 (63.9, 98.1)$ $100 (62.9, 10)$ NPV (%) (95% CI) $57.1 (20.2, 88.2)$ $88.9 (63.9, 98.1)$ $100 (62.9, 10)$ NPV (%) (95% CI) $89.1 (97.0, 99.8)$ $99.4 (97.5, 99.9)$ $100 (97.6, 10)$ NPV (%) (95% CI) $57.1 (20.2, 88.2)$ $88.9 (63.9, 98.1)$ $100 (62.9, 10)$ NPV (%) (95% CI) $88.9 (85.1, 92.0)$ $92.3 (88.9, 94.7)$ $88.6 (83.5, 92)$ Abbreviations: UK = United Kingdom, DR = Diabetic Retinopathy, DMO = DiabeticMacular Oedema, CI = Confidence Intervals,Grading criteria: UK National Diabetic Eye Screening Programme (NDESP) classification system (See supplementary material, Table S1 for more details).Any DR, is defined as grades R1, R2, R3s and R3a.Referable DMO is defined as grades M1Sensitivity is the ability of a test to correctly identify people without the diseasePositive	NPV (%) (95% CI) $78.2 (72.9, 82.7)$ $80.9 (76.0, 85.0)$ $74.6 (67.8, 80)$ Referable DRSensitivity (%) (95% CI) $38.1 (19.0, 61.3)$ $28.6 (12.2, 52.3)$ $22.2 (7.4, 48)$ Specificity (%) (95% CI) $98.9 (96.9, 99.6)$ $100 (98.7, 100)$ $99.5 (97.1, 99)$ PPV (%) (95% CI) $66.7 (35.4, 88.7)$ $100 (51.7, 100)$ $80.0 (29.9, 98)$ NPV (%) (95% CI) $96.4 (93.8, 97.9)$ $96.0 (93.3, 97.6)$ $94.0 (89.9, 96)$ Referable DMOSensitivity (%) (95% CI) $9.3 (3.0, 23.1)$ $37.2 (23.4, 53.3)$ $26.5 (13.5, 44)$ Specificity (%) (95% CI) $9.1 (97.0, 99.8)$ $99.4 (97.5, 99.9)$ $100 (97.6, 10)$ PPV (%) (95% CI) $57.1 (20.2, 88.2)$ $88.9 (63.9, 98.1)$ $100 (62.9, 10)$ NPV (%) (95% CI) $57.1 (20.2, 88.2)$ $88.9 (63.9, 98.1)$ $100 (62.9, 10)$ NPV (%) (95% CI) $89.1 (97.0, 99.8)$ $99.4 (97.5, 99.9)$ $100 (97.6, 10)$ PV (%) (95% CI) $57.1 (20.2, 88.2)$ $88.9 (63.9, 98.1)$ $100 (62.9, 10)$ NPV (%) (95% CI) $89.9 (85.1, 92.0)$ $92.3 (88.9, 94.7)$ $88.6 (83.5, 92)$ Abbreviations: UK = United Kingdom, DR = Diabetic Retinopathy, DMO = DiabeticMacular Oedema, CI = Confidence Intervals,Grading criteria: UK National Diabetic Eye Screening Programme (NDESP) classificatisystem (See supplementary material, Table S1 for more details).Any DR, is defined as grades R1, R2, R3s and R3a.Referable DMO is defined as grades M1Sensitivity is the ability of a test to correctly identify patients with a	NPV (%) (95% CI) $78.2 (72.9, 82.7)$ $80.9 (76.0, 85.0)$ $74.6 (67.8, 80)$ Referable DRSensitivity (%) (95% CI) $38.1 (19.0, 61.3)$ $28.6 (12.2, 52.3)$ $22.2 (7.4, 48.5)$ Specificity (%) (95% CI) $98.9 (96.9, 99.6)$ $100 (98.7, 100)$ $99.5 (97.1, 99)$ PPV (%) (95% CI) $66.7 (35.4, 88.7)$ $100 (51.7, 100)$ $80.0 (29.9, 98.5)$ NPV (%) (95% CI) $96.4 (93.8, 97.9)$ $96.0 (93.3, 97.6)$ $94.0 (89.9, 96.5)$ Referable DMOSensitivity (%) (95% CI) $9.3 (3.0, 23.1)$ $37.2 (23.4, 53.3)$ $26.5 (13.5, 44.5)$ Specificity (%) (95% CI) $9.1 (97.0, 99.8)$ $99.4 (97.5, 99.9)$ $100 (97.6, 10.5)$ PPV (%) (95% CI) $57.1 (20.2, 88.2)$ $88.9 (63.9, 98.1)$ $100 (62.9, 10.5)$ NPV (%) (95% CI) $57.1 (20.2, 88.2)$ $88.9 (63.9, 98.1)$ $100 (62.9, 10.5)$ NPV (%) (95% CI) $89.9 (85.1, 92.0)$ $92.3 (88.9, 94.7)$ $88.6 (83.5, 92.5)$ Abbreviations: UK = United Kingdom, DR = Diabetic Retinopathy, DMO = DiabeticMacular Oedema, CI = Confidence Intervals,Grading criteria: UK National Diabetic Eye Screening Programme (NDESP) classifications system (See supplementary material, Table S1 for more details).Any DR, is defined as grades R1, R2, R3s and R3a.Referable DMO is defined as grades R1Sensitivity is the ability of a test to correctly identify patients with a disease and specific is the ability of a test to correctly identify patients with a disease and specific is the ability of a test to correctly identify people without the diseasePositive predictive value (PPV)				
Referable DRSensitivity (%) (95% CI) $38.1 (19.0, 61.3)$ $28.6 (12.2, 52.3)$ $22.2 (7.4, 48)$ Specificity (%) (95% CI) $98.9 (96.9, 99.6)$ $100 (98.7, 100)$ $99.5 (97.1, 99)$ PPV (%) (95% CI) $66.7 (35.4, 88.7)$ $100 (51.7, 100)$ $80.0 (29.9, 99)$ NPV (%) (95% CI) $96.4 (93.8, 97.9)$ $96.0 (93.3, 97.6)$ $94.0 (89.9, 90)$ Referable DMO $800 (29.9, 91)$ $800 (29.9, 91)$ Sensitivity (%) (95% CI) $9.3 (3.0, 23.1)$ $37.2 (23.4, 53.3)$ $26.5 (13.5, 4.9)$ Specificity (%) (95% CI) $99.1 (97.0, 99.8)$ $99.4 (97.5, 99.9)$ $100 (97.6, 10)$ PPV (%) (95% CI) $57.1 (20.2, 88.2)$ $88.9 (63.9, 98.1)$ $100 (62.9, 10)$ NPV (%) (95% CI) $88.9 (85.1, 92.0)$ $92.3 (88.9, 94.7)$ $88.6 (83.5, 92)$ Abbreviations: UK = United Kingdom, DR = Diabetic Retinopathy, DMO = DiabeticMacular Oedema, CI = Confidence Intervals,Grading criteria: UK National Diabetic Eye Screening Programme (NDESP) classificationsystem (See supplementary material, Table S1 for more details).Any DR, is defined as grades R1, R2, R3s and R3a.Referable DMO is defined as grades M1Sensitivity is the ability of a test to correctly identify patients with a disease and specific is the ability of a test to correctly identify patients with a disease and specific is the ability of a test to correctly identify pople without the diseasePositive predictive value (PPV) is the proportion of those who test positive who have th condition (true positives) and negative predictive value (NPV) is the proportion of those who test negative who do not have the condit	Referable DRSensitivity (%) (95% CI)38.1 (19.0, 61.3)28.6 (12.2, 52.3)22.2 (7.4, 48.Specificity (%) (95% CI)98.9 (96.9, 99.6)100 (98.7, 100)99.5 (97.1, 99.PPV (%) (95% CI)66.7 (35.4, 88.7)100 (51.7, 100)80.0 (29.9, 98.NPV (%) (95% CI)96.4 (93.8, 97.9)96.0 (93.3, 97.6)94.0 (89.9, 96.Referable DMOSensitivity (%) (95% CI)9.3 (3.0, 23.1)37.2 (23.4, 53.3)26.5 (13.5, 44.Specificity (%) (95% CI)99.1 (97.0, 99.8)99.4 (97.5, 99.9)100 (97.6, 10.PPV (%) (95% CI)57.1 (20.2, 88.2)88.9 (63.9, 98.1)100 (62.9, 10.NPV (%) (95% CI)88.9 (85.1, 92.0)92.3 (88.9, 94.7)88.6 (83.5, 92.Abbreviations: UK = United Kingdom, DR = Diabetic Retinopathy, DMO = DiabeticMacular Oedema, CI = Confidence Intervals,Grading criteria: UK National Diabetic Eye Screening Programme (NDESP) classificatisystem (See supplementary material, Table S1 for more details).Any DR, is defined as grades R1, R2, R3s and R3a.Referable DMO is defined as grades M1Sensitivity is the ability of a test to correctly identify patients with a disease and specificis the ability of a test to correctly identify patients with a diseasePositive predictive value (PPV) is the proportion of those who test positive who have thecondition (true positives) and negative predictive value (NPV) is the proportion of thosewho test negative who do not have the condition (true negatives).	Referable DRSensitivity (%) (95% CI)38.1 (19.0, 61.3)28.6 (12.2, 52.3)22.2 (7.4, 48.Specificity (%) (95% CI)98.9 (96.9, 99.6)100 (98.7, 100)99.5 (97.1, 99PPV (%) (95% CI)66.7 (35.4, 88.7)100 (51.7, 100)80.0 (29.9, 98NPV (%) (95% CI)96.4 (93.8, 97.9)96.0 (93.3, 97.6)94.0 (89.9, 96Referable DMOSensitivity (%) (95% CI)9.3 (3.0, 23.1)37.2 (23.4, 53.3)26.5 (13.5, 44Specificity (%) (95% CI)99.1 (97.0, 99.8)99.4 (97.5, 99.9)100 (97.6, 10)PPV (%) (95% CI)57.1 (20.2, 88.2)88.9 (63.9, 98.1)100 (62.9, 10)NPV (%) (95% CI)88.9 (85.1, 92.0)92.3 (88.9, 94.7)88.6 (83.5, 92)Abbreviations: UK = United Kingdom, DR = Diabetic Retinopathy, DMO = DiabeticMacular Oedema, CI = Confidence Intervals,Grading criteria: UK National Diabetic Eye Screening Programme (NDESP) classificationsystem (See supplementary material, Table S1 for more details).Any DR, is defined as grades R1, R2, R3s and R3a.Referable DMO is defined as grades M1Sensitivity is the ability of a test to correctly identify patients with a disease and specificis the ability of a test to correctly identify patients with a diseasePositive predictive value (PPV) is the proportion of those who test positive who have thecondition (true positives) and negative predictive value (NPV) is the proportion of thosewho test negative who do not have the condition (true negatives).				74.6 (67.8, 80
Specificity (%) (95% CI)98.9 (96.9, 99.6)100 (98.7, 100)99.5 (97.1, 99PPV (%) (95% CI)66.7 (35.4, 88.7)100 (51.7, 100)80.0 (29.9, 98NPV (%) (95% CI)96.4 (93.8, 97.9)96.0 (93.3, 97.6)94.0 (89.9, 96Referable DMOSensitivity (%) (95% CI)9.3 (3.0, 23.1)37.2 (23.4, 53.3)26.5 (13.5, 44Specificity (%) (95% CI)99.1 (97.0, 99.8)99.4 (97.5, 99.9)100 (97.6, 10PV (%) (95% CI)57.1 (20.2, 88.2)88.9 (63.9, 98.1)100 (62.9, 10NPV (%) (95% CI)88.9 (85.1, 92.0)92.3 (88.9, 94.7)88.6 (83.5, 92.7)Abbreviations: UK = United Kingdom, DR = Diabetic Retinopathy, DMO = DiabeticMacular Oedema, CI = Confidence Intervals,Grading criteria: UK National Diabetic Eye Screening Programme (NDESP) classificationsystem (See supplementary material, Table S1 for more details).Any DR, is defined as grades R1, R2, R3s and R3a.Referable DMO is defined as grades M1Sensitivity is the ability of a test to correctly identify patients with a disease and specific is the ability of a test to correctly identify patients with a diseasePositive predictive value (PPV) is the proportion of those who test positive who have th condition (true positives) and negative predictive value (NPV) is the proportion of those who test positive who have th condition (true negative who do not have the condition (true negatives).	Specificity (%) (95% CI)98.9 (96.9, 99.6)100 (98.7, 100)99.5 (97.1, 99PPV (%) (95% CI)66.7 (35.4, 88.7)100 (51.7, 100)80.0 (29.9, 98NPV (%) (95% CI)96.4 (93.8, 97.9)96.0 (93.3, 97.6)94.0 (89.9, 96Referable DMOSensitivity (%) (95% CI)9.3 (3.0, 23.1)37.2 (23.4, 53.3)26.5 (13.5, 44Specificity (%) (95% CI)99.1 (97.0, 99.8)99.4 (97.5, 99.9)100 (97.6, 10PV (%) (95% CI)57.1 (20.2, 88.2)88.9 (63.9, 98.1)100 (62.9, 10NPV (%) (95% CI)57.1 (20.2, 88.2)88.9 (63.9, 98.1)100 (62.9, 10NPV (%) (95% CI)88.9 (85.1, 92.0)92.3 (88.9, 94.7)88.6 (83.5, 92Abbreviations: UK = United Kingdom, DR = Diabetic Retinopathy, DMO = DiabeticMacular Oedema, CI = Confidence Intervals,Grading criteria: UK National Diabetic Eye Screening Programme (NDESP) classificatisystem (See supplementary material, Table S1 for more details).Any DR, is defined as grades R1, R2, R3s and R3a.Referable DMO is defined as grades M1Sensitivity is the ability of a test to correctly identify patients with a disease and specificis the ability of a test to correctly identify patients with a diseasePositive predictive value (PPV) is the proportion of those who test positive who have thecondition (true positives) and negative predictive value (NPV) is the proportion of thosewho test negative who do not have the condition (true negatives).	Specificity (%) (95% CI)98.9 (96.9, 99.6)100 (98.7, 100)99.5 (97.1, 99PPV (%) (95% CI)66.7 (35.4, 88.7)100 (51.7, 100)80.0 (29.9, 98NPV (%) (95% CI)96.4 (93.8, 97.9)96.0 (93.3, 97.6)94.0 (89.9, 96Referable DMOSensitivity (%) (95% CI)9.3 (3.0, 23.1)37.2 (23.4, 53.3)26.5 (13.5, 44Specificity (%) (95% CI)99.1 (97.0, 99.8)99.4 (97.5, 99.9)100 (97.6, 10PV (%) (95% CI)57.1 (20.2, 88.2)88.9 (63.9, 98.1)100 (62.9, 10NPV (%) (95% CI)57.1 (20.2, 88.2)88.9 (63.9, 98.1)100 (62.9, 10NPV (%) (95% CI)88.9 (85.1, 92.0)92.3 (88.9, 94.7)88.6 (83.5, 92Abbreviations: UK = United Kingdom, DR = Diabetic Retinopathy, DMO = DiabeticMacular Oedema, CI = Confidence Intervals,Grading criteria: UK National Diabetic Eye Screening Programme (NDESP) classificationsystem (See supplementary material, Table S1 for more details).Any DR, is defined as grades R1, R2, R3s and R3a.Referable DMO is defined as grades M1Sensitivity is the ability of a test to correctly identify patients with a disease and specificis the ability of a test to correctly identify patients with a diseasePositive predictive value (PPV) is the proportion of those who test positive who have thecondition (true positives) and negative predictive value (NPV) is the proportion of thosewho test negative who do not have the condition (true negatives).				
Specificity (%) (95% CI)98.9 (96.9, 99.6)100 (98.7, 100)99.5 (97.1, 99PPV (%) (95% CI)66.7 (35.4, 88.7)100 (51.7, 100)80.0 (29.9, 94NPV (%) (95% CI)96.4 (93.8, 97.9)96.0 (93.3, 97.6)94.0 (89.9, 96 Referable DMO Sensitivity (%) (95% CI)9.3 (3.0, 23.1)37.2 (23.4, 53.3)26.5 (13.5, 44Specificity (%) (95% CI)99.1 (97.0, 99.8)99.4 (97.5, 99.9)100 (97.6, 10PV (%) (95% CI)99.1 (97.0, 99.8)99.4 (97.5, 99.9)100 (62.9, 10NPV (%) (95% CI)57.1 (20.2, 88.2)88.9 (63.9, 98.1)100 (62.9, 10NPV (%) (95% CI)88.9 (85.1, 92.0)92.3 (88.9, 94.7)88.6 (83.5, 92Abbreviations: UK = United Kingdom, DR = Diabetic Retinopathy, DMO = DiabeticMaterial, Table S1 for more details).Any DR, is defined as grades R1, R2, R3s and R3a.Referable DMO is defined as grades R1Sensitivity is the ability of a test to correctly identify patients with a disease and specific is the ability of a test to correctly identify patients with a disease and specific is the ability of a test to correctly identify patients with a diseasePositive predictive value (PPV) is the proportion of those who test positive who have th condition (true positives) and negative predictive value (NPV) is the proportion of those who test positive who have th condition (true positives) and negative predictive value (NPV) is the proportion of those who test negative who do not have the condition (true negatives).	Specificity (%) (95% CI)98.9 (96.9, 99.6)100 (98.7, 100)99.5 (97.1, 99PPV (%) (95% CI)66.7 (35.4, 88.7)100 (51.7, 100)80.0 (29.9, 98NPV (%) (95% CI)96.4 (93.8, 97.9)96.0 (93.3, 97.6)94.0 (89.9, 96 Referable DMO Sensitivity (%) (95% CI)9.3 (3.0, 23.1)37.2 (23.4, 53.3)26.5 (13.5, 44Specificity (%) (95% CI)99.1 (97.0, 99.8)99.4 (97.5, 99.9)100 (97.6, 10PPV (%) (95% CI)99.1 (97.0, 99.8)99.4 (97.5, 99.9)100 (62.9, 10NPV (%) (95% CI)57.1 (20.2, 88.2)88.9 (63.9, 98.1)100 (62.9, 10NPV (%) (95% CI)88.9 (85.1, 92.0)92.3 (88.9, 94.7)88.6 (83.5, 92Abbreviations: UK = United Kingdom, DR = Diabetic Retinopathy, DMO = DiabeticMacular Oedema, CI = Confidence Intervals,Grading criteria: UK National Diabetic Eye Screening Programme (NDESP) classificatisystem (See supplementary material, Table S1 for more details).Any DR, is defined as grades R1, R2, R3s and R3a.Referable DMO is defined as grades M1Sensitivity is the ability of a test to correctly identify patients with a disease and specificis the ability of a test to correctly identify patients with a diseasePositive predictive value (PPV) is the proportion of those who test positive who have thecondition (true positives) and negative predictive value (NPV) is the proportion of those	Specificity (%) (95% CI)98.9 (96.9, 99.6)100 (98.7, 100)99.5 (97.1, 99PPV (%) (95% CI)66.7 (35.4, 88.7)100 (51.7, 100)80.0 (29.9, 98NPV (%) (95% CI)96.4 (93.8, 97.9)96.0 (93.3, 97.6)94.0 (89.9, 96Referable DMOSensitivity (%) (95% CI)9.3 (3.0, 23.1)37.2 (23.4, 53.3)26.5 (13.5, 44Specificity (%) (95% CI)99.1 (97.0, 99.8)99.4 (97.5, 99.9)100 (97.6, 10PV (%) (95% CI)57.1 (20.2, 88.2)88.9 (63.9, 98.1)100 (62.9, 10NPV (%) (95% CI)57.1 (20.2, 88.2)88.9 (63.9, 98.1)100 (62.9, 10NPV (%) (95% CI)88.9 (85.1, 92.0)92.3 (88.9, 94.7)88.6 (83.5, 92Abbreviations: UK = United Kingdom, DR = Diabetic Retinopathy, DMO = DiabeticMacular Oedema, CI = Confidence Intervals, Grading criteria: UK National Diabetic Eye Screening Programme (NDESP) classificationsystem (See supplementary material, Table S1 for more details).Any DR, is defined as grades R1, R2, R3s and R3a.Referable DMO is defined as grades M1Sensitivity is the ability of a test to correctly identify patients with a disease and specificis the ability of a test to correctly identify patients with a diseasePositive predictive value (PPV) is the proportion of those who test positive who have thecondition (true positives) and negative predictive value (NPV) is the proportion of thosewho test negative who do not have the condition (true negatives).	Sensitivity (%) (95% CI)	38.1 (19.0, 61.3)	28.6 (12.2, 52.3)	22.2 (7.4, 48.
PPV (%) (95% CI) $66.7 (35.4, 88.7)$ $100 (51.7, 100)$ $80.0 (29.9, 96.0)$ NPV (%) (95% CI) $96.4 (93.8, 97.9)$ $96.0 (93.3, 97.6)$ $94.0 (89.9, 96.0)$ Referable DMOSensitivity (%) (95% CI) $9.3 (3.0, 23.1)$ $37.2 (23.4, 53.3)$ $26.5 (13.5, 44.0)$ Specificity (%) (95% CI) $99.1 (97.0, 99.8)$ $99.4 (97.5, 99.9)$ $100 (97.6, 10.0)$ PV (%) (95% CI) $57.1 (20.2, 88.2)$ $88.9 (63.9, 98.1)$ $100 (62.9, 10.0)$ NPV (%) (95% CI) $88.9 (85.1, 92.0)$ $92.3 (88.9, 94.7)$ $88.6 (83.5, 92.0)$ Abbreviations: UK = United Kingdom, DR = Diabetic Retinopathy, DMO = DiabeticMacular Oedema, CI = Confidence Intervals, Grading criteria: UK National Diabetic Eye Screening Programme (NDESP) classificationSystem (See supplementary material, Table S1 for more details).Any DR, is defined as grades R1, R2, R3s and R3a.Referable DMO is defined as grades R1Sensitivity is the ability of a test to correctly identify patients with a disease and specific is the ability of a test to correctly identify patients with a disease and specific is the ability of a test to correctly identify patients with a disease and specific is the ability of a test to correctly identify patients with a disease and specific is the ability of a test to correctly identify patients with a disease and specific is the ability of a test to correctly identify patients with a disease Positive predictive value (PPV) is the proportion of those who test positive who have th condition (true positives) and negative predictive value (NPV) is the proportion of those who test negative who do not have the condition (true negatives).	PPV (%) (95% CI) $66.7 (35.4, 88.7)$ $100 (51.7, 100)$ $80.0 (29.9, 98)$ NPV (%) (95% CI) $96.4 (93.8, 97.9)$ $96.0 (93.3, 97.6)$ $94.0 (89.9, 96)$ Referable DMOSensitivity (%) (95% CI) $9.3 (3.0, 23.1)$ $37.2 (23.4, 53.3)$ $26.5 (13.5, 44)$ Specificity (%) (95% CI) $99.1 (97.0, 99.8)$ $99.4 (97.5, 99.9)$ $100 (97.6, 10)$ PV (%) (95% CI) $57.1 (20.2, 88.2)$ $88.9 (63.9, 98.1)$ $100 (62.9, 10)$ NPV (%) (95% CI) $88.9 (85.1, 92.0)$ $92.3 (88.9, 94.7)$ $88.6 (83.5, 92)$ Abbreviations: UK = United Kingdom, DR = Diabetic Retinopathy, DMO = DiabeticMacular Oedema, CI = Confidence Intervals, Grading criteria: UK National Diabetic Eye Screening Programme (NDESP) classificationSystem (See supplementary material, Table S1 for more details).Any DR, is defined as grades R1, R2, R3s and R3a.Referable DMO is defined as grades M1Sensitivity is the ability of a test to correctly identify patients with a disease and specific is the ability of a test to correctly identify patients with a diseasePositive predictive value (PPV) is the proportion of those who test positive who have the condition (true positives) and negative predictive value (NPV) is the proportion of those who test negative who do not have the condition (true negatives).	PPV (%) (95% CI) $66.7 (35.4, 88.7)$ $100 (51.7, 100)$ $80.0 (29.9, 98)$ NPV (%) (95% CI) $96.4 (93.8, 97.9)$ $96.0 (93.3, 97.6)$ $94.0 (89.9, 96)$ Referable DMOSensitivity (%) (95% CI) $9.3 (3.0, 23.1)$ $37.2 (23.4, 53.3)$ $26.5 (13.5, 44)$ Specificity (%) (95% CI) $99.1 (97.0, 99.8)$ $99.4 (97.5, 99.9)$ $100 (97.6, 10)$ PV (%) (95% CI) $57.1 (20.2, 88.2)$ $88.9 (63.9, 98.1)$ $100 (62.9, 10)$ NPV (%) (95% CI) $88.9 (85.1, 92.0)$ $92.3 (88.9, 94.7)$ $88.6 (83.5, 92)$ Abbreviations: UK = United Kingdom, DR = Diabetic Retinopathy, DMO = DiabeticMacular Oedema, CI = Confidence Intervals, Grading criteria: UK National Diabetic Eye Screening Programme (NDESP) classificationSystem (See supplementary material, Table S1 for more details).Any DR, is defined as grades R1, R2, R3s and R3a.Referable DMO is defined as grades M1Sensitivity is the ability of a test to correctly identify patients with a disease and specific is the ability of a test to correctly identify patients with a diseasePositive predictive value (PPV) is the proportion of those who test positive who have the condition (true positives) and negative predictive value (NPV) is the proportion of those who test negative who do not have the condition (true negatives).	Specificity (%) (95% CI)			99.5 (97.1, 99
Referable DMOSensitivity (%) (95% CI)9.3 (3.0, 23.1) 37.2 (23.4, 53.3) 26.5 (13.5, 44Specificity (%) (95% CI)99.1 (97.0, 99.8) 99.4 (97.5, 99.9) 100 (97.6, 10PV (%) (95% CI) 57.1 (20.2, 88.2) 88.9 (63.9, 98.1) 100 (62.9, 10NPV (%) (95% CI) 88.9 (85.1, 92.0) 92.3 (88.9, 94.7) 88.6 (83.5, 92Abbreviations: UK = United Kingdom, DR = Diabetic Retinopathy, DMO = DiabeticMacular Oedema, CI = Confidence Intervals,Grading criteria: UK National Diabetic Eye Screening Programme (NDESP) classificationsystem (See supplementary material, Table S1 for more details).Any DR, is defined as grades R1, R2, R3s and R3a.Referable DMO is defined as grades M1Sensitivity is the ability of a test to correctly identify patients with a disease and specificis the ability of a test to correctly identify people without the diseasePositive predictive value (PPV) is the proportion of those who test positive who have thcondition (true positives) and negative predictive value (NPV) is the proportion of thosewho test negative who do not have the condition (true negatives).	Referable DMOSensitivity (%) (95% CI)9.3 (3.0, 23.1) $37.2 (23.4, 53.3)$ $26.5 (13.5, 44$ Specificity (%) (95% CI)99.1 (97.0, 99.8)99.4 (97.5, 99.9)100 (97.6, 10)PPV (%) (95% CI) $57.1 (20.2, 88.2)$ $88.9 (63.9, 98.1)$ 100 (62.9, 10)NPV (%) (95% CI) $88.9 (85.1, 92.0)$ 92.3 (88.9, 94.7) $88.6 (83.5, 92)$ Abbreviations: UK = United Kingdom, DR = Diabetic Retinopathy, DMO = DiabeticMacular Oedema, CI = Confidence Intervals,Grading criteria: UK National Diabetic Eye Screening Programme (NDESP) classificatisystem (See supplementary material, Table S1 for more details).Any DR, is defined as grades R1, R2, R3s and R3a.Referable DR is defined as grades R1Sensitivity is the ability of a test to correctly identify patients with a disease and specificis the ability of a test to correctly identify people without the diseasePositive predictive value (PPV) is the proportion of those who test positive who have thecondition (true positives) and negative predictive value (NPV) is the proportion of thosewho test negative who do not have the condition (true negatives).	Referable DMOSensitivity (%) (95% CI)9.3 (3.0, 23.1) $37.2 (23.4, 53.3)$ $26.5 (13.5, 44$ Specificity (%) (95% CI)99.1 (97.0, 99.8)99.4 (97.5, 99.9)100 (97.6, 10PPV (%) (95% CI) $57.1 (20.2, 88.2)$ $88.9 (63.9, 98.1)$ 100 (62.9, 10NPV (%) (95% CI) $88.9 (85.1, 92.0)$ $92.3 (88.9, 94.7)$ $88.6 (83.5, 92$ Abbreviations: UK = United Kingdom, DR = Diabetic Retinopathy, DMO = DiabeticMacular Oedema, CI = Confidence Intervals,Grading criteria: UK National Diabetic Eye Screening Programme (NDESP) classificationssystem (See supplementary material, Table S1 for more details).Any DR, is defined as grades R1, R2, R3s and R3a.Referable DMO is defined as grades M1Sensitivity is the ability of a test to correctly identify patients with a disease and specificis the ability of a test to correctly identify people without the diseasePositive predictive value (PPV) is the proportion of those who test positive who have thecondition (true positives) and negative predictive value (NPV) is the proportion of thosewho test negative who do not have the condition (true negatives).	PPV (%) (95% CI)	66.7 (35.4, 88.7)	100 (51.7, 100)	80.0 (29.9, 98
Sensitivity (%) (95% CI)9.3 (3.0, 23.1) $37.2 (23.4, 53.3)$ $26.5 (13.5, 44)$ Specificity (%) (95% CI)99.1 (97.0, 99.8)99.4 (97.5, 99.9)100 (97.6, 10)PPV (%) (95% CI) $57.1 (20.2, 88.2)$ $88.9 (63.9, 98.1)$ 100 (62.9, 10)NPV (%) (95% CI) $88.9 (85.1, 92.0)$ 92.3 (88.9, 94.7) $88.6 (83.5, 92)$ Abbreviations: UK = United Kingdom, DR = Diabetic Retinopathy, DMO = DiabeticMacular Oedema, CI = Confidence Intervals,Grading criteria: UK National Diabetic Eye Screening Programme (NDESP) classificationsystem (See supplementary material, Table S1 for more details).Any DR, is defined as grades R1, R2, R3s and R3a.Referable DR is defined as grades R2 and R3a.Referable DMO is defined as grades M1Sensitivity is the ability of a test to correctly identify people without the diseasePositive predictive value (PPV) is the proportion of those who test positive who have thcondition (true positives) and negative predictive value (NPV) is the proportion of thosewho test negative who do not have the condition (true negatives).	Sensitivity (%) (95% CI)9.3 (3.0, 23.1) 37.2 (23.4, 53.3) 26.5 (13.5, 44Specificity (%) (95% CI)99.1 (97.0, 99.8)99.4 (97.5, 99.9)100 (97.6, 10PPV (%) (95% CI)57.1 (20.2, 88.2)88.9 (63.9, 98.1)100 (62.9, 10NPV (%) (95% CI)88.9 (85.1, 92.0)92.3 (88.9, 94.7)88.6 (83.5, 92Abbreviations: UK = United Kingdom, DR = Diabetic Retinopathy, DMO = DiabeticMacular Oedema, CI = Confidence Intervals,Grading criteria: UK National Diabetic Eye Screening Programme (NDESP) classificatisystem (See supplementary material, Table S1 for more details).Any DR, is defined as grades R1, R2, R3s and R3a.Referable DR is defined as grades R2 and R3a.Referable DMO is defined as grades M1Sensitivity is the ability of a test to correctly identify patients with a disease and specificis the ability of a test to correctly identify people without the diseasePositive predictive value (PPV) is the proportion of those who test positive who have thecondition (true positives) and negative predictive value (NPV) is the proportion of thosewho test negative who do not have the condition (true negatives).	Sensitivity (%) (95% CI)9.3 (3.0, 23.1) 37.2 (23.4, 53.3) 26.5 (13.5, 44Specificity (%) (95% CI)99.1 (97.0, 99.8)99.4 (97.5, 99.9)100 (97.6, 10PV (%) (95% CI)57.1 (20.2, 88.2)88.9 (63.9, 98.1)100 (62.9, 10NPV (%) (95% CI)88.9 (85.1, 92.0)92.3 (88.9, 94.7)88.6 (83.5, 92Abbreviations: UK = United Kingdom, DR = Diabetic Retinopathy, DMO = DiabeticMacular Oedema, CI = Confidence Intervals,Grading criteria: UK National Diabetic Eye Screening Programme (NDESP) classificationsSystem (See supplementary material, Table S1 for more details).Any DR, is defined as grades R1, R2, R3s and R3a.Referable DR is defined as grades R2 and R3a.Referable DMO is defined as grades M1Sensitivity is the ability of a test to correctly identify people without the diseasePositive predictive value (PPV) is the proportion of those who test positive who have the condition (true positives) and negative predictive value (NPV) is the proportion of those who test positive who have the condition (true negatives).	NPV (%) (95% CI)	96.4 (93.8, 97.9)	96.0 (93.3, 97.6)	94.0 (89.9, 96
Specificity (%) (95% CI)99.1 (97.0, 99.8)99.4 (97.5, 99.9)100 (97.6, 10PPV (%) (95% CI)57.1 (20.2, 88.2)88.9 (63.9, 98.1)100 (62.9, 10NPV (%) (95% CI)88.9 (85.1, 92.0)92.3 (88.9, 94.7)88.6 (83.5, 92Abbreviations: UK = United Kingdom, DR = Diabetic Retinopathy, DMO = DiabeticMacular Oedema, CI = Confidence Intervals,Grading criteria: UK National Diabetic Eye Screening Programme (NDESP) classificationsystem (See supplementary material, Table S1 for more details).Any DR, is defined as grades R1, R2, R3s and R3a.Referable DR is defined as grades R2 and R3a.Referable DMO is defined as grades M1Sensitivity is the ability of a test to correctly identify patients with a disease and specificis the ability of a test to correctly identify propele without the diseasePositive predictive value (PPV) is the proportion of those who test positive who have thcondition (true positives) and negative predictive value (NPV) is the proportion of thosewho test negative who do not have the condition (true negatives).	Specificity (%) (95% CI)99.1 (97.0, 99.8)99.4 (97.5, 99.9)100 (97.6, 10)PPV (%) (95% CI)57.1 (20.2, 88.2)88.9 (63.9, 98.1)100 (62.9, 10)NPV (%) (95% CI)88.9 (85.1, 92.0)92.3 (88.9, 94.7)88.6 (83.5, 92)Abbreviations: UK = United Kingdom, DR = Diabetic Retinopathy, DMO = DiabeticMacular Oedema, CI = Confidence Intervals,Grading criteria: UK National Diabetic Eye Screening Programme (NDESP) classificationsSystem (See supplementary material, Table S1 for more details).Any DR, is defined as grades R1, R2, R3s and R3a.Referable DR is defined as grades R2 and R3a.Referable DMO is defined as grades M1Sensitivity is the ability of a test to correctly identify patients with a disease and specific is the ability of a test to correctly identify people without the diseasePositive predictive value (PPV) is the proportion of those who test positive who have the condition (true positives) and negative predictive value (NPV) is the proportion of those who test positive who have the condition (true positives).	Specificity (%) (95% CI)99.1 (97.0, 99.8)99.4 (97.5, 99.9)100 (97.6, 10)PPV (%) (95% CI)57.1 (20.2, 88.2)88.9 (63.9, 98.1)100 (62.9, 10)NPV (%) (95% CI)88.9 (85.1, 92.0)92.3 (88.9, 94.7)88.6 (83.5, 92)Abbreviations: UK = United Kingdom, DR = Diabetic Retinopathy, DMO = DiabeticMacular Oedema, CI = Confidence Intervals,Grading criteria: UK National Diabetic Eye Screening Programme (NDESP) classificationsSystem (See supplementary material, Table S1 for more details).Any DR, is defined as grades R1, R2, R3s and R3a.Referable DR is defined as grades R2 and R3a.Referable DMO is defined as grades M1Sensitivity is the ability of a test to correctly identify patients with a disease and specific is the ability of a test to correctly identify people without the diseasePositive predictive value (PPV) is the proportion of those who test positive who have the condition (true positives) and negative predictive value (NPV) is the proportion of those who test positive who have the condition (true positives).	Referable DMO			
PPV (%) (95% CI)57.1 (20.2, 88.2)88.9 (63.9, 98.1)100 (62.9, 10NPV (%) (95% CI)88.9 (85.1, 92.0)92.3 (88.9, 94.7)88.6 (83.5, 92Abbreviations: UK = United Kingdom, DR = Diabetic Retinopathy, DMO = DiabeticMacular Oedema, CI = Confidence Intervals,Grading criteria: UK National Diabetic Eye Screening Programme (NDESP) classificationsystem (See supplementary material, Table S1 for more details).Any DR, is defined as grades R1, R2, R3s and R3a.Referable DR is defined as grades M1Sensitivity is the ability of a test to correctly identify patients with a disease and specific is the ability of a test to correctly identify people without the diseasePositive predictive value (PPV) is the proportion of those who test positive who have th condition (true positives) and negative predictive value (NPV) is the proportion of those who test positive who have th condition (true positives).	PPV (%) (95% CI)57.1 (20.2, 88.2)88.9 (63.9, 98.1)100 (62.9, 10)NPV (%) (95% CI)88.9 (85.1, 92.0)92.3 (88.9, 94.7)88.6 (83.5, 92)Abbreviations: UK = United Kingdom, DR = Diabetic Retinopathy, DMO = DiabeticMacular Oedema, CI = Confidence Intervals,Grading criteria: UK National Diabetic Eye Screening Programme (NDESP) classificationsystem (See supplementary material, Table S1 for more details).Any DR, is defined as grades R1, R2, R3s and R3a.Referable DR is defined as grades R2 and R3a.Referable DMO is defined as grades M1Sensitivity is the ability of a test to correctly identify patients with a disease and specificis the ability of a test to correctly identify patients with a diseasePositive predictive value (PPV) is the proportion of those who test positive who have thecondition (true positives) and negative predictive value (NPV) is the proportion of thosewho test negative who do not have the condition (true negatives).	PPV (%) (95% CI)57.1 (20.2, 88.2)88.9 (63.9, 98.1)100 (62.9, 10)NPV (%) (95% CI)88.9 (85.1, 92.0)92.3 (88.9, 94.7)88.6 (83.5, 92)Abbreviations: UK = United Kingdom, DR = Diabetic Retinopathy, DMO = DiabeticMacular Oedema, CI = Confidence Intervals,Grading criteria: UK National Diabetic Eye Screening Programme (NDESP) classificationsystem (See supplementary material, Table S1 for more details).Any DR, is defined as grades R1, R2, R3s and R3a.Referable DR is defined as grades R2 and R3a.Referable DMO is defined as grades M1Sensitivity is the ability of a test to correctly identify patients with a disease and specificis the ability of a test to correctly identify patients with a diseasePositive predictive value (PPV) is the proportion of those who test positive who have thecondition (true positives) and negative predictive value (NPV) is the proportion of thosewho test negative who do not have the condition (true negatives).	Sensitivity (%) (95% CI)	9.3 (3.0, 23.1)	37.2 (23.4, 53.3)	26.5 (13.5, 44
NPV (%) (95% CI)88.9 (85.1, 92.0)92.3 (88.9, 94.7)88.6 (83.5, 92)Abbreviations: UK = United Kingdom, DR = Diabetic Retinopathy, DMO = DiabeticMacular Oedema, CI = Confidence Intervals, Grading criteria: UK National Diabetic Eye Screening Programme (NDESP) classification system (See supplementary material, Table S1 for more details).Any DR, is defined as grades R1, R2, R3s and R3a. Referable DR is defined as grades R2 and R3a. Referable DMO is defined as grades M1 Sensitivity is the ability of a test to correctly identify patients with a disease and specific is the ability of a test to correctly identify people without the disease Positive predictive value (PPV) is the proportion of those who test positive who have th condition (true positives) and negative predictive value (NPV) is the proportion of those who test negative who do not have the condition (true negatives).	NPV (%) (95% CI)88.9 (85.1, 92.0)92.3 (88.9, 94.7)88.6 (83.5, 92Abbreviations: UK = United Kingdom, DR = Diabetic Retinopathy, DMO = DiabeticMacular Oedema, CI = Confidence Intervals, Grading criteria: UK National Diabetic Eye Screening Programme (NDESP) classificati system (See supplementary material, Table S1 for more details).Any DR, is defined as grades R1, R2, R3s and R3a. Referable DR is defined as grades R2 and R3a. Referable DMO is defined as grades M1 Sensitivity is the ability of a test to correctly identify patients with a disease and specific is the ability of a test to correctly identify people without the disease Positive predictive value (PPV) is the proportion of those who test positive who have the condition (true positives) and negative predictive value (NPV) is the proportion of those who test negative who do not have the condition (true negatives).	NPV (%) (95% CI)88.9 (85.1, 92.0)92.3 (88.9, 94.7)88.6 (83.5, 92Abbreviations: UK = United Kingdom, DR = Diabetic Retinopathy, DMO = DiabeticMacular Oedema, CI = Confidence Intervals, Grading criteria: UK National Diabetic Eye Screening Programme (NDESP) classification system (See supplementary material, Table S1 for more details).Any DR, is defined as grades R1, R2, R3s and R3a. Referable DR is defined as grades R2 and R3a. Referable DMO is defined as grades M1 Sensitivity is the ability of a test to correctly identify patients with a disease and specific is the ability of a test to correctly identify people without the disease Positive predictive value (PPV) is the proportion of those who test positive who have the condition (true positives) and negative predictive value (NPV) is the proportion of those who test negative who do not have the condition (true negatives).	Specificity (%) (95% CI)	99.1 (97.0, 99.8)	99.4 (97.5, 99.9)	100 (97.6, 10
Abbreviations: UK = United Kingdom, DR = Diabetic Retinopathy, DMO = Diabetic Macular Oedema, CI = Confidence Intervals, Grading criteria: UK National Diabetic Eye Screening Programme (NDESP) classification system (See supplementary material, Table S1 for more details). Any DR, is defined as grades R1, R2, R3s and R3a. Referable DR is defined as grades R2 and R3a. Referable DMO is defined as grades M1 Sensitivity is the ability of a test to correctly identify patients with a disease and specific is the ability of a test to correctly identify patients with a disease Positive predictive value (PPV) is the proportion of those who test positive who have the condition (true positives) and negative predictive value (NPV) is the proportion of those who test negative who do not have the condition (true negatives).	Abbreviations: UK = United Kingdom, DR = Diabetic Retinopathy, DMO = Diabetic Macular Oedema, CI = Confidence Intervals, Grading criteria: UK National Diabetic Eye Screening Programme (NDESP) classification system (See supplementary material, Table S1 for more details). Any DR, is defined as grades R1, R2, R3s and R3a. Referable DR is defined as grades R2 and R3a. Referable DMO is defined as grades M1 Sensitivity is the ability of a test to correctly identify patients with a disease and specific is the ability of a test to correctly identify patients with a disease Positive predictive value (PPV) is the proportion of those who test positive who have the condition (true positives) and negative predictive value (NPV) is the proportion of those who test negative who do not have the condition (true negatives).	Abbreviations: UK = United Kingdom, DR = Diabetic Retinopathy, DMO = Diabetic Macular Oedema, CI = Confidence Intervals, Grading criteria: UK National Diabetic Eye Screening Programme (NDESP) classification system (See supplementary material, Table S1 for more details). Any DR, is defined as grades R1, R2, R3s and R3a. Referable DR is defined as grades R2 and R3a. Referable DMO is defined as grades M1 Sensitivity is the ability of a test to correctly identify patients with a disease and specific is the ability of a test to correctly identify patients with a disease Positive predictive value (PPV) is the proportion of those who test positive who have the condition (true positives) and negative predictive value (NPV) is the proportion of those who test negative who do not have the condition (true negatives).	PPV (%) (95% CI)	57.1 (20.2, 88.2)	88.9 (63.9, 98.1)	100 (62.9, 10
Macular Oedema, CI = Confidence Intervals, Grading criteria: UK National Diabetic Eye Screening Programme (NDESP) classificate system (See supplementary material, Table S1 for more details). Any DR, is defined as grades R1, R2, R3s and R3a. Referable DR is defined as grades R2 and R3a. Referable DMO is defined as grades M1 Sensitivity is the ability of a test to correctly identify patients with a disease and specific is the ability of a test to correctly identify people without the disease Positive predictive value (PPV) is the proportion of those who test positive who have the condition (true positives) and negative predictive value (NPV) is the proportion of those who test negative who do not have the condition (true negatives).	Macular Oedema, CI = Confidence Intervals, Grading criteria: UK National Diabetic Eye Screening Programme (NDESP) classification system (See supplementary material, Table S1 for more details). Any DR, is defined as grades R1, R2, R3s and R3a. Referable DR is defined as grades R2 and R3a. Referable DMO is defined as grades M1 Sensitivity is the ability of a test to correctly identify patients with a disease and specific is the ability of a test to correctly identify people without the disease Positive predictive value (PPV) is the proportion of those who test positive who have the condition (true positives) and negative predictive value (NPV) is the proportion of those who test negative who do not have the condition (true negatives).	Macular Oedema, CI = Confidence Intervals, Grading criteria: UK National Diabetic Eye Screening Programme (NDESP) classification system (See supplementary material, Table S1 for more details). Any DR, is defined as grades R1, R2, R3s and R3a. Referable DR is defined as grades R2 and R3a. Referable DMO is defined as grades M1 Sensitivity is the ability of a test to correctly identify patients with a disease and specific is the ability of a test to correctly identify people without the disease Positive predictive value (PPV) is the proportion of those who test positive who have the condition (true positives) and negative predictive value (NPV) is the proportion of those who test negative who do not have the condition (true negatives).	NPV (%) (95% CI)	88.9 (85.1, 92.0)	92.3 (88.9, 94.7)	88.6 (83.5, 92
			Sensitivity is the ability of is the ability of a test to con Positive predictive value (I condition (true positives) a	a test to correctly identi rrectly identify people v PPV) is the proportion of nd negative predictive v	vithout the disease of those who test positivalue (NPV) is the pro	ive who have the
				· · · · · · · · · · · · · · · · · · ·		

	Level 1 graders	Level 2	Level 3 graders
	(n=115 patient	graders (n=115	(n=62 patient
	images)	patient images)	images)
Any DR			
Sensitivity (%) (95% CI)	97.6 (85.6, 99.9)	72.5 (55.9 84.9)	55.6 (38.1, 72.1)
Specificity (%) (95% CI)	95.6 (86.8, 99.8)	100 (93.5, 100)	100 (84.6, 100)
PPV (%) (95% CI)	93.0 (79.9, 98.2)	100 (85.4, 100)	100 (80.0, 100)
NPV (%) (95% CI)	98.5 (90.7, 99.9)	85.5 (75.2, 92.2)	57.9 (10.9, 73.2
Referable DR			
Sensitivity (%) (95% CI)	88.9 (50.7, 99.4)	55.6 (22.7, 84.7)	77.8 (40.0, 97.2
Specificity (%) (95% CI)	90.0 (81.9, 94.8)	96.9 (90.5, 99.2)	100 (92.8, 100)
PPV (%) (95% CI)	44.4 (22.4, 68.7)	62.5 (25.9, 89.8)	100 (56.1, 100)
NPV (%) (95% CI)	98.9 (93.4, 99.9)	95.9 (89.2, 98.7)	96.1 (87.8, 98.8
Referable DMO		· · · · · ·	
Sensitivity (%) (95% CI)	90.0 (54.1, 99.5)	60.0 (26.4, 86.3)	80.0 (44.4, 97.5
Specificity (%) (95% CI)		97.9 (91.9, 99.6)	100 (92.6, 100)
PPV (%) (95% CI)		75.0 (35.6, 95.5)	100 (59.8, 100)
NPV (%) (95% CI)		95.9 (89.2, 98.7)	96.0 (87.4, 99.6
Abbreviations: UK = United King	dom, DR = Diabeti	c Retinopathy, DM	O = Diabetic
Criteria:			

Table S6: Diagnostic test accuracy of DR graders in Vietnam against a reference standard from the UK after additional DR training was delivered, excluding ungradable images

Page 37 of 37

Section & Topic	No	Item	Reported on page
TITLE OR ABSTRACT			
	1	Identification as a study of diagnostic accuracy using at least one measure of accuracy	1
		(such as sensitivity, specificity, predictive values, or AUC)	
ABSTRACT			
	2	Structured summary of study design, methods, results, and conclusions	3-4
		(for specific guidance, see STARD for Abstracts)	
INTRODUCTION			
	3	Scientific and clinical background, including the intended use and clinical role of the index test	5-6
	4	Study objectives and hypotheses	5
METHODS			
Study design	5	Whether data collection was planned before the index test and reference standard	5
		were performed (prospective study) or after (retrospective study)	
Participants	6	Eligibility criteria	6-7
	7	On what basis potentially eligible participants were identified	6-7
		(such as symptoms, results from previous tests, inclusion in registry)	
	8	Where and when potentially eligible participants were identified (setting, location and dates)	6-7
	9	Whether participants formed a consecutive, random or convenience series	7
Test methods	10a	Index test, in sufficient detail to allow replication	6-7
	10b	Reference standard, in sufficient detail to allow replication	6
	11	Rationale for choosing the reference standard (if alternatives exist)	6
	12a	Definition of and rationale for test positivity cut-offs or result categories	
		of the index test, distinguishing pre-specified from exploratory	
	12b	Definition of and rationale for test positivity cut-offs or result categories	
		of the reference standard, distinguishing pre-specified from exploratory	
	13a	Whether clinical information and reference standard results were available	6-7
		to the performers/readers of the index test	
	13b	Whether clinical information and index test results were available	6-7
		to the assessors of the reference standard	
Analysis	14	Methods for estimating or comparing measures of diagnostic accuracy	12-14
	15	How indeterminate index test or reference standard results were handled	12-14 Supplementary fil
	16	How missing data on the index test and reference standard were handled	12-14
	17	Any analyses of variability in diagnostic accuracy, distinguishing pre-specified from	12-14
		exploratory	
	18	Intended sample size and how it was determined	NA
RESULTS			
Participants	19	Flow of participants, using a diagram	10-11
,	20	Baseline demographic and clinical characteristics of participants	9
	21a	Distribution of severity of disease in those with the target condition	Supplementary fil
	21b	Distribution of alternative diagnoses in those without the target condition	Supplementary fil
	22	Time interval and any clinical interventions between index test and reference standard	Supplementary fil
Test results	23	Cross tabulation of the index test results (or their distribution)	12-14 and
		by the results of the reference standard	supplementary
	24	Estimates of diagnostic accuracy and their precision (such as 95% confidence intervals)	12-14
	25	Any adverse events from performing the index test or the reference standard	NA
DISCUSSION		· · · · · · · · · · · · · · · · · · ·	
	26	Study limitations, including sources of potential bias, statistical uncertainty, and	17
		generalisability	
	27	Implications for practice, including the intended use and clinical role of the index test	17-18
OTHER			
INFORMATION			
	28	Registration number and name of registry	NA
	<u>.</u>	Where the full study protocol can be accessed For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	4

BMJ Open

1	30 Sources of funding and other support; role of funders18
· _	
)	
,	
2	
-	
ļ	
5	
5	
7	
3	
)	
)	
2	
-	
,	
)	
)	
<u>}</u>	
• -	
)	
)	
 ;	
))	
, N	For peer review only - http://bmiopen.bmi.com/site/about/guidelines.xhtml

BMJ Open

BMJ Open

The impact of targeted diabetic retinopathy training for graders in Vietnam and the implications for future diabetic retinopathy screening programmes: a diagnostic test accuracy study

Journal:	BMJ Open
Manuscript ID	bmjopen-2021-059205.R2
Article Type:	Original research
Date Submitted by the Author:	25-Jul-2022
Complete List of Authors:	Curran, Katie; Queen's University Belfast School of Medicine Dentistry and Biomedical Sciences, Centre of Public Health Congdon, Nathan; Queen's University of Belfast; ORBIS International Hoang, Tung; Hanoi Medical University, Department of Ophthalmology; The University of Sydney Save Sight Institute Lohfeld, Lynne; Queen's University of Belfast; Eye Hospital of Wenzhou Medical University Nguyen, Van; Orbis International in Vietnam Nguyen, Hue; Orbis International in Vietnam Nguyen, Quan; Ho Chi Minh Eye Hospital, Vitreo-Retina Department Dardis, Catherine; Belfast Health and Social Care Trust, Department of Ophthalmology Virgili, Gianni ; Queen's University of Belfast; Belfast Health and Social Care Trust, Department of Ophthalmology Piyasena, Prabhath; Queen's University of Belfast Tran, Huong; Orbis International in Vietnam Salongcay, Recivall; Queen's University Belfast Tung, Mai; Ho Chi Minh Eye Hospital, Vitreo-Retina Department Peto, Tunde; Queen's University of Belfast; Belfast Health and Social Care Trust, Department of Ophthalmology
Primary Subject Heading :	Ophthalmology
Secondary Subject Heading:	Diabetes and endocrinology, Medical education and training
Keywords:	Diabetic retinopathy < DIABETES & ENDOCRINOLOGY, OPHTHALMOLOGY, PUBLIC HEALTH, Quality in health care < HEALTH SERVICES ADMINISTRATION & MANAGEMENT

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2 3 4	1
5 6	2
7 8 9	3
10 11 12 13	4
14 15 16	5
17 18 19 20	6
21 22 23	7
24 25 26 27	8
28 29 30	9
31 32 33	10
34 35 36 37	11
38 39 40	12
41 42 43 44	13
45 46 47	14
48 49 50 51	15
52 53 54	16
55 56 57	17
58 59 60	18

1	Title: The impact of targetee	diabetic retinopathy	y training for	graders in	Vietnam and
---	-------------------------------	----------------------	----------------	------------	-------------

2 the implications for future diabetic retinopathy screening programmes: a diagnostic test

3 accuracy study

Short title: Training diabetic retinopathy graders in Vietnam

5 Authors:

6 *Katie Curran, MPH, PhD¹ (<u>k.curran@qub.ac.uk</u>)

7 Nathan Congdon, MD, MPH^{1,2,3} (<u>Nathan.Congdon@orbis.org</u>)

- 8 Tung Thanh Hoang^{4,5} (<u>tung.hoang@sydney.edu.au</u>)
- 9 Lynne Lohfeld, MPH, PhD^{1,6} (<u>l.lohfeld@qub.ac.uk</u>)
- 10 Van Thu Nguyen, BA⁷ (<u>van.nguyen@orbis.org</u>)
- 11 Hue Thi Nguyen, MD, MPH⁷ (<u>hue.nguyen@orbis.org</u>)

12 Quan Nhu Nguyen, MD, PhD⁸ (<u>bsquan2009@gmail.com</u>)

- 13 Catherine Dardis, MSc⁹ (<u>cathy831oph@gmail.com</u>)
- 14 <u>Gianni Virgili MD^{1,9} (G.Virgili@qub.ac.uk)</u>
- 15 <u>Prabhath Piyasena, MB BS, PhD¹, (m.piyasena@qub.ac.uk)</u>
- 16 Huong Tran, MPA⁷ (<u>Huong.Tran@orbis.org</u>)
- 17 Recivall Salongcay, MD, MPM¹ (R.SALONGCAY@qub.ac.uk)
- 18 Mai Quoc Tung, MD, PhD⁸ (<u>maitungtn@gmail.com</u>)

BMJ Open

2 3 4 5	19	Tunde Peto, MD, PhD ^{1,9} (<u>T.Peto@qub.ac.uk</u>)
6 7 8	20	Affiliations:
9 10 11	21	¹ Centre for Public Health, Queen's University of Belfast, Belfast, UK
12 13 14 15	22	² Orbis International, New York, USA
16 17 18	23	³ Zhongshan Ophthalmic Centre, Guangzhou, China
19 20 21 22	24	⁴ Ophthalmology Department, Hanoi Medical University, Hanoi, Vietnam
23 24 25	25	⁵ Save Sight Institute, The University of Sydney School of Medicine, Sydney, Australia
26 27 28 29	26	⁶ Eye Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
30 31 32	27	⁷ Orbis International in Vietnam, Hanoi, Vietnam
33 34 35 36	28	⁸ Vitreo-Retina Department, Ho Chi Minh Eye Hospital, Ho Chi Minh City, Vietnam
37 38 39	29	⁹ Department of Ophthalmology, Belfast Health and Social Care Trust, NI
40 41 42	30	*Corresponding author Katie Curran
43 44 45 46	31	Katie Curran
47 48 49	32	Centre for Public Health
50 51 52	33	Institute of Clinical Sciences, A
53 54 55	34	Queen's University Belfast
56 57 58	35	BT12 6BA
59 60	36	Email: <u>k.curran@qub.ac.uk</u>

37 Keywords: Diabetic retinopathy, diabetic retinopathy training, screening

38 Word Count: 2785

39 Abstract

Objectives: To compare the accuracy of trained level 1 diabetic retinopathy (DR) graders
(nurses, endocrinologists, one general practitioner), level 2 graders (mid-level
ophthalmologists) and level 3 graders (senior ophthalmologists) in Vietnam against a
reference standard from the UK, and assess the impact of supplementary targeted grader
training.

Design: Diagnostic test accuracy study.

46 Setting: Secondary care hospitals in Southern Vietnam.

Participants: DR training was delivered to Vietnamese graders in February 2018 by National Health System (NHS) UK graders. Two-field retinal images (412 patient images) were graded by 14 trained graders in Vietnam between August-October 2018 and then re-graded retrospectively by an NHS-certified reference standard UK optometrist (Phase I). Further DR training based on Phase I results was delivered to graders in November 2019. After training, a randomised subset of images from January-October 2020 (115 patient images) was graded by six of the original cohort (Phase II). The reference grader re-graded all images from Phase I and II retrospectively in masked fashion.

55 Primary and secondary outcome measures: Sensitivity was calculated at the two different
56 time points and Chi-Squared was used to test significance.

BMJ Open

2	
2	
3	
4	
5	
6	
5 6 7	
/	
8	
9	
9 10	
11	
12	
12	
13	
14	
15	
16	
17	
17	
13 14 15 16 17 18	
19	
21	
22	
20 21 22 23 24	
23	
24	
25	
26	
27	
27	
28	
29	
30 31 32	
31	
22	
32	
33	
34	
35	
34 35 36 37	
20	
37	
38	
39	
40	
40	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

57	Results: In Phase I, the sensitivity for detecting any DR for all grader groups in Vietnam
58	was low (41.8-42.2%) and improved in Phase II after additional training was delivered (51.2-
59	87.3%). The greatest improvement was seen among level 1 graders (P<0.001) and the lowest
60	improvement was observed among level 3 graders (P=0.326). There was a statistically-
61	significant improvement in sensitivity for detecting referable DR and referable diabetic
62	macular oedema between all grader levels. The post-training values ranged from 40.0-61.5%
63	(including ungradable images) and 55.6%-90.0% (excluding ungradable images).
64	Conclusions: This study demonstrates that targeted training interventions can improve
65	accuracy of DR grading. These findings have important implications for improving service
66	delivery in DR screening programmes in low-resource settings.
67	Article Summary
68	Strengths and limitations of this study
68 69	 Strengths and limitations of this study Graders in Vietnam were trained to detect DR based on the UK's DR screening
69	• Graders in Vietnam were trained to detect DR based on the UK's DR screening
69 70	 Graders in Vietnam were trained to detect DR based on the UK's DR screening model.
69 70 71	 Graders in Vietnam were trained to detect DR based on the UK's DR screening model. This study describes the impact of a training intervention to improve DR grading in
69 70 71 72	 Graders in Vietnam were trained to detect DR based on the UK's DR screening model. This study describes the impact of a training intervention to improve DR grading in Vietnam
69 70 71 72 73 74	 Graders in Vietnam were trained to detect DR based on the UK's DR screening model. This study describes the impact of a training intervention to improve DR grading in Vietnam Gradable and ungradable fundus image grading were included in the analysis.
69 70 71 72 73	 Graders in Vietnam were trained to detect DR based on the UK's DR screening model. This study describes the impact of a training intervention to improve DR grading in Vietnam Gradable and ungradable fundus image grading were included in the analysis.
69 70 71 72 73 74	 Graders in Vietnam were trained to detect DR based on the UK's DR screening model. This study describes the impact of a training intervention to improve DR grading in Vietnam Gradable and ungradable fundus image grading were included in the analysis.
69 70 71 72 73 74 75	 Graders in Vietnam were trained to detect DR based on the UK's DR screening model. This study describes the impact of a training intervention to improve DR grading in Vietnam Gradable and ungradable fundus image grading were included in the analysis.

78 Introduction

The prevalence of diabetes among adults in Vietnam is approximately 6% and has almost doubled over the past decade.[1] Early detection through diabetic eye screening programmes (DESPs) is important to reduce the risk of avoidable blindness due to diabetic retinopathy (DR). Since the introduction of systematic DESPs in the UK, a high-income country (HIC), diabetic retinopathy (DR) is no longer the leading cause of blindness among working age adults.[2] The key to such successful DESPs is implementing accurate, innovative and costeffective models tailored to fit healthcare systems and contexts.

Investing in training personnel to increase human resources and procuring appropriate
diagnostic and treatment equipment are essential to ensure that service providers can deliver
optimum care for people with DR. In low-middle income countries (LMICs), there is often
insufficient capacity to implement robust DESPs due to the lack of skilled human resources
and infrastructure.[3,4] In Vietnam, there are only 14 ophthalmologists per million population
compared to 49 per million in the UK.[5]

All screening programmes must provide evidence of their ability to detect the targeted condition and ensure that the service performs efficiently to improve screening accuracy when it falls short. To date, there is insufficient evidence on DR grading accuracy using non-mydriatic digital imaging by trained graders in LMICs, and even less about the capacity of DESPs in LMICs to improve where poor accuracy is detected. The current retrospective study is designed to assess accuracy of a range of graders in a non-governmental organisation (NGO)-supported DESP in Vietnam, and to study the efficacy of a quality-improvement intervention.

100 Methods

Page 7 of 40

BMJ Open

Study participants: The 14 participants from Vietnam in Phase I included: Level 1 DR graders (6 nurses, 1 general practitioner and 2 endocrinologists, all with < 1 year grading experience, 55.6% female), Level 2 DR graders (3 newly-qualified ophthalmologists with < 1 year formal DR grading experience, 100% female), and Level 3 DR graders (2 senior ophthalmologists with >5 years' experience providing treatment for sight threatening DR, but with <1 year formal DR grading experience, 100% male). In Phase II, 6/14 graders (3 Level 1, 2 Level 2, 1 Level 3) from Phase I were included. The reference standard from the UK (KC) was a fully-qualified optometrist trained in DR grading and certified by the UK NHS DESP.[6] Vietnamese Level 1, 2 and 3 graders are equivalent to primary, secondary and arbitration graders, respectively, in UK DESPs.[7] In the current study, Vietnamese Level 1 and Level 2 graders graded all fundus images for DR. All images having disagreement between graders, and an additional randomly-selected 40% of all images, were sent for arbitration grading by Level 3 graders in Vietnam. All graders in Vietnam were masked to any prior diagnoses or grades of the reference standard, while the reference standard was also masked to results of grading in Vietnam. Fundus images were graded for 412 patients in phase I and 115 patients in phase II (Figure 1 and figure 2).

DR training for graders in Vietnam: As part of a DESP project supported by NGO Orbis International, a team of five Vietnamese doctors and medical administrators visited a Northern Ireland (NI) DESP in September 2017 to receive training on screening, programme administration and quality control methods. In February 2018, a senior UK NHS grader from the Belfast Trust (CD) and a fully-qualified optometrist, trained in DR grading and certified by the NHS (KC), visited Vietnam to deliver DR training to graders involved in the DESPs. (Supplementary, Figure S1 for training timeline). Training focused on ocular anatomy, retinal diseases, DR signs and grading (based on the UK National Screening Committee (NSC)

2	
3	
4	
5	
5 6 7	
7	
, 9 10 11	
9	
10	
10	
11	
12	
13	
12 13 14 15 16 17	
15	
16	
17	
18	
18 19	
20	
20	
21	
22	
23	
24	
25	
26	
27	
20 21 22 23 24 25 26 27 28 29 30	
29	
30	
31	
21	
32	
33 34 35 36 37 38	
34	
35	
36	
37	
38	
39	
40	
41	
41	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	
60	

classification system), and appropriate referral pathways and management (Supplementary, 125 Tables S1-S3).[8] 126 **Image acquisition and management:** Images were captured by trained nurses and 127 technicians in Vietnam. Two-field, 45° digital colour photographs (one disc-centred and one 128 macula-centred) were taken using a tabletop non-mydriatic fundus camera (Canon CR2-AF, 129 Canon Medical Systems. Europe), in accordance with the UK's NHS DESP.[9] Nurses and 130 131 technicians were trained to repeat inadequate images as a quality control measure and take anterior segment photographs where adequate fundus images were not possible. Images were 132 anonymised and uploaded to a cloud-based software system (Spectra)[®] for analysis by 133 trained DR graders in Vietnam. The images were transferred to a Queen's University Belfast 134 (QUB) server for re-grading by the reference standard. 135 Assessment of gradeability: Image quality was defined as 'adequate' or 'inadequate' in 136 accordance with NHS DESP guidelines as outlined below; 137 Adequate disc-centred image: complete optic disc >2DD from edge of image and fine 138 vessels visible on surface of the disc.[9] 139 Adequate macula-centred image: centre of fovea >2DD from edge of image and 140 vessels visible within 1DD of centre of fovea.[9] 141 142 The disc-centred and macula-centred images for each eye were viewed as a pair and graded at an individual eye level. The presence of DR and diabetic macular oedema (DMO) was also 143 determined at a patient level and based on the worst affected eye. Participants with ungradable 144 images were referred for further slit-lamp examination. Where images were considered 145

patients were moved onto the appropriate referable grade pathway.[9]

146

inadequate but referable disease was detectable, the referable grade was recorded and the

Page 9 of 40

BMJ Open

Consecutive patients diagnosed with diabetes and undergoing evaluation for possible DR at Ho Chi Minh City General Hospital and Ho Chi Minh Eye Hospital (tertiary hospitals), Tien Giang General Hospital (provincial hospital) and Cai Ba General Hospital (district hospital) in Vietnam were recruited. Fundus images from August to October 2018 (Phase I) were graded by 14 graders in Vietnam and then re-graded retrospectively by a reference standard from the UK in Phase I. Targeted remedial training, based on specific findings from the Phase I analysis, was delivered in March 2019 and November 2019 by UK graders and Orbis. (Supplementary material, figure S1) Additionally, regular testing and training for quality assurance purposes was also introduced, similar to UK DESP models. To evaluate the impact of this quality-improvement intervention, a new subset of images was graded by six of the original cohort of graders between January-October 2020 (Phase II) and re-graded by the reference standard from the UK (KC) in September 2021.

Statistical analysis: Data were entered into Microsoft Excel version 16.0 and then transferred to Stata 17.0 (StataCorp LLC) for analysis. Intra and inter-grader agreement was calculated using kappa and a stratified random sampling technique was utilised to ensure a representative sample of images was re-graded (Supplementary, Tables S4 and S5). Diagnostic test accuracy (DTA) comparing graders in Vietnam with the UK reference standard was assessed by calculating sensitivity, specificity, positive predicative values (PPV) and negative predictive values (NPV). Sensitivity was calculated at the two different time points (Phase I and Phase II) and Chi Squared was used to test significance.

Patient and Public Involvement: Patients or the public were not involved in the design, or conduct, or reporting, or dissemination plans of our research

2 3 4	1
5 6 7	1
7 8 9	1
10	1
12 13	1
11 12 13 14 15 16 17	1
16 17 18	
19	
20 21 22 23 24 25 26 27 28 29 30	
23 24	
25 26 27	
27 28 29	
30 31	
32 33	
30 31 32 33 34 35 36 37	
36 37	
38 39	
40 41 42	
42 43 44	
45 46	
47 48	
49 50	
51 52	
53 54 55	
56 57	
58 59	

Results 71

Patient characteristics: In Phase I, 65.4% of patients were female with a mean age 59.4 72

years. In Phase II, 40.0% were female with a mean age of 59.8 years. Figures 1 and 2 173

74 describe enrolment of patients and capture and grading of images in Phase I and II of the For occurrence with any

175 study respectively.

76

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	177 178	Figure 1	
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 22 33 24 25 26 27 28 29 30 31 32 33 43 5 36 7 8 9 40 41 42 34 45 46 47 48 9 50 51 25 34 55 67 89 50 51 52 53 54 55 56 78 59			

2 3 4	179
5 6 7	180
8 9	
10 11	
12	
13 14	
15 16	
17 18	
19 20	
21 22	
23	
24 25	
26 27	
28 29	
30 31	
32 33	
34	
35 36	
37 38	
39 40	
41 42	
43	
44 45	
46 47	
48 49	
50 51	
52 53	
54	
55 56	
57 58	
59	

1 2

Figure 2

to peer teriew only

2	
3 4	181
5 6	182
7 8	183
9 10 11	184
12 13	185
14 15	186
16 17	187
18 19	107
20 21	188
22 23	
24	
25 26	
27 28	
29	
30 31	
32	
33 34	
35 36	
37	
38 39	
40	
41 42	
43 44	
45	
46 47	
48	
49 50	
51	
52 53	
54 55	
56	
57 58	
59	
60	

Initial grading performance analysis (Phase I): The sensitivity for detecting any DR was

low against the reference standard in the UK for all grader groups in Vietnam. The sensitivity

for detecting referable DR and referable DMO was even lower for all grader groups (Table

1). The sensitivity increased when ungradable images were excluded from the analysis,

though it still remained low (47.9-50.8% for any DR; 22.2%-38.1% for referable DR and 9.3-

186 26.5% for referable DMO) (Supplementary, Table S6).

Table 1. Diagnostic test accuracy of DR graders in Vietnam against a reference

	standard fr	om the UK	, incl	uding u	ngradable	images.
--	-------------	-----------	--------	---------	-----------	---------

	Level 1 graders	Level 2 graders	Level 3 graders	
	(n=410 patient	(n=410 patient	(n=260 patient	
	images)*	images)*	images)†	
Any DR				
Sensitivity (%) (95% CI)	41.8 (33.9, 50.1)	42.5 (34.5, 50.7)	42.2 (33.1, 51.8)	
Specificity (%) (95% CI)	87.9 (83.3, 91.7)	98.8 (96.6, 99.8)	100 (97.5, 100)	
PPV (%) (95% CI)	67.4 (57.0, 76.6)	95.6 (87.6, 99.1)	100 (92.7, 100)	
NPV (%) (95% CI)	71.7 (66.4, 76.7)	74.3 (69.3, 78.8)	68.2 (61.5, 74.5)	
Referable DR				
Sensitivity (%) (95% CI)	19.2 (9.63, 32.5)	13.5 (5.59, 25.8)	10.5 (2.94, 24.8)	
Specificity (%) (95% CI)	97.2 (94.9, 98.7)	100 (99.0, 100)	99.5 (97.5, 100)	
PPV (%) (95% CI)	50.0 (27.2, 72.8)	100 (59.0, 100)	80.0 (28.4, 99.5)	
NPV (%) (95% CI)	89.2 (85.7, 92.1)	88.8 (85.3, 91.7)	86.7 (81.9, 90.6)	
Referable DMO				
Sensitivity (%) (95% CI)	5.8 (1.91, 13.0)	20.9 (12.9, 31.0)	16.9 (8.76, 28.3)	
Specificity (%) (95% CI)	97.2 (94.8, 98.7)	99.4 (97.8, 99.9)	100 (98.1, 100)	
PPV (%) (95% CI)	35.7 (12.8, 64.9)	90.0 (68.3, 98.8)	100 (71.5, 100)	
NPV (%) (95% CI)	79.5 (75.2, 83.4)	82.6 (78.4, 86.2)	78.3 (72.7, 83.3)	
Abbreviations: UK = United Kingdom, DR = Diabetic Retinopathy, DMO = Diabetic				
Macular Oedema, CI = Confidence Intervals,				
Grading criteria: UK National Diabetic Eye Screening Programme (NDESP) classification				
system (See supplementary material, Table S1 for more details).				
Any DR, is defined as grades R1, R2, R3s, R3a and U.				
Referable DR is defined as grades R2, R3a and U				
Referable DMO is defined as grades M1 and U				

*Missing (n=2, 0.5%), †missing (n=2, 0.8%)

Sensitivity is the ability of a test to correctly identify patients with a disease and specificity is the ability of a test to correctly identify people without the disease Positive predictive value (PPV) is the proportion of those who test positive who have the condition (true positives) and negative predictive value (NPV) is the proportion of those who test negative who do not have the condition (true negatives).

Subsequent grading performance after retraining (Phase II): Subsequently, a further subset of images from 115 consecutive patients from January to October 2020 were graded by six of the original cohort of 14 Vietnamese graders, and were regraded in the UK to evaluate graders' performance after targeted training was delivered and quality control measures were instituted. The greatest improvement in sensitivity for detecting any DR was seen among level 1 graders (difference: +45.4%, 95%CI +33.1% to +57.8%; P<0.001). The specificity increased from 87.9% in phase I to 95.6% in phase II which helps to avoid over referrals (difference: +7.7%, 95%CI +1.4% to +13.9%; p=0.069). The lowest improvement in sensitivity for detecting any DR was observed between level 3 graders in Vietnam (difference; +9.0%, 95%CI: -9.0% to +27.1%; p=0.326), although their specificity remained 100% at phase I and phase II. There was a significant improvement in sensitivity for detecting DR and referable DMO at all grader levels: sensitivities after training ranged between 40% and 61.5% (Table 2). Further improvement in sensitivity was observed when ungradable images were excluded from the analysis in Phase II: sensitivities ranged from 55.6 to 97.6% for any DR, 55.6%-88.9% for referable DR and 60.0-90.0% for referable DMO (Supplementary, Table S7). The overall prevalence of DR in this study can be found in Supplementary, Table S8.

2
3
4
5
6
7
8
9
10
11
12

211 Table 2: Diagnostic test accuracy of DR graders in Vietnam against a reference

212 standard from the UK after additional DR training was delivered.

	Level 1 graders (n=115 patient images)	Level 2 graders (n=115 patient images)	Level 3 graders (n=62 patient images)
Any DR			<u> </u>
Sensitivity (%) (95% CI)	87.2 (74.3, 95.2)	68.1 (52.9, 80.9)	51.3 (34.8, 67.6)
Specificity (%) (95% CI)	95.6 (87.6, 99.1)	95.6 (87.6, 99.1)	100 (84.6, 100)
PPV (%) (95% CI)	93.2 (81.3, 98.6)	91.4 (76.9, 98.2)	100 (83.2, 100)
NPV (%) (95% CI)	91.5 (82.5, 96.8)	81.3 (71.0, 89.1)	53.7 (37.4, 69.3)
P-value comparing sensitivity to Phase I	P=0.000	P=0.002	P=0.326
Referable DR			
Sensitivity (%) (95% CI)	53.3 (26.6, 78.7)	40.0 (16.3, 67.7)	58.3 (27.7, 84.8)
Specificity (%) (95% CI)	90.0 (82.4, 95.1)	93.0 (86.1, 97.1)	100 (92.7, 100)
PPV (%) (95% CI)	44.4 (21.5, 69.2)	46.2 (19.2, 74.9)	100 (59.0, 100)
NPV (%) (95% CI)	92.8 (85.7, 97.0)	91.2 (83, 95.9)	90.7 (79.7, 96.9)
P-value comparing sensitivity to Phase I	P=0.009	P=0.022	P=0.001
Referable DMO			
Sensitivity (%) (95% CI)	56.3 (29.9, 80.2)	43.8 (19.8, 70.1)	61.5 (31.6, 86.1)
Specificity (%) (95% CI)	97.0 (91.4, 99.4)	93.9 (87.3, 97.7)	100 (92.6, 100)
PPV (%) (95% CI)	75.0 (42.8 94.5)	53.8 (25.1, 80.8)	100 (63.1, 100)
NPV (%) (95% CI)	93.2 (86.5, 97.2)	91.2 (83.9, 95.9)	90.6 (79.3, 96.9)
P-value comparing sensitivity to Phase I	P=0.000	P=0.051	P=0.002
Abbreviations: UK = United Kingdom, DR = Diabetic Retinopathy, DMO = Diabetic Macular Oedema, CI = Confidence Intervals, Grading criteria: UK National Diabetic Eye Screening Programme (NDESP) classification system (See supplementary material, Table S1 for more details). Criteria: Any DR is defined as grades R1, R2, R3s, R3a and U. Referable DR is defined as grades R2, R3a and U Referable DMO is defined as grades M1 and U Chi-squared used to compare sensitivity between Phase I and II. Sensitivity is the ability of a test to correctly identify patients with a disease and specificity is the ability of a test to correctly identify people without the disease Positive predictive value (PPV) is the proportion of those who test positive who have the condition (true positives) and negative predictive value (NPV) is the proportion of those who test negative who do not have the condition (true negatives).			

BMJ Open

Results from our study demonstrated poor sensitivity and specificity for detecting all levels of DR, especially referable DR, in the early stages of programme delivery. This translates into increased costs to the health care system due to missed opportunities for early treatment and un-necessary examinations for false-positive referrals. The quality of patient care also suffers. Didactic DR training was delivered to graders in Vietnam over a two-year period by trained DR graders from the UK and Vietnam. Training was specifically targeted to address problems identified in the Phase I testing [10], and quality control testing using international test and training (iTAT) were also undertaken. The iTAT is an online platform offering monthly quality assurance and training for graders who work in DR screening. It is a useful platform for graders to improve their skills in the detection of DR from ophthalmic images. In the UK, it is compulsory for graders to complete monthly test sets (each set consisting of 20 retinal images with a range of DR severities). If graders fall below the agreed threshold, additional training and support is provided.[7] This study demonstrates that these steps led to improved grading accuracy for all classes of patients and graders. We found that the main discordance between graders lay in their ability to detect ungradable images; therefore, targeted training must be given to ensure such patients are referred to the next level (slit-lamp examination).

According to the UK National Institute for Clinical Excellence (NICE) guidelines, DR screening tests must have at least 80% sensitivity and 95% specificity with a technical failure of 5% or less.[11]These requirements were not met here for sensitivity, but may not be applicable to LMICs. Results can be poor in these settings for a variety of reasons, including higher prevalence of un-operated lens opacity impacting clarity of photographs, use of nurses rather than professional photographers for image capture and poor compliance with photography among patients who have not previously undergone such examinations.

Page 17 of 40

BMJ Open

Quality assessment in such settings is crucial, and programmatic changes based on models such as the UK DESP can be successful in enhancing grader accuracy in LMICs settings. However, it is important for countries to adapt their own DR classification system and referral pathways to meet their requirements. As an example, the UK system (England, Wales and Northern Ireland) uses the grade M0 for no maculopathy and M1 for referable maculopathy. In Scotland, M0 denotes no maculopathy, M1 observable maculopathy and M2 referable maculopathy allowing some monitoring of maculopathy to take place on screening level. This reduces the burden on the hospital system. The implication for LMICs is that being aware of hospital capacity at the planning stage might mean that they need to safely adapt an accepted grading system to their needs. Most importantly, the role of affiliated hospitals (and partnerships, coordination among training institutions and practical hospitals) are crucial for DR grading quality improvement. Studies in LMICs have assessed the accuracy of non-medical graders and medical graders in

the detection of DR and found that both grader types are capable of achieving moderate-high sensitivity for detecting DR.[12-15] Comparable with our findings, a study in China found that non-medical DR graders achieved higher sensitivity (0.82-0.94%) and specificity (0.91-0.98%) compared to rural ophthalmologists (sensitivity=0.65-0.95%, specificity=0.59-0.95%) [16]. In DR screening, it is vital to detect referable and STDR to prevent blindness, but it is equally important to detect normal cases to prevent unnecessary referrals to already overburdened hospital clinics. Screening provides an opportunity for graders to discuss with patients the importance of managing diabetes to reduce the risk of visual impairment from DR.

Some studies have described what training interventions were used to train their graders andkey elements may be incorporated into our training programme in the future.[15, 17-18] In

the UK, the DR grading course by the Gloucestershire Retinal Education Group is required
for grader certication. The high costs of this course may be more challenging in LMICs due
to limited funding.[6]

Strengths: This study describes the impact of a training intervention to improve the quality of DR grading in an LMIC. The inclusion of ungradable images in this study was a logical decision, particularly when the prevalence of cataract (which often renders DR images ungradable) is high in LMICs.[19] Dense cataracts normally obstruct the view of the fundus, making it difficult to obtain clear fundus photographs and assign a DR grade. In these instances, referring patients to an eye clinic for further assessment and treatment as needed is required. Determining sensitivity and specificity at the patient level is also important from a DESP implementation perspective. In the UK and Vietnam, both eyes are typically examined for DR and a single outcome is assigned to the patient, as was done here. For these reasons, we feel our analytic approach, and thus results, are relevant to these settings.

Limitations: Limitations for this study have also been acknowledged. Data from this study represent routine clinical practice. In daily DR screening, not all patients undergoing primary (Level 1) and secondary (Level 2) grading proceed to arbitration grading (Level 3). This means a proportion of images were not graded by arbitration graders as outlined in figure 1 and figure 2. Second, only 6/14 graders from Phase I were included in Phase II grading; however the distribution of grader levels was similar. Third, though the proportion of patients excluded was small, we are unable to fully characterise the reasons for these exclusions, due to the nature of the study as a programmatic evaluation. Some potential reasons for this are a patient's unwillingness to participate in the study, graders having forgotten to ask for patient consent to participate in the study, and patient inability to comply with image capture. Fourth, pupil status (size and cataract status) was not recorded in this study and this can be important

Page 19 of 40

1 2

BMJ Open

3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16 17	
17 18	
19	
20	
20	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41 42	
42 43	
45 44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

for LMICs. Finally, it was not practical for the UK reference standard to examine patients
clinically in Vietnam; however, the method of grading by a certified DR grader or clinical
specialist is widely used as the reference standard in many screening programmes.

290 **Conclusions:** This paper shows how grading accuracy was particularly low among all grader groups in Vietnam in the first six months of DESP implementation. Many factors may have 291 contributed to poor grader performance, including inadequate training and feedback, 292 293 insufficient time to participate in quality assurance testing and competing work responsibilities. After additional training, testing and quality assurance systems were 294 implemented in Vietnam, DTA improved among all grader groups, however more work is 295 still needed. In particular, training graders to detect ungradable cases is crucial. With 296 continuous quality improvement, monthly international test and training, periodic DR 297 workshops and reviewal of certification, we would expect the DR sensitivity and specificity 298 to improve further. A qualitative study to determine why the initial training intervention was 299 less successful should be explored. Since further improvements are required, understanding 300 how other countries implement such programmes would be beneficial. Future studies should 301 302 outline what DR training interventions were used, state relevant training courses and explain what quality assurance measures are in place. The findings from this study are important for 303 304 DESP programme planners in Vietnam and other LMICs, highlighting the importance of quality monitoring and directed re-training as needed. 305

Artificial intelligence (AI) is likely to significantly change future approaches to DR grading.
Continued attention to maximising accuracy of human graders is still highly relevant today,
especially for low-resource settings, as AI systems must be validated locally against a gold
standard of proven expert human graders. Differences between the high-quality images used
to train most existing AI systems and the types of images encountered in low-resource

BMJ Open

settings, with high rates of prevalent lens opacity, less-well-trained photographers, and lower-cost cameras, mean that such validation must almost certainly occur at the local level. The continued importance of reliable human graders in low-resource settings is further underscored by the fact that few systems are able to function fully autonomously without input from existing graders. Acknowledgements: The authors are very grateful to all participants in Vietnam and Northern Ireland who generously gave their time for this study and to Orbis International. Author contributions: All authors (KC, NC, TTH, LL, VTN, HTN, QHN, CD, GV, PP, HT, RS, MQT, TP) have made substantial contributions to the conception of the design of the work. KC and GV analysed and interpreted the data. All authors (KC, NC, TTH, LL, VTN, HTN, QHN, CD, GV, PP, HT, RS, MQT, TP) read and approved the final manuscript. Funding: The project was funded by the Department for the Economy (DfE) – Global Challenges Research Fund (GCRF) Awards (Grant number: DFEGCRF17-18/Peto). None of the funders were involved in the design or conduct of the study; preparation, review or approval of the manuscript; or decision to submit the manuscript for publication. Nathan Congdon is supported by the Ulverscroft Foundation (UK) (Grant number: N/A). Katie Curran is funded by the Wellcome Trust (Grant number: 204835/Z/16/A). **Competing Interests:** Nathan Congdon is employed as a Research Director by Orbis International. Patient consent for publication: Not required. **Ethics approval:** This study involves human participants and was approved by an Ethics Committee or Institutional Board. This research adhered to the tenets of the Declaration of

2 3	222	Helgiplei Ethical approval was granted by the Hanoi Madical University Institutional Paviaw
4	333	Helsinki. Ethical approval was granted by the Hanoi Medical University Institutional Review
5 6	334	Board in Bio-Medical Research, Vietnam (No. 0518/HMU IRB). Written informed consent
7 8 9	335	was obtained from all participants prior to their being interviewed.
10 11 12	336	Data sharing statement: All data relevant to the study are included in the article or uploaded
13 14 15	337	as supplementary information.
16 17 18 19	338	References
20 21 22	339	1. Ngoc NB, Lin ZL, Ahmed W. Diabetes: What challenges lie ahead for Vietnam? <i>Ann</i>
23 24	340	<i>Glob Heal</i> . 2020;86(1):1–9.
25 26 27	341	2. Liew G, Michaelides M, Bunce C. A comparison of the causes of blindness
28 29	342	certifications in England and Wales in working age adults (16-64 years), 1999-2000 with
30 31 32	343	2009-2010. BMJ Open. 2014;4(2):1–6.
33 34	344	3. Burgess PI, Msukwa G, Beare NAV. Diabetic retinopathy in sub-Saharan Africa:
35 36 37	345	Meeting the challenges of an emerging epidemic. BMC Med. 2013;11(1):1.
38 39	346	4. Adriono G, Wang D, Octavianus C, Congdon N. Use of eye care services among
40 41 42	347	diabetic patients in urban Indonesia. Arch Ophthalmol (Chicago, Ill 1960). 2011;129(7):930.
43 44 45	348	5. International Council of Ophthalmology. Number of Ophthalmologists in Practice and
46 47	349	Training Worldwide [Internet]. 2012 [cited 2020 Aug 13]. Available from:
48 49 50	350	http://www.icoph.org/ophthalmologists-worldwide.html
51 52	351	6. Gloucestershire Retinal Education Group. Diabetic Retinopathy Grading Course
53 54 55	352	[Internet]. 2020. [cited 2021 April] Available from: https://drscreening.org/diabetic-
55 56 57 58 59 60	353	retinopathy-grading-course

Page 22 of 40

21

BMJ Open

2 3 4	354	7. Widdowson S, Taylor D. The management of grading quality: Good practice in the
5 6	355	quality assurance of grading. [Internet] 2015. [cited 2021 April] Available from:
7 8 9	356	https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data
9 10 11 12	357	/file/512832/The_Management_of_Grading.pdf
12 13 14	358	8. Public Health England. NHS Diabetic Eye Screening Programme Grading definitions
15 16	359	for referable disease. [Internet] 2021 (cited 2021 September] Available from:
17 18 19	360	https://www.gov.uk/government/publications/diabetic-eye-screening-retinal-image-grading-
20 21	361	criteria/nhs-diabetic-eye-screening-programme-grading-definitions-for-referable-disease
22 23 24	362	9. NHS DESP Core Team. Diabetic Eye Screening Programme Pathway for Adequate /
25 26	363	Inadequate Images and where images cannot be taken Outlines pathway and business rules
27 28	364	for image capture exceptions and ungradable images. [Internet] 2013.[cited 2021 April]
29 30 31	365	Available from: https://www.gov.uk/government/publications/diabetic-eye-screening-
32 33 34	366	pathway-for-images-and-where-images-cannot-be-taken
34 35 36	367	10. Curran K, Congdon N, Peto T, Dardis C, Nguyen NN, Hoange TT et al. Capturing the
37 38	368	clinical decision-making processes of expert and novice diabetic retinal graders using a
39 40 41	369	'think-aloud' approach. Eye. 2022;36:1019-1026
42 43 44	370	11. Scanlon PH. The English national screening programme for diabetic retinopathy
45 46	371	2003–2016. Acta Diabetol. 2017;54(6):515–525.
47 48 49	372	12. Amirul Islam FM. Accuracy and reliability of retinal photo grading for diabetic
50 51	373	retinopathy: Remote graders from a developing country and standard retinal photo grader in
52 53 54	374	Australia. PLoS One. 2017;12(6):1–12.
55 56	375	13. Bhargava M, Cheung CYL, Sabanayagam C, Kawasaki R, Harper CA, Lamoureux
57 58 59	376	EL, et al. Accuracy of diabetic retinopathy screening by trained non-physician graders using
59 60	377	non-mydriatic fundus camera. Singapore Med J. 2012;53(11):715-9.

Page 23 of 40

1

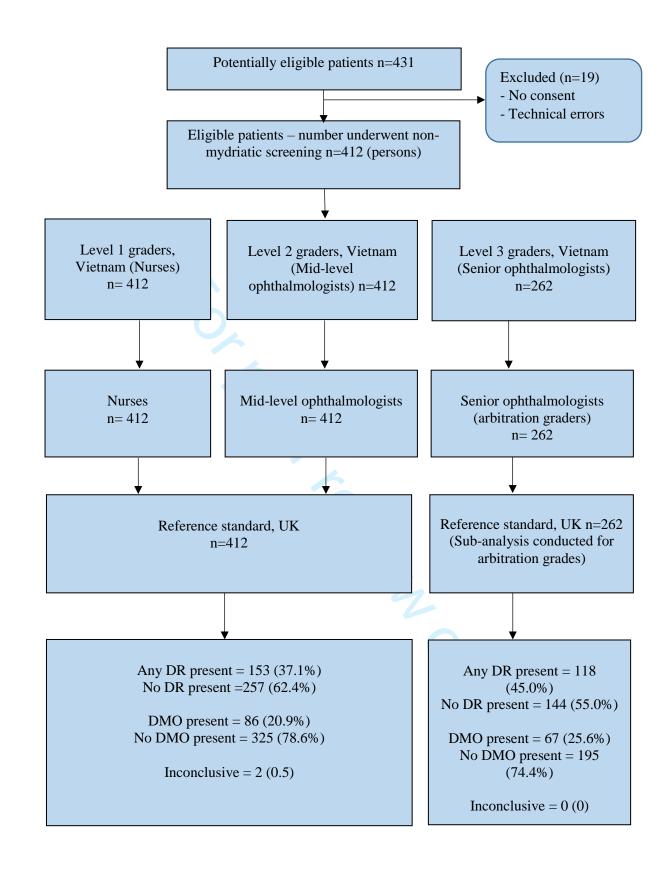
BMJ Open

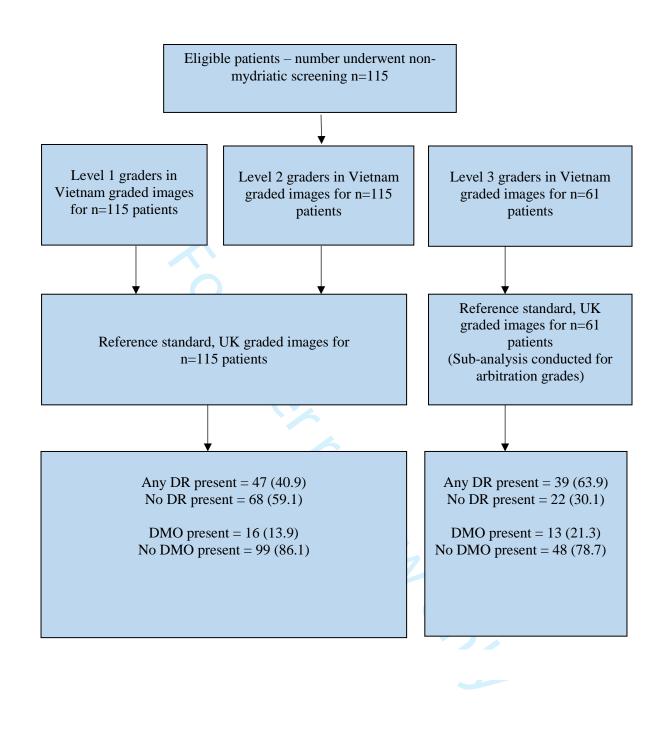
2		
3 4	378	14, Piyasena MMPN, Yip JLY, MacLeod D, Kim M, Gudlavalleti VSM. Diagnostic test
5 6	379	accuracy of diabetic retinopathy screening by physician graders using a hand-held non-
7 8 9	380	mydriatic retinal camera at a tertiary level medical clinic. BMC Ophthalmol. 2019;19(1):89.
10 11 12	381	15. Thapa R, Bajimaya S, Pradhan E, Sharma S, Kshetri B, Paudyal G. Agreement on
12 13 14	382	Grading Retinal Findings of Patients with Diabetes Using Fundus Photographs by Allied
15 16	383	Medical Personnel when Compared to an Ophthalmologist at a Diabetic Retinopathy
17 18 19	384	Screening Program in Nepal. Clin Ophthalmol. 2020;14:2731-2737.
20 21	385	16. McKenna M, Chen T, McAneney H, Membrillo MAV, Jin L, Xiao W, et al. Accuracy
22 23 24	386	of trained rural ophthalmologists versus non-medical image graders in the diagnosis of
25 26	387	diabetic retinopathy in rural China. Br J Ophthalmol. 2018;102(11):1471-6.
27 28 29	388	17. Rani PK, Peguda HK, Chandrashekher M, Swarna S, Jonnadula GB, James J et al.
30 31	389	Capacity building for diabetic retinopathy screening by optometrists in India: Model
32 33 34	390	description and pilot results. Indian J Ophthalmol. 2021.69:655-659.
35 36	391	18. Srinivasan S, Shetty S, Natarajan V, Sharma T, Raman R. Development and
37 38 39	392	Validation of a Diabetic Retinopathy Referral Algorithm Based on Single-Field Fundus
40 41	393	Photography. <i>PLoS One</i> 2016.11:e0163108.
42 43 44	394	19. Murthy GVS, John N, Shamanna BR, Pant HB. Elimination of avoidable blindness
45 46	395	due to cataract: Where do we prioritize and how should we monitor this decade. Indian
47 48 49	396	J Ophthalmol. 2012;60(5):438-45. (19)
50 51 52	397	Figure 1: Flow diagram to illustrate enrolment of patients and management of images in Phase I from
53 54	398	August to October 2018 (Initial grading performance analysis). Level 1 and level 2 graders graded the
55 56	399	same set of photographs and level 3 graders graded a subset of these photographs: All disagreements
57 58 59 60	400	between Level 1 and 2 graders and a 40% random sample of all images.

3 4	401
5 6	402
7 8	403
9 10	404
11 12	
13 14	405
15 16	
17	
18 19	
20 21	
22 23	
24 25	
26 27	
28 29	
30 31	
32 33	
34 35	
36 37	
38 39	
40 41	
42	
43 44	
45 46	
47 48	
49 50	
51 52	
53 54	
55 56	
57 58	

1 2

401 Figure 2: Flow diagram illustrating the enrolment of patients and management of images included in


402 Phase II from January 2020 to October 2020 (Follow-up grading performance analysis after re-


training). Level 1 and level 2 graders graded the same set of photographs and level 3 graders graded a

For beet terien only

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

404 subset of these images.

SUPPLEMENTARY MATERIAL

Figure S1: Training timeframe for graders in Vietnam

September 2017 (5 days)

• Five Vietnamese doctors and medical administrators visited Northern Ireland to receive screener/graders training in administration and failsafe methods.

• These doctors delivered training to new graders in Vietnam following their visit to Northern Ireland.

January 2018 (1 week) – Delivered in person in Vietnam by two UK graders (senior ophthalmic nurse and optometrist, certified in DR grading)

- Observation in retina clinics.
- Hands on training with tabletop CR-2 Canon Fundus Cameras.
- Topics covered: ocular anatomy, retinal disease, DR signs, DR grading (based on the UK DESP grading classification system) and appropriate referral pathways and management (PowerPoint presentation and interactive sessions).
- All graders received a module workbook.
- •Certifcation provided by Orbis.

March 2018 - Grading began in Vietnam

• Graders began grading as part of pilot DESP.

• Ongoing training was delivered by the Orbis team and the lead ophthalmologist for DR screening in Vietnam over the course of the following months.

June 2018 (1-2 days) – Delivered by Orbis partners

• UK graders developed a PowerPoint presentation based on DR case examples and this was delivered by Orbis.

March 2019 (2 days) - Delivered by UK grader in Vietnam

• More training on DR case examples.

November 2019 (3 days) - Delivered in person in Vietnam by two UK graders (senior ophthalmic nurse and optometrist, certified in DR grading)

• Refresher DR training, incorporating think-aloud techniques into practical teaching sessions.

• Pre and post training assessments.

• Encouraged use of international test and training (iTAT) for quality assurance purposes. Practical sessions on iTAT.

Table S1: Diabetic retinopathy workshop for graders in Vietnam

AGENDA		
DAY 1-3 Mond	ay 29 th January – Wednesday 31 st January	
Visit diabetic ret and support.	tinopathy screening sites to observe and provide hands on training	UK grader and Orbis team
DAY 4- Thursd	lay 1 st February	
MORNING		
9:00 - 9:30	Check in	UK grader
9:30 - 10.30	Introduction on Diabetic Retinopathy	and Orbis
10.30-10.45	Tea Break	team
10.45-11.30	Basic Screening Component	
	Lunch	
AFTERNOON		
13.30-14:00	NHS Grading System	UK grader
14:00-14:45	Image Quality	and Orbis
14:45-15:00	Tea Break	team
15:00-16:00	Image Grading	
16:0-16:30	Hospital pathway	
DAY 5- Friday	2nd February	
MORNING		
9:00-9:30	Other ocular findings	UK grader
9:30-11:30	Practice on grading	and Orbis team
11:30-12:00	Wrap up	

Wrap up

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
22
24
25
26
27
28
29
30
31
32
33
34
35
36
30 37
38
39
40
41
42
43
44
45
46
47
48
49
50
50 51
51 52
53
54
55
56
57
58

Table S2: Refresher training p	ogramme for DR graders in	Vietnam (delivered by UK graders
and Orbis) in November 2019		

Time	Topics	Method	Who	Preparation
		DAY 1		
8:45- 9:15	Introduction/ Pre course quiz		Orbis VN/ UK graders	UK graders
9:15- 9:45	Diabetic Retinopathy (DR) - New Challenges of Blindness Prevention Objective: Understand the problem of DR and current efforts to manage vision loss. Aim to motivate graders to be involved in DESP	Presentation	Orbis VN	Orbis
9:45- 10:15	Retina Anatomy <i>Objective : Understand the</i> <i>pathobiology of diabetic</i> <i>complications and</i> <i>pathogenesis of retinal</i> <i>damage</i>	Presentation	Ho Chi Minh Eye Hospital	Orbis
10:30- 11:15	Diabetic Retinopathy (DR) Pathophysiology Objective : Understand Diabetic Retinopathy	Presentation	UK graders	UK graders
11:15- 12:00	Grading system and DR Grading pathway (UK system)/ How to systematically grade a retinal image Objective : Understanding the grading system and referral pathway (UK standard)	Presentation	UK graders	UK graders
13:30- 14:15	Image quality Objective : Understand the requirements/criteria of image quality for accurate grading	Presentation	UK graders	UK graders
14:15- 14:45	Spectra Software Objective : How to use the current Spectra software for uploading, grading, and managing DR cases	Demonstration	Senior graders of Tien Giang and Ho Chi Minh Eye Hospital	

15:00- 17:00	Practical Training Parallel session:1- Taking retina images of the patients following 	Practical training	Current graders of Tien Giang and Ho Chi Minh Eye Hospital, and UK graders	2 fundus cameras: 4 Groups: make sure every participant is able to practice at least once
15:00- 17:00	Parallel session : 1- Grading DR in the Spectra Objective: Practical experience of how to do DR grading	Practical training	Current graders of Tien Giang and Ho Chi Minh Eye Hospital, and UK graders	 3-4 accounts of Spectra 4 Groups : make sure every participant is able to practice at least once
		DAY 2		
08:45- 09:00	Recap of day 1/ introduction to day 2		Orbis	
9:00- 9:30	Analysis of retinal fundus images for grading of diabetic retinopathy severity Objective : How to read the image and protocol for retinal image analysis		Ophthalmologist Ho Chi Minh Eye Hospital	
9:30- 10:15	DR Screening Procedure: Best Practice <i>Objective: Discuss how to</i> <i>build the "best screening</i> <i>procedures" into DESPs.</i>	Presentation	UK graders	UK graders
10:30- 11:15	Other Ocular Findings Objective: Awareness of other ocular pathology during DR screening	Presentation	UK graders	UK graders
11:15- 12:15	Image grading case studies competition	Practical	UK graders	We need to organise people into groups of 3 with one experienced grader in each group

13:30- 14:30	Counselling and delivering messages to patients during the DR screening <i>Objective: Important to</i> <i>provide counselling for the</i> <i>patients and deliver</i> <i>messages effectively.</i>	Presentation/ practical training	Orbis Vietnam	
14:30- 16:30	Practical Training Parallel session:1- Taking retina images of the patients following the procedure ,and provide counseling to the patientsObjective: Experience on how to take good fundus photographs	Practical training	Current graders of Tien Giang and Ho Chi Minh Eye Hospital, and UK graders	2 fundus camera 4 Group: make sure every participants are able to practice at least one time
	Parallel session :1- Grading DR in the SpectraObjective: Practical experience on DR grading	Practical training	Current graders of Tien Giang and Ho Chi Minh Eye Hospital, and UK graders	-4 accounts of Spectra 4 Groups: make sure every participant is able to practice at least one time.
		DAY 3	. . .	•
08:45-	Part 1 (Fi Recap of day 2/ introduction	nal practical trai	ining)	
9:00	to day 3			
09:00- 09:30	Quality Assurance in Diabetic Screening Objective : Understand why quality assurance is important and the correct steps required to ensure good quality assurance procedures are in place	Presentation	UK graders	UK graders
09:30- 10:30	Practice : Grading in iTAT <i>Objective: Know the Online</i> <i>training for DR grading and</i> <i>the importance of lifelong</i> <i>learning for DR grading</i>	Practice	Current graders of Tien Giang and Ho Chi Minh Eye Hospital, and support from UK graders	ITAT accounts for practicing

10:45- 12:30	AssessmentParallel session:1- Taking retina images of the patients following the procedure ,and 	Practical Training	Current graders of Tien Giang and Ho Chi Minh Eye Hospital, and UK graders	2 fundus cameras 4 Group and 4 accounts of Spectra 4 Groups
	Dowt 2	DAY 3		·
13:30- 14:15	Part 2 Post course Quiz and results	2 (Future plannir	UK graders	UK graders
14:15- 15:00	Teaching Methodology for adults <i>Objective : How to train new</i> <i>graders effectively</i>	Think aloud work shop	Orbis VN Supported by UK graders	UK graders
15:15- 16:00	Supportive Supervision Methodology: Developing quality improvement Objective: How to plan, implement the supervision trips to correct / improve other graders' performances. Provide checklist tools	Think aloud work shop	Orbis VN Supported by UK graders	UK graders
16:00- 16:45	Feedbacks and Plan for next steps	Discussion		
16:45- 17:00	Certificates for Vietnamese graders in attendance	6	20,	

NSC	International Term	Symptoms	Features	Action
RO	No DR	None	No signs of diabetic retinopathy	Annual rescreen
RI	Mild none- proliferative (mild pre-proliferative)	None	Haemorrhages & microaneurysms, only	Annual rescree
R2	Moderate none- proliferative, moderate pre- proliferative	None	Extensive Microaneurysms, intraretinal haemorrhages, hard exudates, venous abnormalities, large blot haemorrhages, cotton wool spots (small infarcts), venous beading, venous loop, venous reduplication.	Refer routinely to HES
R3s	Stable proliferative diabetic retinopathy		No haemorrhages or exudates or new vessels, laser scars	Annual rescree
R3a	Active proliferative diabetic retinopathy	Floaters, central loss of vision	New vessel formation either at the disc (NVD) or elsewhere (NVE). Extensive fibrovascular proliferation, retinal detachment, pre-retinal or vitreous haemorrhage.	Urgent referral to HES
M 0			No maculopathy	Annual rescree
M 1	Diabetic maculopathy	Blurred central vision	The macula is defined as a circle centred on the fovea, with a radius of the distance to the disc margin. If the leakage involves or is near the fovea the condition is termed clinically significant macular oedema (CSME). Exudative maculopathy presents with leakage, retinal thickening, microaneurysms, hard exudates at the macula. Ischaemic form can have a featureless macular with NVE and poor vision. Milder forms: • exudate < or = 1DD of centre of fovea • circinate or group of exudates within macula • any microaneurysm or haemorrhage < or = 1DD of centre of fovea only is associated with a best VA of < or = 6/12 retinal thickening < or =	Refer to HES

Table S3: UK DR Grading Classification Scale

			1DD of centre of fovea (if stereos available)	
Р	Photocoagulation	Reduced night vision, glare	Small retinal scars throughout the peripheral retina.	
U	Ungradable		Ungradable is usually due to cataract, small pupils, other lesions usually referred for assessment	Refer for slit lamp examination

Abbreviations: DR = diabetic retinopathy, NPDR = none-proliferative retinopathy, NVE = new vessels elsewhere, IRMAs = intraretinal microvascular abnormalities (part of severe pre-proliferative retinopathy, vessels will not leak with angiogram, otherwise they would be 'new vessels' making the condition 'proliferative'), MO=macular oedema, MA= microaneurysm, DD=disc diameter, HES= hospital eye service

	Intra-rater agreement (reference standard, UK), k (95% CI) (by eyes, n=106)	Intra-rater agreement (reference standard, UK), k (95% CI) (by worst eye, n=53)
Overall Diabetic		
Retinopathy Grading:		
Any DR	0.96 (0.91,1.00)	0.92 (0.82, 1.00)
Treatable DR	0.81 (0.60, 1.00)	0.74 (0.47, 1.00)
Referable Maculopathy	0.97 (0.92, 1.0)0	1.00 (1.00, 1.00)
macular oedema	e interval, k=kappa, DR=Diabeti	c retinopathy, DMO=diabetic
Any DR defined as R1, R2, F	-	
Treatable DR defined as R3a		
Referable DMO defined as M	11 and U	

 Table S4: Reference standards intra-rater agreement score using kappa statistic (first attempt versus second attempt)

Table S5: Using kappa statistic to determine the inter-rater agreement between the reference standard and one senior grader from QUB grading centre

	Inter-rater agreement (reference standard vs a senior grader QUB), k (95% CI) (by eyes, n=106)	Inter-rater agreement (reference standard vs a senior grader QUB (by worst), k (95% CI) (by worst eye, n=53)		
Overall Diabetic				
Retinopathy Grading:				
Any DR	0.79 (0.67, 0.91)	0.74 (0.55, 0.92)		
Treatable DR	0.71 (0.48, 0.95)	0.68 (0.39, 0.97)		
Referable Maculopathy	0.75 (0.61, 0.90)	0.74 (0.55, 0.93)		
Abbreviations: CI=confidence interval, k=kappa, DR=Diabetic retinopathy, DMO=diabetic				
macular oedema				
Any DR defined as R1, R2, R3s, R3a and U				
Treatable DR defined as R3a				
Referable DMO defined as M1 and U				

Intra and inter-grader agreement

To ensure there was good intra-grader reliability as a reference standard, a stratified random sample of images were regraded. There was approximately one month between the first and second attempts to reduce the possibility of bias caused by memory. Additionally, inter-grader agreement was calculated using kappa to ensure there was good grading agreement between the reference standard and one senior grader from the Ophthalmic Reading Centre at QUB, Belfast. Any disagreements were discussed with

a retinal specialist until consensus was reached. Overall, the intra-grader agreement and inter-grader agreement ranged from substantial to almost perfect.

to be the wind off

Table S6. Diagnostic test accuracy of DR graders in Vietnam against a reference standard from
the UK, excluding ungradable images (Phase I)

	Level 1 graders (n=373 patient images)	Level 2 graders (n=373 patient images)*	Level 3 graders (n=235 patient images)†
Any DR	·	·	
Sensitivity (%) (95% CI)	47.9 (38.8, 57.2)	50.8 (41.6, 60.0)	49.0 (38.7, 59.3)
Specificity (%) (95% CI)	89.7 (85.1, 93.0)	98.8 (96.3, 99.7)	100 (96.8, 100)
PPV (%) (95% CI)	69.0 (57.9, 78.4)	95.3 (86.2, 98.8)	100 (90.6, 100)
NPV (%) (95% CI)	78.2 (72.9, 82.7)	80.9 (76.0, 85.0)	74.6 (67.8, 80.5)
Referable DR			
Sensitivity (%) (95% CI)	38.1 (19.0, 61.3)	28.6 (12.2, 52.3)	22.2 (7.4, 48.1)
Specificity (%) (95% CI)	98.9 (96.9, 99.6)	100 (98.7, 100)	99.5 (97.1, 99.9)
PPV (%) (95% CI)	66.7 (35.4, 88.7)	100 (51.7, 100)	80.0 (29.9, 98.9)
NPV (%) (95% CI)	96.4 (93.8, 97.9)	96.0 (93.3, 97.6)	94.0 (89.9, 96.6)
Referable DMO 🛛 🗸 🗸			
Sensitivity (%) (95% CI)	9.3 (3.0, 23.1)	37.2 (23.4, 53.3)	26.5 (13.5, 44.7)
Specificity (%) (95% CI)	99.1 (97.0, 99.8)	99.4 (97.5, 99.9)	100 (97.6, 100)
PPV (%) (95% CI)	57.1 (20.2, 88.2)	88.9 (63.9, 98.1)	100 (62.9, 100)
NPV (%) (95% CI)	88.9 (85.1, 92.0)	92.3 (88.9, 94.7)	88.6 (83.5, 92.4)

Abdreviations: OK = Onited Kingdom, DK = Diabetic RetirOedema, CI = Confidence Intervals,

Grading criteria: UK National Diabetic Eye Screening Programme (NDESP) classification system (See supplementary material, Table S1 for more details).

Any DR, is defined as grades R1, R2, R3s and R3a.

Referable DR is defined as grades R2 and R3a.

Referable DMO is defined as grades M1

Sensitivity is the ability of a test to correctly identify patients with a disease and specificity is the ability of a test to correctly identify people without the disease

Positive predictive value (PPV) is the proportion of those who test positive who have the condition (true positives) and negative predictive value (NPV) is the proportion of those who test negative who do not have the condition (true negatives).

Table S7: Diagnostic test accuracy of DR graders in Vietnam against a reference standard from the UK after additional DR training was delivered, excluding ungradable images (Phase II)

images)	natient images)	(n=62 patient images)
	patient images)	ininges
97.6 (85.6, 99.9)	72.5 (55.9 84.9)	55.6 (38.1, 72.1)
95.6 (86.8, 99.8)	100 (93.5, 100)	100 (84.6, 100)
93.0 (79.9, 98.2)	100 (85.4, 100)	100 (80.0, 100)
98.5 (90.7, 99.9)	85.5 (75.2, 92.2)	57.9 (10.9, 73.2)
88.9 (50.7, 99.4)	55.6 (22.7, 84.7)	77.8 (40.0, 97.2)
90.0 (81.9, 94.8)	96.9 (90.5, 99.2)	100 (92.8, 100)
44.4 (22.4, 68.7)	62.5 (25.9, 89.8)	100 (56.1, 100)
98.9 (93.4, 99.9)	95.9 (89.2, 98.7)	96.1 (87.8, 98.8)
90.0 (54.1, 99.5)	60.0 (26.4, 86.3)	80.0 (44.4, 97.5)
97.0 (91.8, 99.2)	97.9 (91.9, 99.6)	100 (92.6, 100)
75.0 (42.8, 93.3)	75.0 (35.6, 95.5)	100 (59.8, 100)
99.0 (93.6, 99.9)	95.9 (89.2, 98.7)	96.0 (87.4, 99.6)
	95.6 (86.8, 99.8) 93.0 (79.9, 98.2) 98.5 (90.7, 99.9) 88.9 (50.7, 99.4) 90.0 (81.9, 94.8) 44.4 (22.4, 68.7) 98.9 (93.4, 99.9) 90.0 (54.1, 99.5) 97.0 (91.8, 99.2) 75.0 (42.8, 93.3) 99.0 (93.6, 99.9)	95.6 (86.8, 99.8) 100 (93.5, 100) 93.0 (79.9, 98.2) 100 (85.4, 100) 98.5 (90.7, 99.9) 85.5 (75.2, 92.2) 88.9 (50.7, 99.4) 55.6 (22.7, 84.7) 90.0 (81.9, 94.8) 96.9 (90.5, 99.2) 44.4 (22.4, 68.7) 62.5 (25.9, 89.8) 98.9 (93.4, 99.9) 95.9 (89.2, 98.7) 90.0 (54.1, 99.5) 60.0 (26.4, 86.3) 97.0 (91.8, 99.2) 97.9 (91.9, 99.6) 75.0 (42.8, 93.3) 75.0 (35.6, 95.5)

Abbreviations: UK = United Kingdom, DR = Diabetic Retinopathy, DMO = Diabetic Macular Oedema, CI = Confidence Intervals,

Grading criteria: UK National Diabetic Eye Screening Programme (NDESP) classification system (See supplementary material, Table S1 for more details).

Criteria:

Any DR is defined as grades R1, R2, R3s, and R3a.

Referable DR is defined as grades R2 and R3a.

Referable DMO is defined as grades M1.

Sensitivity is the ability of a test to correctly identify patients with a disease and specificity is the ability of a test to correctly identify people without the disease

Positive predictive value (PPV) is the proportion of those who test positive who have the condition (true positives) and negative predictive value (NPV) is the proportion of those who test negative who do not have the condition (true negatives).

3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
16 17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49 50	
50	
51 52	
52 53	
53 54	
54 55	
55 56	
50 57	
57 58	
20	

59 60 Table S8: The prevalence of any diabetic retinopathy (DR), referable DR, any maculopathy and ungradable cases with the reference grader from Phase I and Phase II

Diabetic Retinopathy	Phase I	Phase II (post remedial	P-Value		
grades		training)			
R0 (n,%)	257 (62.68)	68 (59.13)			
R1 (n,%)	100 (24.39)	32 (27.83)			
R2 (n,%)	11 (2.68)	2 (1.74)			
R3a (n,%)	10 (2.44)	7 (6.09)	P=0.347		
R3s (n,%)	1 (0.24)	0 (0.00)			
U (n,%)	31 (7.56)	6 (5.22)			
Any DR					
- Yes (n,%)	153 (37.32)	47 (40.87)	P=0.488		
- No (n,%)	257 (62.68)	68(59.12)			
Referable DR	(
- Yes (n,%)	52 (12.68)	15 (13.04)	P=0.918		
- No (n,%)	358 (87.32)	100 (86.96)			
Any DMO					
- M0 (n,%)	324 (79.02)	99 (86.09)			
- M1 (n,%)	43 (10.49)	10 (8.70)	P=0.173		
- U (n,%)	43 (10.49)	6 (5.22)			
Abbreviations: DR=diabetic retinopathy, DMO=Diabetic Macular Oedema, U=ungradable, Chi-					
Squares used to test significance.					

BMJ Open

Section & Topic	No	Item	Reported on page
TITLE OR ABSTRACT			
	1	Identification as a study of diagnostic accuracy using at least one measure of accuracy	1
		(such as sensitivity, specificity, predictive values, or AUC)	
ABSTRACT			
	2	Structured summary of study design, methods, results, and conclusions	3-4
		(for specific guidance, see STARD for Abstracts)	
INTRODUCTION			
	3	Scientific and clinical background, including the intended use and clinical role of the index test	5-6
	4	Study objectives and hypotheses	5
METHODS			
Study design	5	Whether data collection was planned before the index test and reference standard	5
		were performed (prospective study) or after (retrospective study)	
Participants	6	Eligibility criteria	6-7
	7	On what basis potentially eligible participants were identified	6-7
		(such as symptoms, results from previous tests, inclusion in registry)	
	8	Where and when potentially eligible participants were identified (setting, location and dates)	6-7
	9	Whether participants formed a consecutive, random or convenience series	7
Test methods	10a	Index test, in sufficient detail to allow replication	6-7
	10b	Reference standard, in sufficient detail to allow replication	6
	11	Rationale for choosing the reference standard (if alternatives exist)	6
	12a	Definition of and rationale for test positivity cut-offs or result categories	
		of the index test, distinguishing pre-specified from exploratory	
	12b	Definition of and rationale for test positivity cut-offs or result categories	
		of the reference standard, distinguishing pre-specified from exploratory	
	13a	Whether clinical information and reference standard results were available	6-7
		to the performers/readers of the index test	
	13b	Whether clinical information and index test results were available	6-7
		to the assessors of the reference standard	
Analysis	14	Methods for estimating or comparing measures of diagnostic accuracy	12-14
	15	How indeterminate index test or reference standard results were handled	12-14 Supplementary fil
	16	How missing data on the index test and reference standard were handled	12-14
	10	Any analyses of variability in diagnostic accuracy, distinguishing pre-specified from	12-14
	-/	exploratory	12 17
	18	Intended sample size and how it was determined	NA
RESULTS			
Participants	19	Flow of participants, using a diagram	10-11
	20	Baseline demographic and clinical characteristics of participants	9
	 21a	Distribution of severity of disease in those with the target condition	Supplementary fil
	21b	Distribution of alternative diagnoses in those without the target condition	Supplementary fil
	22	Time interval and any clinical interventions between index test and reference standard	Supplementary fil
Test results	 23	Cross tabulation of the index test results (or their distribution)	12-14 and
		by the results of the reference standard	supplementary
	24	Estimates of diagnostic accuracy and their precision (such as 95% confidence intervals)	12-14
	 25	Any adverse events from performing the index test or the reference standard	NA
DISCUSSION			
	26	Study limitations, including sources of potential bias, statistical uncertainty, and	17
		generalisability	
	27	Implications for practice, including the intended use and clinical role of the index test	17-18
OTHER			
INFORMATION			
	28	Registration number and name of registry	NA
		-U /	

1	30 Sources of funding and other support; role of funders18	
2		
3		
4 5		
6		
7		
8		
9		
10 11		
12		
13		
14		
15 16		
17		
18		
19		
20		
21 22		
23		
24		
25		
26 27		
28		
29		
30		
31 32		
33		
34		
35		
36 37		
37 38		
39		
40		
41		
42 43		
44		
45		
46		
47 48		
49		
50		
51		
52 53		
53 54		
55		
56		
57		
58 59		
60	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

