Electronic Supporting Information

Assay-Ready Cryopreserved Cell Monolayers Enabled by Macromolecular Cryoprotectants

Ruben M. F. Tomás,^a Akalabya Bissoyi,^a Thomas R. Congdon,^c and Matthew I. Gibson^{a,b*}

 ^a Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK;
^b Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK;

^cCryologyx Ltd, 71-75 Shelton Street, London, UK, WC2H 9JQ, UK

*Corresponding Author m.i.gibson@warwick.ac.uk

1 Additional Data

1.1 Polymer Characterisation

Figure S1. ¹H NMR characterisation of polyampholyte. IS = internal standard.

Figure S2. 13 C NMR characterisation of polyampholyte. IS = internal standard.

Figure S3. Osmolarity measurements of Minimum Essential Medium Eagle supplemented with 10%v/v FBS, 10%v/v DMSO and/or polyampholyte (40 mg.mL⁻¹).

1.2 Cell Recovery Data

Figure S4. Post-thaw cell recovery of (**A**) A549, (**B**) HepG2 and (**C**) Caco-2 confluent monolayers cryopreserved with 40 mg.mL⁻¹ of polyampholyte and 10 %v/v DMSO. Cell counts were completed 24 h post-thaw. Graphs have been plotted as bar graphs and violin plots to show average cell recoveries and well-to-well variability. Data is presented as mean % cell recovery \pm SEM from two independent repeats.

Figure S5. Post-thaw cell recovery of (A) A549, (B) HepG2 and (C) Caco-2 confluent monolayers cryopreserved with 10 %v/v DMSO. Cell counts were completed 24 h post-thaw. Graphs have been plotted as bar graphs and violin plots to show average cell recoveries and well-to-well variability. Data is presented as mean % cell recovery \pm SEM from two independent repeats.

Figure S6. Percentage cell recovery of (A) A549, (B) HepG2 and (C) Caco-2 cells plated at different cell densities frozen with 40 mg.mL⁻¹ of polyampholyte and 10% DMSO. Cell counts were completed 24 h post-thaw. Data is presented as mean % cell recovery \pm SEM from two to four independent repeats.

Av. recovery: A549 = 107.7%; HepG2 = 93.2%

Figure S7. Scalable freezing process. Six plates containing A549 and HepG2 cells were frozen with 40 mg.mL⁻¹ of polyampholyte and 10 %v/v DMSO by two independent scientists (Ruben Tomas, RT; Akalabya Bissoyi, AB), simultaneously, and the mean % cell recovery was determined 24 h post-thaw \pm SEM of five technical repeats (different wells from the same well plate).

1.3 Before and after freezing imaging

Figure S8. Post-thaw images of cells frozen at different cell densities. A459 and HepG2 cells were frozen with 10% DMSO and 40 mg.mL⁻¹ of polyampholyte and images were taken 24 h post-thaw. Scale bar = $100 \mu m$.

Figure S9. Post-thaw images of multiple positions within well plates. A549 (300k cell per well) and HepG2 (400k cell per well) cells were seeded as confluent monolayers, frozen with 10 %v/v DMSO and 40 mg.mL⁻¹ of polyampholyte and imaged 24 h post-thaw at 3 different positions. Non-frozen (precount) images have also been provided. Scale bar = 100 μ m.

1.4 Resazurin cell viability assay

Figure S10. Resazurin reduction cell viability assay. Non-frozen and frozen (**A**) A549 and (**B**) HepG2 cells, seeded at multiple cell densities, were incubated with resazurin solution 24 h post-thaw and the conversion of resazurin to resorufin was measured by absorbance and fluorescence. Data is presented as both resazurin reduction and normalised fluorescence \pm SEM from two independent repeats.

Figure S11. Linear dynamic working range of resazurin reduction assay. Graphs from Fig. S10 were replotted to illustrate the linear working range for % cell viability measurements in drug screening applications. Data is presented as both resazurin reduction and normalised fluorescence \pm SEM from two independent repeats.

1.12 Imaging intracellular ice growth

Figure S12. Cryomicroscopy images. A549, HepG2 and Caco-2 cells were frozen on a cryostage in the presence of 10 %v/v DMSO and 40 mg.mL⁻¹ of polyampholyte to visualise intracellular ice growth. Images were taken at RT (20 °C), -10 °C and -20 °C. Scale bar = 100 μ m.

Figure S13. Cellular dehydration during freezing. A549 cells were imaged using cryomicroscopy at 20 °C and -20 °C in media containing either 10 %v/v DMSO (white bar) or 10 %v/v DMSO and 40 mg.mL⁻¹ of polyampholyte (dark grey bar) to quantify cell shrinkage (by area) using ImageJ. The data is presented as mean area \pm SEM of at least 37 cells imaged (ANOVA, Tukey PostHoc; ns: p > 0.05, * p \leq 0.05, **** p \leq 0.0001).

1.6 Caspase-3/-7 assay

Figure S14. Imaging caspase-3/-7 activation. A549 and HepG2 cells frozen with 40 mg.mL⁻¹ of polyampholyte and 10% DMSO were thawed with cell culture media and incubated with CellEvent Caspase-3/7 Detection Reagent for real-time imaging of caspase activation over time. Representative images have been provided.

1.9 Cell cycle analysis

Figure S15. Flow cytometry cell cycle analysis of (**A**) A549, (**B**) HepG2 and (**C**) Caco-2 before and 24h after freezing with 10% DMSO and 40 mg.mL⁻¹ of polyampholyte.

1.10 CYP response

Figure S16. Innate cytochrome P450 (CYP) activity. The innate CYP activity of HepG2 cells was measured before and after freezing with 10% DMSO and 40 mg.mL⁻¹ of polyampholyte. Data is presented as mean CYP activity per cell \pm SEM from two independent repeats (ANOVA, Tukey PostHoc; ns: p > 0.05).

Figure S17. Rifampicin-induced cytochrome P450 (CYP) response. Cryopreserved confluent HepG2 cells, frozen with 10 %v/v DMSO and 40 mg.mL⁻¹ of polyampholyte, were thawed for 24 h and incubated with Rifampicin for 48 h to elevate CYP responses. Data is presented as mean CYP activity per cell \pm SEM from two independent repeats (ANOVA, Tukey PostHoc; ns: p > 0.05, *** p \leq 0.001).

1.11 Long term storage and transportation of frozen cells

Figure S18. Storage in dry ice. A549 and HepG2 cells were frozen with 40 mg.mL⁻¹ of polyampholyte and 10 %v/v DMSO in either collagen coated or uncoated plates. Plates were subsequently stored in polystyrene boxes containing dry ice for 5 days to determine feasibility of plates for transportation. The percentage of cells recovered were determined 24 h post-thaw and the data is presented as mean % cell recovery \pm SEM from two independent repeats (ANOVA, Tukey PostHoc; ns: p > 0.05, *** p \leq 0.001).

Figure S19. Long-term cell storage. A549 and HepG2 cells were imaged before freezing and 24 h post-thaw following storage for 1 day or 30 days in a -80 °C freezer. Scale bar = $100 \mu m$.