Environ Health Perspect

DOI: 10.1289/EHP10923

Note to readers with disabilities: *EHP* strives to ensure that all journal content is accessible to all readers. However, some figures and Supplemental Material published in *EHP* articles may not conform to <u>508 standards</u> due to the complexity of the information being presented. If you need assistance accessing journal content, please contact <u>ehp508@niehs.nih.gov</u>. Our staff will work with you to assess and meet your accessibility needs within 3 working days.

Supplemental Material

Prolonged, Low-Level Exposure to the Marine Toxin, Domoic Acid, and Measures of Neurotoxicity in Nonhuman Primates

Rebekah L. Petroff, Christopher Williams, Jian-Liang Li, James W. MacDonald, Theo K. Bammler, Todd Richards, Christopher N. English, Audrey Baldessari, Sara Shum, Jing Jing, Nina Isoherranen, Brenda Crouthamel, Noelle McKain, Kimberly S. Grant, Thomas M. Burbacher, and G. Jean Harry

Table of Contents

Serum Chemistry Reactions on the Beckman Coulter AU System.

Table S1. Animal Characteristics.

Table S2. Curated Gene Lists from Literature, Used in GSEA.

Figure S1. Matching H&E staining for focal sites of microglia reactivity. Representative images of H&E staining in 10% formalin-fixed, paraffin-embedded, 10 μ m sections at focal sites of reactivity in the thalamus, fornix, fimbria, internal capsule, and nucleus accumbens of female *Macaca fascicularis* following prolonged exposed to domoic acid (0.15 mg/kg/d) or vehicle (5% sucrose). Numbers correspond to Animal Numbers in Table S1. A15244 and A16106 were in the 0.15 mg/kg/d group, A15249, A16107, and A16106 were in the 0.075 mg/kg/d group, and A15428 was in the control group. Scale bar = 60 µm.

Additional File- Excel Document

Serum Chemistry Reactions on the Beckman Coulter AU System

1. Sodium, Potassium, and Chloride

The Beckman Coulter AU System ISE module for Na+, K+, and CI- employs crown ether membrane electrodes for sodium and potassium; and a molecular oriented PVC membrane for chloride that are specific for each ion of interest in the sample. An electrical potential was developed according to the Nernst Equation for a specific ion. When compared to the Internal Reference Solution, this electrical potential is translated into voltage and then into the ion concentration of the sample.

2. Urea Nitrogen

Urea was hydrolyzed enzymatically by urease to yield ammonia and carbon dioxide. The ammonia and α -oxoglutarate were converted to glutamate in a reaction catalyzed by L-glutamate dehydrogenase (GLDH). Simultaneously, a molar equivalent of reduced NADH was oxidized. Two molecules of NADH were oxidized for each molecule of urea hydrolyzed. The rate of change in absorbance at 340 nm, due to the disappearance of NADH, is directly proportional to the BUN concentration in the sample.

3. Total Protein

Cupric ions in an alkaline solution reacted with proteins and polypeptides containing at least two peptide bonds to produce a violet-colored complex. The absorbance of the complex at 540/660 nm is directly proportional to the concentration of protein in the sample.

4. <u>Albumin</u>

At pH 4.2, bromocresol green reacts with albumin to form an intense green complex. The absorbance of the albumin-BCG complex was measured bichromatically (600/800nm), proportional to the albumin concentration in the sample.

5. Total Bilirubin

Total bilirubin in serum is composed of direct (conjugated) bilirubin and indirect (unconjugated) bilirubin. A stabilized diazonium salt, 3,5-dichlorophenyl-diazonium tetrafluoroborate (DPD), reacted with bilirubin to form azobilirubin, which absorbs maximally at 570/660 nm. Caffeine and a surfactant were used as reaction accelerators. The absorbance at 570/660 nm is proportional to the bilirubin concentration in the sample. A separate serum blank was performed to eliminate endogenous serum interferences.

6. Calcium

Calcium ions (Ca2+) react with Arsenazo III (2,2'-[1,8-Dihydroxy-3,6-disulphonaphthylene-2,7-bisazo]bisbenzenear-sonic acid) to form an intense purple colored complex. Magnesium does not significantly interfere in calcium determination using Arsenazo III. In this method, the absorbance of the Ca-Arsenazo III complex was measured bichromatically at 660/700 nm. The resulting increase in absorbance of the reaction mixture is directly proportional to the calcium concentration in the sample.

7. Phosphate

Inorganic phosphate reacts with molybdate to form a heteropolyacid complex. The use of a surfactant eliminates the need to prepare a protein free filtrate. The absorbance at 340/380 nm was measured in this reaction as directly proportional to the inorganic phosphorus level in the sample.

8. Cholesterol

Cholesterol esters in serum are hydrolyzed by cholesterol esterase (CHE), using reagents certified to meet the National Cholesterol Education Program's (NCEP) performance criteria for accuracy. The free cholesterol produced was oxidized by cholesterol oxidase (CHO) to cholest-4-en-3-one with the simultaneous production of hydrogen peroxide (H202), which oxidatively couples with 4-aminoantipyrine and phenol in the presence of peroxidase to yield a chromophore. The red quinoneimine dye formed was measured spectrophotometrically at 540/600 nm as an increase in absorbance.

9. Alkaline Phosphatase

Alkaline phosphatase activity was determined by measuring the rate of conversion of p-nitrophenylphosphate (pNPP) in the presence of 2-amino-2-methyl-1-propanol (AMP) at pH 10.4. The rate of change in absorbance due to the formation of pNP was measured bichromatically at 410/480 nm and is directly proportional to the ALP activity in the sample.

10. Alanine Aminotransferase

This method utilizes a methodology recommended by the International Federation of Clinical Chemistry (IFCC). ALT transfers the amino group from alanine to α -oxoglutarate to form pyruvate and glutamate. The pyruvate enters a lactate dehydrogenase (LD) catalyzed reaction with NADH to produce lactate and NAD+. The decrease in absorbance due to the consumption of NADH was measured at 340nm and is proportional to the ALT activity in the sample.

11. Aspartate Aminotransferase

This method uses methodology recommended by the IFCC. In this method, aspartate aminotransferase (AST) catalyzes the transamination of aspartate and α -oxoglutarate, forming L-glutamate and oxalacetate. The oxalacetate is then reduced to L-malate by malate dehydrogenase, while NADH is simultaneously converted to NAD+. The decrease in absorbance due to the consumption of NADH was measured at 340 nm and is proportional to the AST activity in the sample.

12. Gamma Glutamyl Transferase

GGT catalyzes the transfer of the gamma-glutamyl group from the substrate, gamma-glutamyl-3-carboxy-4-nitroanilide, to glycylglycine, yielding 5-amino-2-nitrobenzoate. The change in absorbance at 410/480 nm is due to the formation of 5-amino-2-nitrobenzoate and is directly proportional to the GGT activity in the sample.

Table S1: Animal Characteristics

Animal Number	Dose (mg/kg/day)	Weight (kg)	Age (years)	Total Dosing Time (days)	Tremor Score (% of total behavioral sessions tremoring)	Conceived and Carried Pregnancy?	Stopped DA Exposure?	Experimental Assays				
								CBC + SC	Cyto+Chemokine	MR Imaging	Histopathology	Transcriptomics
Vehicle Co	ontrol Animals											
A15236	0	3.98	7.3	724	0.02	✓		✓	✓	√	✓	✓
A15238	0	3.24	6.4	678	0.02	✓		✓	\checkmark	\checkmark	\checkmark	✓
A15247	0	3.58	6.4	653	0.03	1			✓	✓	\checkmark	✓
A16112	0	3.58	7.0	454	0.04	✓		✓	✓	✓	\checkmark	✓
A16103	0	3.38	7.2	448	0.06	1		✓	✓	✓	\checkmark	✓
A16117	0	3.12	6.2	477	0.06	✓		✓	\checkmark	\checkmark	\checkmark	
A15248	0	3.62	5.9	717	0.11			√*	\checkmark		\checkmark	✓
A15239	0	3.58	6.2	254	0.02	✓		✓				
A15250	0	3.80	6.6	249	0.09	✓		✓				
0.075 mg/	kg/d Animals											
A16113	0.075	3.41	6.7	420	0.26	✓		✓	√	√	✓	✓
A16115	0.075	3.11	6.3	385	0.4	✓		✓	\checkmark	\checkmark	\checkmark	
A16108	0.075	3.19	7.1	436	0.37	1		✓	✓		\checkmark	
A14400	0.075	3.8	11.1	371	0.29	✓		✓			\checkmark	✓
A15249	0.075	4.83	6.4	604	0.18	1		✓			\checkmark	
A16107	0.075	3.33	7.1	392	0			✓			\checkmark	
A16116	0.075	3.08	5.9	321	0.18	1		✓			\checkmark	
A15237	0.075	3.03	6.0	322	0.35	✓	✓	✓			\checkmark	
A15240	0.075	3.05	6.5	268	0.09	✓	✓	✓			\checkmark	
A15241	0.075	4.69	6.7	259	0.04	✓	✓	✓			✓	
0.15 mg/k	g/d Animals											
A14392	0.15	4.00	10.4	413	0.3	✓		√*	\checkmark	\checkmark	\checkmark	✓
A15252	0.15	3.77	6.4	612	0.68	✓		✓	√	√	\checkmark	
A15242	0.15	3.46	6.5	598	0.25	✓			\checkmark	\checkmark	\checkmark	
A16106	0.15	2.96	7.1	392	0.8	✓		✓	\checkmark	√	\checkmark	
A15244	0.15	4.22	5.5	294	0.61	✓	✓	✓	\checkmark		\checkmark	✓
A15234	0.15	3.56	7.7	268	0.69	✓	✓	✓	\checkmark		\checkmark	\checkmark
A16114	0.15	3.72	6.5	428	0.11	✓		✓			\checkmark	
A16105	0.15	3.26	7.1	371	0.01	✓		✓			\checkmark	
A16110	0.15	3.06	7.0	343	0.03	✓		 ✓ 			\checkmark	
A15246	0.15	3.35	6.4	350	0.02	✓	✓	 ✓ 				
A15251	0.15	3.83	6.5	248	0.13	✓	✓	√				

Shows the individual level animal data for all animals enrolled. Age and weight were at the beginning of the study (Baseline Period). Stopped DA exposure indicates animals that were followed on the study, but not receiving domoic acid postpartum. *Denotes missing CBC due to sample clotting. Abbv: DA- domoic acid; CBC – complete blood count; MR – magnetic resonance; SC – serum chemistry

Neuronal			White Matter,
Health	Evoltetevicity Cone List	Inflammation/Glial	Myelin, Axons
APUE			AUTB C110PE0
	CD62		CDC42
	CKAMP52 (SHISA6)		CL DN11
CX3CL1	CNN3		CNP
	CORNICHON 3 (CNIH3)	DCAE1	EIE24K3
EGE2	CRHBP	EOMES	GAI
HOXA10	DGK	GDNE	GAL3ST1
HOXD3	DHPS	GFAP	GAP43
HRAS	ERK1/2	IFNG	ILK
HTT	FLT1	IL1	KLK6
MAOA	FOS	IL11RA	MAG
NDUFV2	FOSB	IL13	MAL
RAF1	FXYD7	IL17A	MBP
RASSF1	GFAP	IL1A	MOG
SLC1A1	GRIA1	IL1B	MTOR
SLC6A3	GRIA3	IL1R1	NRG1
TGFB1	GRIA4	IL1RN	OLIG2
VEGFD	GRIK3	IL2	OMG
WINT 3A	GRIK4	1L4 11 C	
	GRIKO	ILD IL GD	
	GRINZD GRINZA		DTEN
	GRM1	LI 172 1 y 96	PILN RAC1
	GRM7	Mvd88	RTN1
	GRM8	NCR2	SARM1
	GSG1/	NOTCH2	SOCS3
	GST01	NR3C1	STMN1
	IGFBP2	PRL	STMN2
	IL1B	RCAN1	TF
	JUN	S100A10	TSC2
	JUND	S100A8	TSPAN2
	LXN	SAA3	TUBA1A
	MAP2K1	SEMA7A	TUBB2A
	MAP3K1	SIc1a3	
	MAPK1	Spp1	
	MAPK3	STAT3	
	MUSTN		
	D28	TIMp1	
	PD98059	TNIFAIP3	
	PDPN	ΤΝΕα	
	PEA15	TNFB (LTA)	
	PKNOX2	TREM2	
	PLCB1	VIM	
	PRPN5	TAF4B	
	PTK2B		
	RECS1		
	S100A10		
	SB203580		
	3013AY (UKAMP44) 2012		
	SOX2		
	.SP1		
	SP3		
	TARP-GAMMA2 (CACNG2)		
	TARP-GAMMA3 (CACNG3)		
	TGM2		
	TNFα		
	ΤΝϜβ		
	<i>TP</i> 73		
	TSC2		
	UPB216		
	WDR5		
1	VGLL3		

Table S2: Curated Gene Lists from Literature, Used in GSEA

Neuronal Health, Inflammation/Glial, and White Matter, Myelin, and Axons genes are based off of results from Cahoy et al., 2008. Excitotoxicity genes are based off of results from Pappas et al., 2012.

Figure S1: Matching H&E staining for focal sites of microglia reactivity. Representative images of H&E staining in 10% formalin-fixed, paraffin-embedded, 10 μ m sections at focal sites of reactivity in the thalamus, fornix, fimbria, internal capsule, and nucleus accumbens of female *Macaca fascicularis* following prolonged exposed to domoic acid (0.15 mg/kg/d) or vehicle (5% sucrose). Numbers correspond to Animal Numbers in Table S1. A15244 and A16106 were in the 0.15 mg/kg/d group, A15249, A16107, and A16106 were in the 0.075 mg/kg/d group, and A15428 was in the control group. Scale bar = 60 μ m.