Supplementary information

Mucosa-interfacing electronics

In the format provided by the authors and unedited

SUPPLEMENTARY INFORMATION

Mucosa-Interfacing Electronics

Kewang Nan^{1,2,4}, Vivian R Feig^{2,3,4}, Binbin Ying^{1,2,4}, Julia G Howarth¹, Ziliang Kang^{1,2}, Yiyuan Yang¹ and Giovanni Traverso^{1,2}⁺

¹ Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA

² Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA

³ Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA

⁴ These authors contributed equally.

+ email: cgt20@mit.edu

Properties	Skin	Mucosa
Surface area	2 m ^{2 1}	Digestive Tract: 32 m ^{2 2} Respiratory Tract: <i>lungs:</i> 35m ² (deep expiration); 100 m ^{2 3} (deep inspiration) Female Reproductive Tract: <i>uterus</i> : 0.048 – 0.065 m ² Urinary Tract: <i>bladder</i> : 0.02-0.03 m ^{2 4}
Thickness	0.5-4 mm ⁵	Digestive Tract: esophagus: 1.9-5.7 mm; stomach: 3-6 mm; small intestines: 0.9-1.6 mm; colon: 1.1-2.1 mm _{6,7} Respiratory Tract: lungs: 1.5-9 mm ⁸ ; bronchi: 1.2-1.4 mm ⁹ Female Reproductive Tract: uterus: 2-16 mm ¹⁰ Urinary Tract: bladder: 2-4 mm ¹¹
Elastic modulus	Stratum Corneum: 75 – 300 MPa (dry), 10 – 50 MPa (wet) ^{12,13}	Digestive tract: esophagus: ~1.2 MPa; stomach: 0.5-0.7 MPa; small intestines: ~0.9 MPa; colon: ~0.9 MPa ¹⁴ Respiratory Tract: respiratory duct: 0.06-0.4 MPa ^{15,16} ; bronchi: 0.0007-0.025 MPa ¹⁷ Female Reproductive Tract: vaginal mucosa (premenopausal): 11.5MPa; vaginal mucosa (postmenopausal): 14.35MPa; uterus: 0.5-2MPa ^{18,19} Urinary Tract: bladder mucosa: 0.087-0.18 MPa; bladder detrusor muscle: 0.007-0.012 MPa; adventitia: 0.009-0.022 MPa ²⁰
Elongation (Strain) at break	40-180% ²¹	Digestive Tract: esophagus: 140%; stomach: 190%; small intestine: 140%; colon: 180% ^{14,22} Respiratory Tract: lungs: 150-200% ²³ Female Reproductive Tract: normal cervix: 5-10%; short cervix: 4-6% ¹⁹ Urinary Tract: bladder: ~300% ²⁴
Cellular turnover rate	~27 days ²⁵	Digestive Tract: esophagus: 5-8 days ^{26,27} ; stomach: 4-20 days ²⁸ ; small intestines: 4-5 days; colon: 4 days ^{29,30} Respiratory Tract: lungs: 0.3% cells at any time ³¹ ; bronchi: ~150 days ²⁸ Female Reproductive Tract: cervix: 5.7 days ³² Urinary Tract: urothelium cells: 3-6 months ³³ ; bladder: ~200 days ³⁴
Mode of motion	Stretching, folding, and compression due to body motion	Digestive Tract: peristalsis (<i>stomach:</i> 0.05 Hz, <i>small intestines:</i> 0.15-0.2 Hz, <i>colon:</i> 0.01-0.04 Hz (long- duration), 0.05-0.2 Hz (short-duration) ³⁵) Respiratory Tract: respiration (0.2–0.34 Hz) ³⁶

Table S1: Detailed comparisons between skin and mucosa regarding structures, dynamics, and chemical/biological environments.

		Female Reproductive Tract: uterine contraction (0.02-0.08 Hz) ³⁷ Urinary Tract: bladder emptying (4-5 times per day)
Mean temperature	At rest: 28.1 - 34.7 °C In cold conditions: 19.4 - 30.3 °C During exercise: 38.2- 40.1 °C	Digestive Tract: between 36.5-37.5 °C with small variations ^{38,39} Respiratory Tract: <i>upper trachea:</i> 29.2-32°C; <i>subsegmental bronchi:</i> 33.9-35.5 °C. In cold conditions: <i>upper trachea:</i> ~20.5 °C; <i>subsegmental bronchi:</i> 31.6 °C ⁴⁰ Female Reproductive Tract: temperature slightly increased (by 0.3-0.5 °C) after ovulation ⁴¹ Urinary Tract: Bladder: 36.0-38.3°C ^{42,43}
Secretion pH	4-6 44	Digestive Tract: esophagus: 5-7; stomach: 1.0-2.5; small intestines: 6.1-7.1; colon: 7.1-7.5 ⁴⁵ Respiratory Tract: 7.38-7.42 ^{46,47} Female Reproductive Tract: endocervix: 6.5-7.5; vagina: 3.4-7.4 ⁴⁸ Urinary Tract: 4.6-8.0 ⁴⁹
Secretion Rate	Sweat rate is in general low, but can be up to 2-4 L/hour during exercise ⁵⁰	Digestive Tract: stomach: 1.2-1.5 L/day ⁵¹ ; small intestines: 0.5L /day from liver, 1.5 L/day from pancreas ⁵² ; colon: 1.5-2 L/day ⁵¹ Respiratory Tract: 2L/day ⁵³ Female Reproductive Tract: 2-5 mL/day ⁵⁴ Urinary Tract: 0.8-2 L/day ⁵⁵
Secretion Composition	Ammonia, urea, mineral salts, sugar ⁵⁶	Digestive Tract: <i>stomach:</i> hydrochloric acid, electrolytes, mucin, pepsin, and protein ^{57,58} ; <i>small intestines:</i> mucin, digestive enzymes, hormones, electrolytes ⁵¹ ; <i>colon:</i> electrolytes, mucin, niacin, vitamins ⁵¹ Respiratory Tract: water, carbohydrates, lipids, mucin, proteins ^{53,59} Female Reproductive Tract: vaginal discharge ⁵⁴ Urinary Tract: urine ⁶⁰
Microbes	Density: 10 ⁴ to 10 ⁶ /cm ^{2 61} (bacteria, fungi, viruses)	Digestive Tract: density of bacteria: 10/gram (stomach), 10 ³ /gram (duodenum), 10 ⁴ /gram (jejunum), 10 ⁷ /gram (ileum), 10 ¹² /gram (colon) ⁶² ; play crucial roles in maintaining homeostasis and protecting against pathogens, and have shown ties with inflammatory diseases ⁶³ and neurological disorders ⁶⁴ Respiratory Tract: low density (10 ² -10 ³ /ml) and function as gatekeepers to respiratory health ⁶⁵ Female Reproductive Tract: exist in abundance (10 ⁸ /ml) and influence maternal and fetal immune systems ⁶⁶

		Urinary Tract: typical density: 10 ³ -10 ⁵ /ml; show correlations with many urinary conditions (e.g. kidney stone diseases, acute&chronic kidney injury, urinary tract infections) ⁶⁷
Gas	Atmospheric air	Digestive Tract: (in addition to atmospheric air) carbon dioxide, hydrogen, methane, and hydrogen sulfide ⁶⁸ Urinary Tract: high concentration of carbon dioxide in patients with diabetes ⁶⁹ Female Reproductive Tract: increased carbon monoxide during pregnancy ⁷⁰

Table S2: Detailed comparisons between skin and mucosa regarding epithelial types and sensing functions.

Anatomic Sites	Schematic of Surface Epithelium and Receptor Types	Main Functions of Epithelium	Main Sensory Receptor Types and Inputs	Functional Outcomes
Skin	Stratified squamous epithelium	Protection against mechanical abrasions, microorganisms, and water loss	 •Mechanoreceptors: pressure, skin stretch and deformation, vibration ⁷¹ •Nociceptors: mechanical injury, extreme temperatures, reactive chemical species ⁷² •Thermoreceptors: external temperature ⁷³ •Photoreceptors: UV radiation ⁷⁴ 	•Sensations of touch, pain, temperature, position, texture •Regulation of blood flow, sweating, melanin production ⁷⁴ , immune responses ⁷²
Gastrointestinal mucosa	Simple columnar epithelium	Secretion and absorption; transport substance in a specific direction; protection against acid and bacteria	 •Mechanoreceptors: stretching •Nociceptors: toxins, bacteria, inflammation ⁷⁵ •Chemoreceptors: nutrients, endocrine mediators, immune mediators ⁷⁶, acids ⁷⁷, gasses ⁷⁷ •Thermoreceptors: heating and cooling ⁷⁸ 	 Regulation of digestion, peristalsis, blood flow, fluid transport, and gut homeostasis ⁷⁶ Sensations of taste (sweet, salty, sour, umami, bitter), satiety, nausea, pressure, and pain ⁷⁶

Urinary mucosa	Transitional epithelium	Allowing the urinary organs to significantly stretch and expand	 •Mechanoreceptors: bladder stretching⁷⁹ •Nociceptors: acid ⁸⁰, inflammatory mediators •Chemoreceptors: toxins, bacteria, detection mediated by taste (e.g. bitter, umami) taste receptors ⁸¹ 	 Regulation of bladder voiding ⁷⁹ Sensations of bladder filling, pain, urgency, and micturition ⁸² 			
Reproductive mucosa	Stratified squamous epithelium	Protection against mechanical abrasions, microorganisms, and water loss	 •Mechanoreceptors: uterine stretching, pressure ⁸³ •Nociceptors: distension, injury, inflammation ⁸⁴ •Chemoreceptors: reproductive hormones ⁸⁵ 	 Regulation of fertility, menstruation, pregnancy, and childbirth ⁸⁵ Regulation of uterine distension and contractions, and cervical mucosa properties including cervical ripening ⁸⁵ Sensations of pain ⁸⁴ 			
Respiratory mucosa	Pseudostratified columnar epithelium	Secretion and absorption; protection against foreign particles; transport of mucus	 •Mechanoreceptors: lung inflation, bronchospasm, touch ⁸⁶ •Nociceptors: irritants ⁸⁷, carbon dioxide ⁸⁸ •Chemoreceptors: water and acid ⁸⁹, ATP ⁸⁶ 	 Regulation of reflexes including cough, gagging, and sneezing ⁸⁶ as well as mucus production and blood flow ⁸⁷ Sensations of urge to cough and taste⁸⁹ 			
 Mechanoreceptors (touch, vibration, pressure) Mechanoreceptors (cold, hot) Mechanoreceptor (pain receptor) Photoreceptor Chemoreceptors 							

References:

1. Human Skin Is the Largest Epithelial Surface for Interaction with Microbes. *J. Invest. Dermatol.* **137**, 1213–1214 (2017).

2. Helander, H. F. & Fändriks, L. Surface area of the digestive tract - revisited. *Scand. J. Gastroenterol.* **49**, 681–689 (2014).

3. Fröhlich, E., Mercuri, A., Wu, S. & Salar-Behzadi, S. Measurements of Deposition, Lung Surface Area and Lung Fluid for Simulation of Inhaled Compounds. *Front. Pharmacol.* **7**, 181 (2016).

4. Chalana, V., Dudycha, S., Yuk, J.-T. & McMorrow, G. Automatic Measurement of Ultrasound-Estimated Bladder Weight (UEBW) from Three-Dimensional Ultrasound. *Rev. Urol.* **7 Suppl 6**, S22–8 (2005).

5. Paxton, S., Peckham, M. & Knibbs, A. The Leeds Histology Guide. (2003).

6. Chu, J. N. & Traverso, G. Foundations of gastrointestinal-based drug delivery and future developments. *Nat. Rev. Gastroenterol. Hepatol.* (2021) doi:10.1038/s41575-021-00539-w.

Rapaccini, G. L. *et al.* Gastric wall thickness in normal and neoplastic subjects: a prospective study performed by abdominal ultrasound. *Gastrointest. Radiol.* 13, 197–199 (1988).
 Chekan, E. G., Cummings, J. F., Mabe, I., Hunter, S. & Clymer, J. W. Thickness of Cadaveric

Human Lung Tissue. Surg. Technol. Int. 29, 207–213 (2016).

9. Theriault, M.-M., Eddy, K., Borgaonkar, J. N., Babar, J. L. & Manos, D. Diseases Involving the Central Bronchi: Multidetector CT for Detection, Characterization, and Differential Diagnosis. *RadioGraphics* (2018) doi:10.1148/rg.2018170097.pres.

10. Weerakkody, Y. Endometrial thickness. https://doi.org/10.53347/rID-8106.

11. Hakenberg, O. W., Linne, C., Manseck, A. & Wirth, M. P. Bladder wall thickness in normal adults and men with mild lower urinary tract symptoms and benign prostatic enlargement. *Neurourol. Urodyn.* **19**, 585–593 (2000).

12. Agache, P. G., Monneur, C., Leveque, J. L. & De Rigal, J. Mechanical properties and Young's modulus of human skin in vivo. *Archives of Dermatological Research* vol. 269 221–232 (1980).

13. Yu, B. et al. An elastic second skin. Nat. Mater. 15, 911–918 (2016).

14. Egorov, V. I., Schastlivtsev, I. V., Prut, E. V., Baranov, A. O. & Turusov, R. A. Mechanical properties of the human gastrointestinal tract. *J. Biomech.* **35**, 1417–1425 (2002).

15. Ionescu, C. M., Segers, P. & De Keyser, R. Mechanical properties of the respiratory system derived from morphologic insight. *IEEE Trans. Biomed. Eng.* **56**, 949–959 (2009).

16. Ionescu, C. M. Modeling the Respiratory Tract by Means of Electrical Analogy. *The Human Respiratory System* 39–54 (2013) doi:10.1007/978-1-4471-5388-7_4.

17. Sarna, M. *et al.* Undifferentiated bronchial fibroblasts derived from asthmatic patients display higher elastic modulus than their non-asthmatic counterparts. *PLoS One* **10**, e0116840 (2015).

18. Baah-Dwomoh, A., McGuire, J., Tan, T. & De Vita, R. Mechanical Properties of Female Reproductive Organs and Supporting Connective Tissues: A Review of the Current State of Knowledge. *Applied Mechanics Reviews* vol. 68 (2016).

19. Fernandez, M. *et al.* Investigating the mechanical function of the cervix during pregnancy using finite element models derived from high-resolution 3D MRI. *Comput. Methods Biomech. Biomed. Engin.* **19**, 404–417 (2016).

20. Li, C. *et al.* Quantitative elasticity measurement of urinary bladder wall using laser-induced surface acoustic waves. *Biomed. Opt. Express* **5**, 4313–4328 (2014).

21. van Kuilenburg, J., Masen, M. A. & van der Heide, E. Contact modelling of human skin: What value to use for the modulus of elasticity? *Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology* vol. 227 349–361 (2013).

22. Jia, Z. G., Li, W. & Zhou, Z. R. Mechanical characterization of stomach tissue under uniaxial tensile action. *J. Biomech.* **48**, 651–658 (2015).

23. Chen, Z.-L., Chen, Y.-Z. & Hu, Z.-Y. A micromechanical model for estimating alveolar wall strain in mechanically ventilated edematous lungs. *J. Appl. Physiol.* **117**, 586–592 (2014).

24. Jang, T.-M. *et al.* Expandable and implantable bioelectronic complex for analyzing and regulating real-time activity of the urinary bladder. *Sci Adv* **6**, (2020).

25. Koster, M. I. Making an epidermis. *Ann. N. Y. Acad. Sci.* **1170**, 7–10 (2009).

26. Marques-Pereira, J. P. & Leblond, C. P. MITOSIS AND DIFFERENTIATION IN THE STRATIFIED SQUAMOUS EPITHELIUM OF THE RAT ESOPHAGUS. *Am. J. Anat.* **117**, 73–87 (1965).

27. Messier, B. & Leblond, C. P. Cell proliferation and migration as revealed by radioautography after injection of thymidine-H3 into male rats and mice. *Am. J. Anat.* **106**, 247–285 (1960).

28. Sender, R. & Milo, R. The distribution of cellular turnover in the human body. *Nat. Med.* **27**, 45–48 (2021).

29. Squier, C. A. & Kremer, M. J. Biology of Oral Mucosa and Esophagus. *JNCI Monographs* vol. 2001 7–15 (2001).

30. Mowat, A. M. & Agace, W. W. Regional specialization within the intestinal immune system. *Nat. Rev. Immunol.* **14**, 667–685 (2014).

31. Adamson, I. Y. R. Cellular Kinetics of the Lung. *Toxicology of Inhaled Materials* 289–317 (1985) doi:10.1007/978-3-642-69521-6_11.

32. Richart, R. M. A RADIOAUTOGRAPHIC ANALYSIS OF CELLULAR PROLIFERATION IN DYSPLASIA AND CARCINOMA IN SITU OF THE UTERINE CERVIX. *Am. J. Obstet. Gynecol.* **86**, 925–930 (1963).

33. Khandelwal, P., Abraham, S. N. & Apodaca, G. Cell biology and physiology of the uroepithelium. *American Journal of Physiology-Renal Physiology* vol. 297 F1477–F1501 (2009).

34. Balsara, Z. R. & Li, X. Sleeping beauty: awakening urothelium from its slumber. *Am. J. Physiol. Renal Physiol.* **312**, F732–F743 (2017).

35. Sarna, S. K. *Colonic Motility: From Bench Side to Bedside*. (Morgan & Claypool Life Sciences, 2011).

36. Shafiq, G. & Veluvolu, K. C. Surface chest motion decomposition for cardiovascular monitoring. *Scientific reports* vol. 4 5093 (2014).

37. Aguilar, H. N. & Mitchell, B. F. Physiological pathways and molecular mechanisms regulating uterine contractility. *Hum. Reprod. Update* **16**, 725–744 (2010).

38. Al-Mukhaizeem, F. *et al.* Comparison of temporal artery, rectal and esophageal core temperatures in children: Results of a pilot study. *Paediatr. Child Health* **9**, 461–465 (2004).

39. Pearson, J. *et al.* Pulmonary artery and intestinal temperatures during heat stress and cooling. *Med. Sci. Sports Exerc.* **44**, 857–862 (2012).

40. McFadden, E. R., Jr *et al.* Thermal mapping of the airways in humans. *J. Appl. Physiol.* **58**, 564–570 (1985).

41. Basal Body Temperature (BBT) Charting. https://www.uofmhealth.org/health-library/hw202058.

42. Stelfox, H. T. *et al.* Temporal Artery versus Bladder Thermometry during Adult Medical-Surgical Intensive Care Monitoring: An Observational Study. *BMC Anesthesiology* vol. 10 (2010).

43. Kimberger, O., Cohen, D., Illievich, U. & Lenhardt, R. Temporal Artery Versus Bladder Thermometry During Perioperative and Intensive Care Unit Monitoring. *Anesthesia & Analgesia* vol. 105 1042–1047 (2007).

44. Ali, S. & Yosipovitch, G. Skin pH: From Basic SciencE to Basic Skin Care. *Acta Dermato Venereologica* vol. 93 261–267 (2013).

45. Evans, D. F. *et al.* Measurement of gastrointestinal pH profiles in normal ambulant human subjects. *Gut* **29**, 1035–1041 (1988).

46. Healthfully. https://healthfully.com/symptoms-of-potassium-overdose-3443110.html.

47. Vaughan, J. *et al.* Exhaled breath condensate pH is a robust and reproducible assay of airway acidity. *Eur. Respir. J.* **22**, 889–894 (2003).

48. Ng, K. Y. B., Mingels, R., Morgan, H., Macklon, N. & Cheong, Y. In vivo oxygen, temperature and pH dynamics in the female reproductive tract and their importance in human conception: a systematic review. *Human Reproduction Update* vol. 24 15–34 (2018).

49. Welch, A. A., Mulligan, A., Bingham, S. A. & Khaw, K.-T. Urine pH is an indicator of dietary acid-base load, fruit and vegetables and meat intakes: results from the European Prospective Investigation into Cancer and Nutrition (EPIC)-Norfolk population study. *Br. J. Nutr.* **99**, 1335–1343 (2008).

50. Institute of Medicine (US) Committee on Military Nutrition Research. *Nutritional Needs in Hot Environments: Applications for Military Personnel in Field Operations*. (National Academies Press (US), 2014).

51. human digestive system. https://www.britannica.com/science/human-digestive-system.

52. Ma, T. & Verkman, A. S. Aquaporin water channels in gastrointestinal physiology. *The Journal of Physiology* vol. 517 317–326 (1999).

53. Richardson, M. The physiology of mucus and sputum production in the respiratory system. *Nurs. Times* **99**, 63–64 (2003).

54. UpToDate. https://www.uptodate.com/contents/vaginal-discharge-in-adult-women-beyond-the-basics/print.

55. Pietrangelo, A. Urine 24-Hour Volume Test. https://www.healthline.com/health/urine-24-hour-volume (2012).

56. Craig, S. S. *et al.* The betaine content of sweat from adolescent females. *J. Int. Soc. Sports Nutr.* **7**, 3 (2010).

57. human digestive system. https://www.britannica.com/science/human-digestive-system.

58. Steiger, C. *et al.* Dynamic Monitoring of Systemic Biomarkers with Gastric Sensors. *Adv. Sci.* **8**, e2102861 (2021).

59. Rogers, D. F. & Barnes, P. J. Treatment of airway mucus hypersecretion. *Annals of Medicine* vol. 38 116–125 (2006).

60. Boundless. Physiology of the Kidneys. https://courses.lumenlearning.com/boundless-ap/chapter/physiology-of-the-kidneys/.

61. Loomis, K. H. *et al.* A mixed community of skin microbiome representatives influences cutaneous processes more than individual members. *Microbiome* **9**, 22 (2021).

62. Dieterich, W., Schink, M. & Zopf, Y. Microbiota in the Gastrointestinal Tract. *Medical Sciences* vol. 6 116 (2018).

63. Thursby, E. & Juge, N. Introduction to the human gut microbiota. *Biochem. J* **474**, 1823–1836 (2017).

64. Cryan, J. F., O'Riordan, K. J., Sandhu, K., Peterson, V. & Dinan, T. G. The gut microbiome in neurological disorders. *Lancet Neurol.* **19**, 179–194 (2020).

65. Man, W. H., de Steenhuijsen Piters, W. A. A. & Bogaert, D. The microbiota of the respiratory tract: gatekeeper to respiratory health. *Nat. Rev. Microbiol.* **15**, 259–270 (2017).

66. Al-Nasiry, S. *et al.* The Interplay Between Reproductive Tract Microbiota and Immunological System in Human Reproduction. *Front. Immunol.* **11**, 378 (2020).

67. Jones-Freeman, B. *et al.* The microbiome and host mucosal interactions in urinary tract diseases. *Mucosal Immunol.* **14**, 779–792 (2021).

68. Kalantar-Zadeh, K., Berean, K. J., Burgell, R. E., Muir, J. G. & Gibson, P. R. Intestinal gases: influence on gut disorders and the role of dietary manipulations. *Nat. Rev. Gastroenterol. Hepatol.* **16**, 733–747 (2019).

69. Yang, W. H. & Shen, N. C. Gas-forming infection of the urinary tract: an investigation of fermentation as a mechanism. *J. Urol.* **143**, 960–964 (1990).

70. Němeček, D., Dvořáková, M. & Sedmíková, M. Heme oxygenase/carbon monoxide in the female reproductive system: an overlooked signalling pathway. *Int. J. Biochem. Mol. Biol.* **8**, 1–12 (2017).

71. Iheanacho, F. & Vellipuram, A. R. Physiology, Mechanoreceptors. in *StatPearls* (StatPearls Publishing, 2021).

72. Pinho-Ribeiro, F. A. & Chiu, I. M. Nociceptor nerves set the stage for skin immunity. *Cell research* vol. 29 877–878 (2019).

73. Kobayashi, S. Temperature receptors in cutaneous nerve endings are thermostat molecules that induce thermoregulatory behaviors against thermal load. *Temperature (Austin)* **2**, 346–351 (2015).

74. Wicks, N. L., Chan, J. W., Najera, J. A., Ciriello, J. M. & Oancea, E. UVA phototransduction drives early melanin synthesis in human melanocytes. *Curr. Biol.* **21**, 1906–1911 (2011).

75. Dickson, I. A role for nociceptor neurons in gut defence. *Nature reviews. Gastroenterology* & *hepatology* vol. 17 65 (2020).

76. Lai, N. Y., Mills, K. & Chiu, I. M. Sensory neuron regulation of gastrointestinal inflammation and bacterial host defence. *J. Intern. Med.* **282**, 5–23 (2017).

77. Akiba, Y. & Kaunitz, J. D. Luminal chemosensing and upper gastrointestinal mucosal defenses. *Am. J. Clin. Nutr.* **90**, 8265–831S (2009).

78. El Ouazzani, T. Thermoreceptors in the digestive tract and their role. *J. Auton. Nerv. Syst.* **10**, 246–254 (1984).

79. Zagorodnyuk, V. P., Costa, M. & Brookes, S. J. H. Major classes of sensory neurons to the urinary bladder. *Auton. Neurosci.* **126-127**, 390–397 (2006).

80. Montalbetti, N. & Carattino, M. D. Acid-sensing ion channels modulate bladder nociception. *Am. J. Physiol. Renal Physiol.* **321**, F587–F599 (2021).

81. Deckmann, K. & Kummer, W. Chemosensory epithelial cells in the urethra: sentinels of the urinary tract. *Histochem. Cell Biol.* **146**, 673–683 (2016).

82. Wyndaele, J. J. & De Wachter, S. The basics behind bladder pain: a review of data on lower urinary tract sensations. *Int. J. Urol.* **10 Suppl**, S49–55 (2003).

83. Liu, B., Eisenach, J. C. & Tong, C. Chronic estrogen sensitizes a subset of mechanosensitive afferents innervating the uterine cervix. *J. Neurophysiol.* **93**, 2167–2173 (2005).

84. Jobling, P., O'Hara, K. & Hua, S. Female reproductive tract pain: targets, challenges, and outcomes. *Front. Pharmacol.* **5**, 17 (2014).

85. Mowa, C. N. & Papka, R. E. The role of sensory neurons in cervical ripening: effects of estrogen and neuropeptides. *J. Histochem. Cytochem.* **52**, 1249–1258 (2004).

86. Mazzone, S. B. An overview of the sensory receptors regulating cough. *Cough* **1**, 2 (2005).

87. Pinho-Ribeiro, F. A., Verri, W. A., Jr & Chiu, I. M. Nociceptor Sensory Neuron-Immune Interactions in Pain and Inflammation. *Trends Immunol.* **38**, 5–19 (2017).

88. Thürauf, N., Hummel, T., Kettenmann, B. & Kobal, G. Nociceptive and reflexive responses recorded from the human nasal mucosa. *Brain Res.* **629**, 293–299 (1993).

89. Bradley, R. M. Sensory receptors of the larynx. *Am. J. Med.* **108**, 47–50 (2000).

Competing interests:

Complete details of all relationships for profit and not for profit for G.T. can be found in the table below and at the following link:

https://www.dropbox.com/sh/szi7vnr4a2ajb56/AABs5N5i0q9AfT1IqIJAE-T5a?dl=0.

Disclosures - Carlo Giovanni Traverso - encompassing all professional not-for-profit and for profit relationships

Date: June 8, 2022

Please note that I make every effort to maintain this document up to date and as part of the disclosure process governed by the Sunshine Act further details can be found at: https://openpaymentsdata.cms.gov/physician/431893

Employment	and Professional Affiliations	Position(s)	Years	
	Trinity College, University of Cambridge	Undergraduate student (1995-1998), Junior Research Fellow / Title A (2002-2007), Medical Student (2002-2006)	1995-1998, 2002-2007	
	Hospital for Sick Children, University of Toronto Research Assistant (1997-1999)			
	Johns Hopkins University	PhD graduate student (1998-2002), Post-doctoral fellow (2002-2003)	1998-2003	
	Harvard Medical School	Fellow (2007-2014), Instructor (2014-2017), Assistant Professor, part time (2017-present)	2007-present	
	Brigham and Women's Hospital	Internal Medicine Resident (2007-2009), Attending Physician (2016-present)	2007-2009, 2016-present	
	Massachusetts Institute of Technology	Research Affiliate (2009-2018), Visiting Scientist (2018-present), Assistant Professor (2019-present)	2009-present	
	Massachusett General Hospital	Gastroenterology Fellow (2009-2014), Attending Physician (2014-2015)	2009-2015	

	Equity/Stock	Board/Advisor	Consultant	Royalties	Gifts	Grants/ Scholarship	Years
Exact Sciences	Equity/Stock	Doard/Advisor	Consultant	x	Gilta	Scholarship	2002-
Horizon				x			2014-
Pavoda	x	x	x	~			2014-2016
Entrega, Inc	^	^	x				2014-2010
CBSET			x				2015
Avaxia			x				2015
Lyndra	x	x	^	x			2015-presen
Novo Nordisk	^	^	x	^		x	2015-presen
SNS Nano			×			^	2015-2016
Hoffman la Roche			^			x	2015-2010
Janssen						^	2013-2017
Egalet		x	x				2016
Janssen		^	x				2016
BMS			^		x		2016
Synlogic			x		^		2016-2018
Freenome			^			x	2016-2018
Suono Bio	x	x		x		^	2010-2018 2017-presen
Merck	*	^	x	^			2017-presen
Verily			x				2018-2019
Eagle Pharmaceuticals, Inc			x				2018-2019 2018-presen
Vivtex	x	x	×	x			2018-preser
Celero Systems		x x					2018-presen
Bilayer Therapeutics, Inc	<u> </u>			x			2018-presen
Teal Bio, Inc	<u>x</u>	x		x			2020-preser
Oracle	x	x		x			2020-presen
						x	2020-2021
Wired Consulting Avadel Pharmaceuticals			x		_		2020
			x				
Moderna Syntis Bio	x	×	x				2022 2022-presen

						Grants/	
rofit	Equity/Stock	Board/Advisor	Consultant	Royalties	Gifts	Scholarship	Years
Draper Laboratory						х	2015-2017
MIT Lincoln Laboratory						х	2012, 2019-2020
NIH/NIBIB						х	2018-present
Kenneth Rainin		х					2015-2016
Bill and Melinda Gates Foundation					`	х	2013-present
NIH/NCI						х	2018-present
Johns Hopkins University / Technology Transfer Office				х			2002-present
Massachusetts Institute of Technology / Technology Licensing Office				х			2015-present
Mass General Brigham Innovation / Technology Licensing				х			2018-present
Cambridge Commonwealth and Overseas Trusts, Univ. of Cambridge						х	1995-1998
Foulkes Foundation						х	2003-2006
Trinity College, University of Cambridge						х	2003-2006
The Leona M. and Harry B. Helmsley Charitable Trust						х	2019-2022
Karl van Tassel (1925) Career Development Professorship, MIT						х	2020-present
Defense Advanced Research Projects Agency						х	2021-present