Supplemental material ## Figure legend Figure S1. Carbidopa-mediated IDO1 suppression attenuates tumor growth in athymic nude mice. BxPC-3 and HPAF-II cells were subcutaneously implanted in athymic nude mice and administered carbidopa via oral gavage. Representative photographs of harvested tumors from control and carbidopa-treated mice bearing BxPC-3 cells ($\bf A$) and HPAF-II cells ($\bf E$). Tumor weights between control and carbidopa-treated mice bearing BxPC-3 ($\bf B$) and HPAF-II cells ($\bf F$). Evaluation of mouse body weights during the xenograft experiments: BxPC-3 ($\bf C$); HPAF-II ($\bf G$). Real-Time PCR showing relative IDO1 mRNA expression in control and carbidopa-treated BxPC-3 ($\bf D$) and HPAF-II ($\bf H$) tumor xenograft samples extracted from the athymic nude mice. Data are given as mean \pm SEM. *p<0.05, ***p<0.001. Figure S2 S1. Carbidopa does not synergize with gemcitabine but is potent by itself in attenuating tumor growth in athymic nude mice. BxPC-3 cells were subcutaneously implanted in athymic nude mice. A. Tumor growth curves from control and drug-treated (Carbidopa, gemcitabine, and Carbidopa + gemcitabine) mice. B. Tumor weights between control and drug-treated mice. Data are given as mean \pm SEM. *p<0.05; ***p<0.001.