### **Electronic Supplementary Information (ESI)**

## Templating fabrication of hierarchically porous metal–organic frameworks and simulation of crystal growth

Chongxiong Duan,<sup>a</sup> Hang Zhang,<sup>a</sup> Minhui Yang,<sup>a</sup> Feier Li,<sup>a</sup> Yi Yu,<sup>a</sup> Jing Xiao,<sup>a</sup> Hongxia Xi<sup>\*,a, b</sup> <sup>a</sup>School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.

<sup>b</sup>Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China.

#### **Experimental section**

**Chemicals.** Copper nitrate trihydrate (Cu(NO<sub>3</sub>)<sub>2</sub>·3H<sub>2</sub>O), 1,3,5-benzenetricarboxylic acid (H<sub>3</sub>BTC), zinc acetate dihydrate (Zn(CH<sub>3</sub>CO<sub>2</sub>)<sub>2</sub>·2H<sub>2</sub>O), 2-methylimidazole (2Im), zinc oxide (ZnO), *N*,*N*-dimethyloctylamine (DMOA), *N*,*N*-dimethyldodecylamine (DMDA), and *N*,*N*-dimethylformamide (DMF), above chemicals were purchased from J&K or aladdin Chemical Ltd, and utilized without further purification.

#### Solvothermal synthesis of conventional Cu-BTC

The conventional microporous Cu-BTC was prepared according to the procedures reported,<sup>1</sup> and the obtained product is denoted as C-Cu-BTC.

# Rapid room-temperature synthesis of hierarchically porous Cu-BTC with *N*,*N*-dimethyldodecylamine as template

The experimental procedures are similar to the synthesis of H-Cu-BTC, except the *N*,*N*-dimethyloctylamine (DMOA) was replaced by *N*,*N*-dimethyldodecylamine (DMDA). The resulting product is denoted as H-Cu-BTC\_A.

#### Rapid synthesis of hierarchically porous ZIF-8 under facile conditions

The experimental procedures are similar to the previously reported methods,<sup>2, 3</sup> firstly, 5 mmol of zinc oxide (ZnO) was added to 10 mL of deionized water as solution A, and 5 mmol of zinc acetate dihydrate (Zn(CH<sub>3</sub>CO<sub>2</sub>)<sub>2</sub>·2H<sub>2</sub>O) was added to 5 mL of *N*,*N*-dimethylformamide (DMF) as solution B. After that, two solutions were mixed under fast magnetic stirring (denoted as solution C), and continue stirring for 16 h. The formation of gel-like viscous fluid indicates that the

formation of (Zn, Zn) hydroxy double salt (HDS).<sup>3</sup> After that, 3 mmol of 2-methylimidazole (2Im) and 3 mmol of DMOA were added to 15 mL methanol (denoted as solution D), and stirring for 15 min. Then, 2 mL of (Zn, Zn) HDS suspension was added to solution D, and then continue stirring for 10 min. Subsequently, the precipitate was collected by filtered and immersed in ethanol four times at 60 °C for 48 h, and then dried overnight in an oven at 120 °C. The resulting product is denoted as H-ZIF-8. Similarly, hierarchically porous ZIF-8 synthesized with DMDA as template is denoted as H-ZIF-8\_A.

| Bead <sup>a</sup> | Y    | W     | В     | Q    | Ν      | С    |
|-------------------|------|-------|-------|------|--------|------|
| Y                 | 0.00 | 0.196 | 0.514 | 4.08 | 0.156  | 3.53 |
| W                 |      | 0.00  | 2.74  | 4.50 | -0.498 | 7.28 |
| В                 |      |       | 0.00  | 4.18 | 2.29   | 1.43 |
| Q                 |      |       |       | 0.00 | 4.23   | 13.9 |
| Ν                 |      |       |       |      | 0.00   | 3.08 |
| С                 |      |       |       |      |        | 0.00 |

**Table S1** Flory-Huggins interaction parameter  $\chi_{ij}$  between various beads used in this work.

| Sample     | $S_{\rm BET}{}^a$    | S <sub>micro</sub> <sup>b</sup> | $S_{\rm meso}{}^c$ | $V_t^{d}$             | V <sub>meso</sub> <sup>e</sup>          | V <sub>micro</sub> f                 |
|------------|----------------------|---------------------------------|--------------------|-----------------------|-----------------------------------------|--------------------------------------|
|            | $[m^2 \cdot g^{-1}]$ | $[m^2 \cdot g^{-1}]$            |                    | $[cm^3 \cdot g^{-1}]$ | $[\mathrm{cm}^{3}\cdot\mathrm{g}^{-1}]$ | $\left[ cm^{3} \cdot g^{-1} \right]$ |
| H-Cu-BTC   | 1110                 | 926                             | 184                | 0.61                  | 0.17                                    | 0.43                                 |
| H-Cu-BTC_1 | 1347                 | 1153                            | 194                | 0.66                  | 0.12                                    | 0.54                                 |
| H-Cu-BTC_5 | 765                  | 640                             | 125                | 0.44                  | 0.14                                    | 0.30                                 |
| H-Cu-BTC_A | 563                  | 453                             | 110                | 0.59                  | 0.38                                    | 0.21                                 |
| H-ZIF-8    | 1660                 | 1456                            | 204                | 1.35                  | 0.78                                    | 0.57                                 |
| H-ZIF-8_1  | 1652                 | 1469                            | 183                | 1.24                  | 0.70                                    | 0.54                                 |
| H-ZIF-8_5  | 1617                 | 1378                            | 239                | 1.27                  | 0.74                                    | 0.53                                 |
| H-ZIF-8_A  | 1350                 | 1098                            | 252                | 1.19                  | 0.68                                    | 0.51                                 |

Table S2 Textural properties of hierarchically porous Cu-BTC and conventional Cu-BTC.

<sup>a</sup>S<sub>BET</sub>: Brunauer–Emmett–Teller (BET) surface area; <sup>b</sup>S<sub>micro</sub>: micropore surface area; <sup>c</sup>S<sub>meso</sub>: mesopore surface area;

 ${}^{d}V_{t}$ : total pore volume;  ${}^{e}V_{meso}$ : mesopore volume;  ${}^{f}V_{micro}$ : micropore volume.



**Fig. S1** (a) FTIR spectra of H-Cu-BTC and conventional Cu-BTC (C-Cu-BTC) samples, and (b) FTIR spectra of H-Cu-BTC sample in the narrow region of 1340–1210 cm<sup>-1</sup>.



**Fig. S2** (a) N<sub>2</sub> adsorption–desorption isotherms and (b) corresponding pore size distributions of H-Cu-BTC, H-Cu-BTC\_1, and H-Cu-BTC\_5 samples.



Fig. S3 SEM image of conventional Cu-BTC sample.



Fig. S4 Elemental distribution maps of H-Cu-BTC: (a) SEM, (b) C, (c) O, (d) N, and (e) Cu.



Fig. S5 Thermogravimetric analysis (TGA) of conventional Cu-BTC (C-Cu-BTC) and H-MOFs.



Fig. S6 (a) Time evolution of order parameter P, and (b) the free energy density plot with time step during the mesophase formation of hierarchically porous MOFs.



Fig. S7 Powder XRD patterns of H-ZIF-8 and the simulated ZIF-8 pattern.



Fig. S8 (a) SEM and (b) TEM images of H-ZIF-8 sample.



Fig. S9 Powder XRD patterns of H-Cu-BTC\_A and the simulated Cu-BTC pattern.







Fig. S11 (a) SEM and (b) TEM images of H-Cu-BTC\_A sample.



Fig. S13 (a) The  $N_2$  adsorption-desorption isotherms and (b) the corresponding pore size distributions of H-Cu-BTC and H-Cu-BTC\_A samples.



Fig. S14 Powder XRD patterns of H-ZIF-8\_A and the simulated ZIF-8 pattern.



Fig. S15 (a) N<sub>2</sub> adsorption-desorption isotherms and (b) pore size distributions of H-ZIF-8\_A.



Fig. S16 TGA of H-ZIF-8, H-ZIF-8\_A, and conventional ZIF-8 (C-ZIF-8) samples.



Fig. S17 (a)  $N_2$  adsorption-desorption isotherms and (b) corresponding pore size distributions of H-ZIF-8\_1, H-ZIF-8, and H-ZIF-8\_5 samples.



Fig. S18 (a)  $N_2$  adsorption-desorption isotherms and (b) corresponding pore size distributions of H-ZIF-8 and H-ZIF-8\_A samples.



Fig. S19 Gaseous toluene sorption isotherms at 298K on H-ZIF-8 sample.



Fig. S20 CH<sub>4</sub> adsorption curve of H-Cu-BTC\_A sample at 298 K.



**Fig. S21** Photograph of decoloration process for congo red (CR,  $C_0 = 30 \text{ mg} \cdot \text{L}^{-1}$ ) solution with H-Cu-BTC\_A (m = 20 mg) adsorbent (right) at different times: (a) 5 min; (b) 30 min; and (c) 60 min.



Fig. S22 Photograph of decoloration process for CR ( $C_0 = 30 \text{ mg} \cdot \text{L}^{-1}$ ) solution with H-ZIF-8 (m =

20 mg) adsorbent (right) at different times: (a) 5 min; (b) 30 min; and (c) 60 min.

#### References

- 1. C. Duan, F. Li, H. Zhang, J. Li, X. Wang and H. Xi, *RSC Adv.*, 2017, 7, 52245-52251.
- 2. C. Duan, F. Li, L. Li, H. Zhang, X. Wang, J. Xiao and H. Xi, *CrystEngComm*, 2018, 20, 1057-1064.
- 3. J. Zhao, W. T. Nunn, P. C. Lemaire, Y. Lin, M. D. Dickey, C. J. Oldham, H. J. Walls, G. W. Peterson, M. D. Losego and G. N. Parsons, *J. Am. Chem. Soc.*, 2015, 137, 13756-13759.