## Science Advances

## Supplementary Materials for

## Exosome-mediated delivery of Cas9 ribonucleoprotein complexes for tissue-specific gene therapy of liver diseases

Tao Wan et al.

Corresponding author: Xiangrui Liu, xiangrui@zju.edu.cn; Yuan Ping, pingy@zju.edu.cn; Tianhua Zhou, tzhou@zju.edu.cn

*Sci. Adv.* **8**, eabp9435 (2022) DOI: 10.1126/sciadv.abp9435

## This PDF file includes:

Figs. S1 to S23 Tables S1 and S2

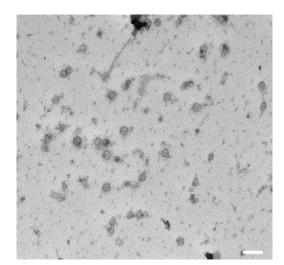



Fig. S1. The typical contracted TEM image of the exosome in Figure 2D. Scale bar = 100 nm.

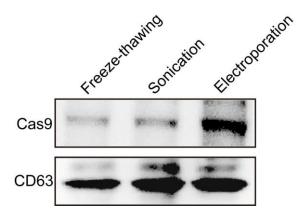



Fig. S2. Loading capabilities of various exogenous approaches.

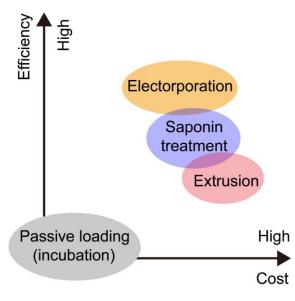



Fig. S3. Available exogenous loading methods as a function of loading efficacy and costs for large-scale production.

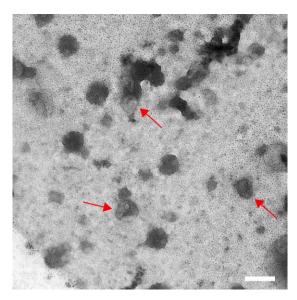
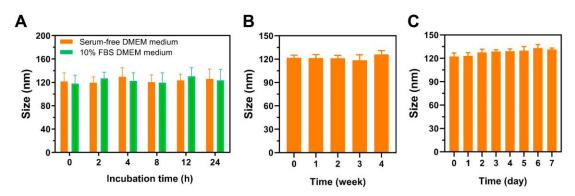




Fig. S4. The typical TEM image of exosome<sup>RNP</sup>. The red arrows indicating exosome<sup>RNP</sup> particles. Scale bar = 200 nm.



**Fig. S5. Stability of exosome**<sup>RNP</sup> **nanocomplexes.** (A) The particle size variation of exosome<sup>RNP</sup> nanocomplexes in the culture DMEM medium with or without serum. (B-C) Size of exosome<sup>RNP</sup> nanocomplexes stored for -80 °C (B) and 4 °C (C). Mean  $\pm$  SD; n = 3.

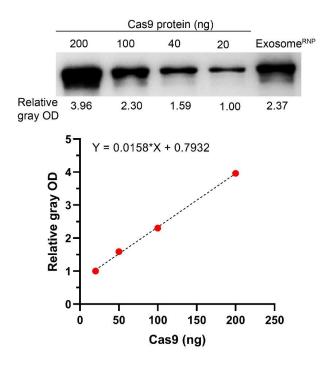



Fig. S6. Western blot analysis to determine the loading of Cas9 protein in exosome.

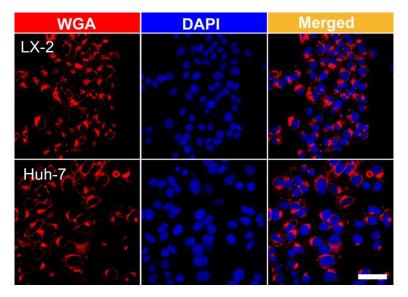
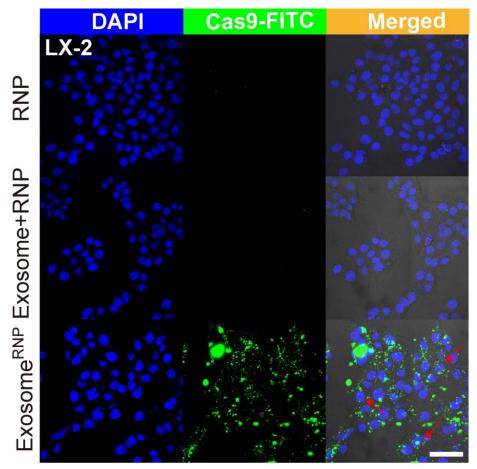
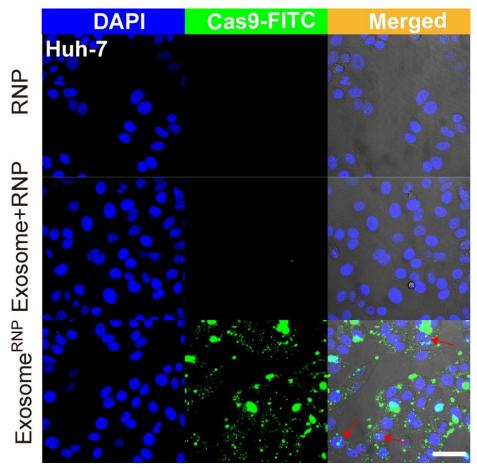





Fig. S7. Cytosolic delivery of WGA-labeled exosome into LX-2 and Huh-7 cells. Scale bar =  $25 \mu m$ .



**Fig. S8.** Cytosolic delivery of Cas9-FITC into LX-2 cells by exosomes for 4 hours. Cas9-FITC and exosome+Cas9-FITC were used as negative controls. The red arrows point at the efficient translocation of Cas9-FITC/sgRNA RNP into the nuclei. These pictures correspond to Figure 2H.



**Fig. S9.** Cytosolic delivery of Cas9-FITC into Huh-7 cells by exosomes for 4 hours. Cas9-FITC and exosome+Cas9-FITC were used as negative controls. The red arrows point at the efficient translocation of Cas9-FITC/sgRNA RNP into the nuclei. These pictures correspond to Figure 2I.

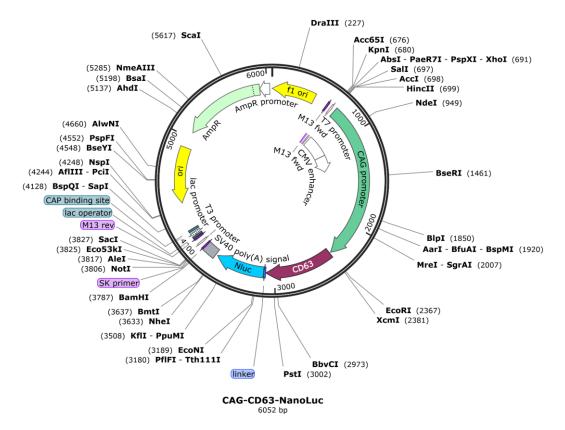



Fig. S10. Plasmid map of CAG-CD63-NanoLuc DNA vector.

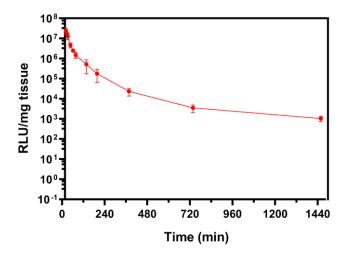



Fig. S11. Time-course of liver CD63-NanoLuc activity after systemic administration of CD63-NanoLuc-exosome<sup>RNP</sup> nanocomplexes. Mean  $\pm$  SD; n = 3.

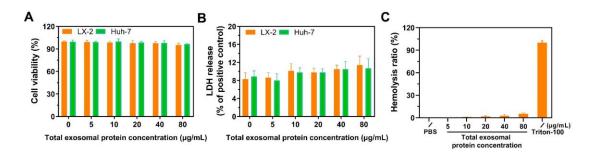



Fig. S12. Biocompatibility of exosome<sup>RNP</sup> nanocomplexes *in vitro*. (A) Cell viability of LX-2 and Huh-7 cells after 24 h incubation with exosome<sup>RNP</sup> nanocomplexes. Cell viability was determined by MTT assay. (B) LDH release assay. (C) Hemolytic activity of the exosome<sup>RNP</sup> nanocomplexes. Total exosomal protein concentration ranges from 5 to 80  $\mu$ g/mL. PBS and Triton-100 (0.5%) were used as the negative and positive controls, respectively. Mean  $\pm$  SD; n = 6.

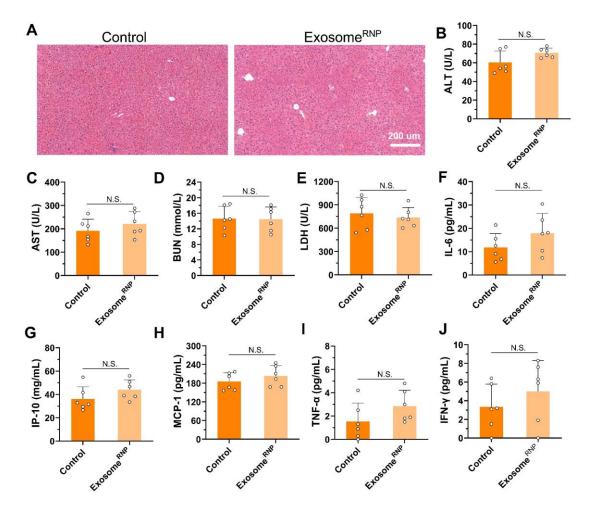



Fig. S13. Systemic toxicity and immunogenicity evaluation of exosome<sup>RNP</sup> via intravenous injection. (A) H&E staining of liver sections from healthy mice after the exosome<sup>RNP</sup> treatment. (B-E) Serum levels of ALT, AST, BUN, and LDH in healthy mice treated with or without exosome<sup>RNP</sup>. (F-J) Levels of five major inflammatory cytokines in healthy mice treated with or without exosome<sup>RNP</sup>. Statistical significance was calculated by Students' t-test (mean  $\pm$  S.D., n = 6). N.S. represents no significant difference.

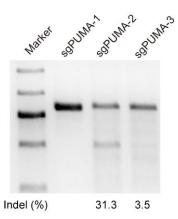



Fig. S14. Frequency of indel mutation detected by T7E1 assay from AML-12 cells at *PUMA* locus of different sgRNAs.

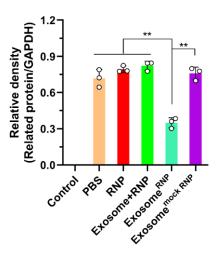
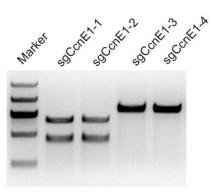




Fig. S15. Protein levels were quantified by densitometry after the specified treatments. Mean  $\pm$  SD; n = 3 (one-way ANOVA with a Tukey's post-hoc test, \*\*P < 0.01).



Indel (%) 39.8 38.9

Fig. S16. Frequency of indel mutation detected by T7E1 assay from AML-12 cells at *CcnE1* locus of different sgRNAs.

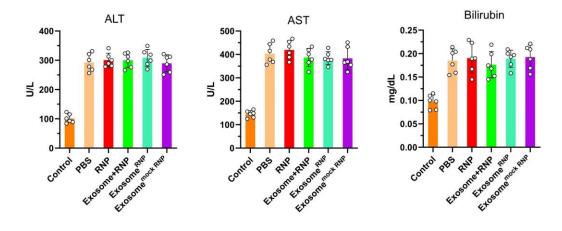
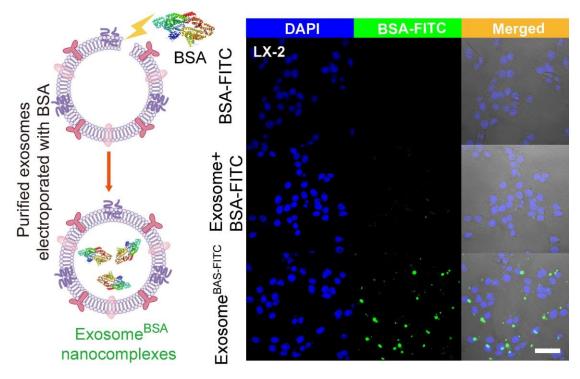




Fig. S17. Serum ALT and AST activities were measured to evaluate global liver injury. Bilirubin content in serum was determined as a measure of liver function. Mean  $\pm$  SD; n = 6.



**Fig. S18.** Preparation of exosome<sup>BSA-FITC</sup> complexes and cytosolic delivery of BSA-FITC into LX-2 cells by exosomes for 4 hours. Free Cas9-FITC and exosome+Cas9-FITC were used as negative controls.

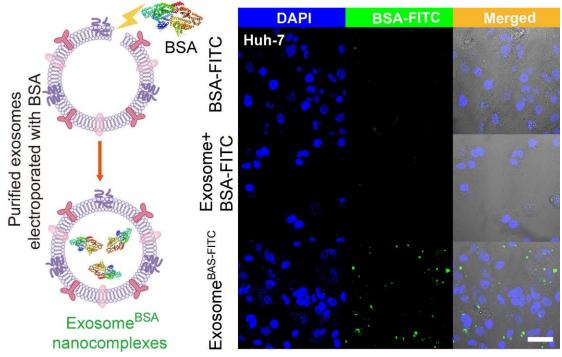



Fig. S19. Preparation of exosome<sup>BSA-FITC</sup> complexes and cytosolic delivery of BSA-FITC into Huh-7 cells by exosomes for 4 hours. Free Cas9-FITC and exosome+Cas9-FITC were used as negative controls.

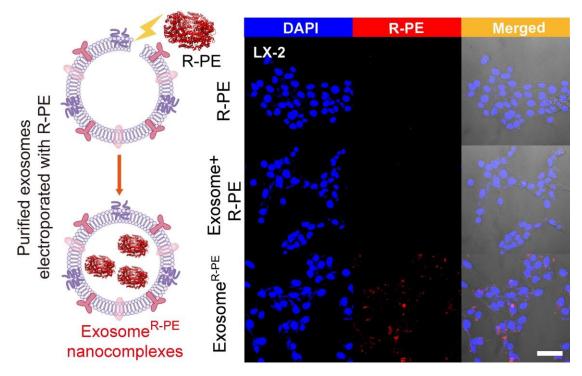



Fig. S20. Preparation of exosome<sup>R-PE</sup> complexes and cytosolic delivery of R-PE into LX-2 cells by exosomes for 4 hours. Free R-PE and exosome+R-PE were used as negative controls. Scale bar =  $25 \mu m$ .

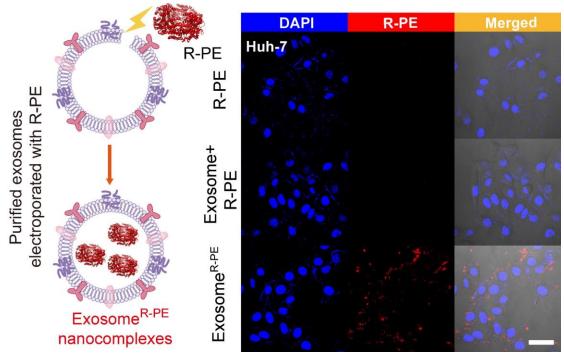
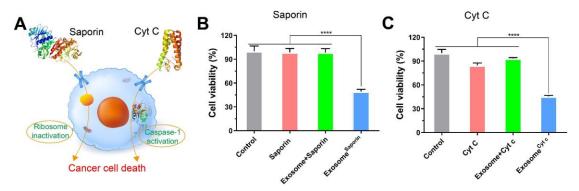




Fig. S21. Preparation of exosome<sup>R-PE</sup> complexes and cytosolic delivery of R-PE into Huh-7 cells by exosomes for 4 hours. Free R-PE and exosome+R-PE were used as negative controls. Scale bar =  $25 \mu m$ .



**Fig. S22.** Cytosolic delivery of toxic proteins. (A) Cytosolic delivery of saporin and Cyt C into cancer cells leads to ribosome inactivity and Caspase-1 activation, respectively, and cell death. (B-C) Cell viability of Huh-7 cells treated with exosome<sup>saporin</sup> (B) and exosome<sup>Cyt C</sup> (C) determined by MTT assay, respectively. Mean  $\pm$  SD; n = 6 (one-way ANOVA with a Tukey's post-hoc test, <sup>\*\*\*\*</sup>P < 0.0001).

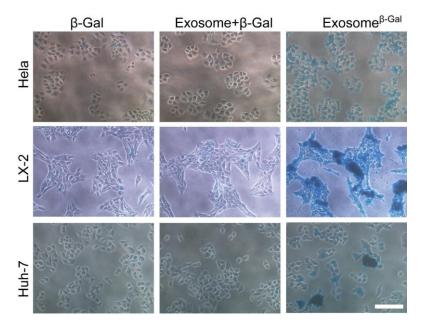



Fig. S23. Cytosolic delivery of  $\beta$ -Gal into Hela, LX-2, and Huh-7 cells, respectively. Scale bar = 25  $\mu$ m.

| Table S1. | Sequences | of sgRNA | used in | this study. |
|-----------|-----------|----------|---------|-------------|
|           |           |          |         |             |

| Nucleic Acid ID | Sequences (5'-3')                                                                    | Notes       |
|-----------------|--------------------------------------------------------------------------------------|-------------|
| sgPUMA-1-F      | GAAATTAATACGACTCACTATAGGGGGGCACTCACCGTCCG<br>GGCGGTTTTAGAGCTAGAAATAGCA               | T7 Promoter |
| sgPUMA-2-F      | GAAATTAATACGACTCACTATAGGGCCGCTCGTACTGCGCG<br>TTGGTTTTAGAGCTAGAAATAGCA                | T7 Promoter |
| sgPUMA-3-F      | GAAATTAATACGACTCACTATAGGGTCGCGGGCTAGACCC<br>TCTAGTTTTAGAGCTAGAAATAGCA                | T7 Promoter |
| sgCcnE1-1-F     | GAAATTAATACGACTCACTATAGGTTTCACAGTCTTGTCAA<br>TCTGTTTTAGAGCTAGAAATAGCA                | T7 Promoter |
| sgCcnE1-2-F     | GAAATTAATACGACTCACTATAGGTTTCAGTCCGCTCCAGA<br>AAAGTTTTAGAGCTAGAAATAGCA                | T7 Promoter |
| sgCcnE1-3-F     | GAAATTAATACGACTCACTATAGGGGGATGATAATTCAGCA<br>TGCGGTTTTAGAGCTAGAAATAGCA               | T7 Promoter |
| sgCcnE1-4-F     | GAAATTAATACGACTCACTATAGGACAATGAGCTTGAATA<br>CCCCGTTTTAGAGCTAGAAATAGCA                | T7 Promoter |
| sgKAT5-F        | GAAATTAATACGACTCACTATAGGGATTGATGGACGTAAG<br>AACAGTTTTAGAGCTAGAAATAGCA                | T7 Promoter |
| sgRNA-R         | AAAAGCACCGACTCGGTGCCACTTTTTCAAGTTGATAACGG<br>ACTAGCCTTATTTTAACTTGCTATTTCTAGCTCTAAAAC |             |

| Nucleic Acid ID | Sequences (5'-3')        |
|-----------------|--------------------------|
| PUMA-1-F        | ATCCTGCAGCCTTTGCGAGC     |
| PUMA-1-R        | TAACAGCCCATCAGGCGAGGGA   |
| PUMA-2-F        | TGGATGGTGACCACGCCCCTTT   |
| PUMA-2-R        | AACCGGGGCTCTGGGGGGTTTCAT |
| PUMA-3-F        | AGCACCCCTTCTGCGCTCTT     |
| PUMA-3-R        | AAGACCACACTGGCCACACCCT   |
| CcnE1-1-F       | TCCAAGCCCAAGTCCTGAGCCA   |
| CcnE1-1-R       | TGGCCTGCAGCTCTGTTTTGGG   |
| CcnE1-2-F       | TCCAAGCCCAAGTCCTGAGCCA   |
| CcnE1-2-R       | TGGCCTGCAGCTCTGTTTTGGG   |
| CcnE1-3-F       | ACCACCATGTGGTTGCTGGGA    |
| CcnE1-3-R       | AGCCGGAACCTCCAAGCTCA     |
| CcnE1-4-F       | ACCACCATGTGGTTGCTGGGA    |
| CcnE1-4-R       | AGCCGGAACCTCCAAGCTCA     |
| KAT5-F          | GCTGCCTTCCCAGCACCCTC     |
| KAT5-R          | GCCTGCTGCTGGGTACTGCC     |

 Table S2. Primer sequences for PCR amplification of target genes.