
The network architecture adopted in this paper is shown in Figure S-1.

Figure S-1: 3D U-Net architecture. It includes three parts of layers:
contracting path, bottleneck and expanding path. In the contracting
path, each contracting layer consists of two convolution operations,
each of which is a 3×3×3 convolution followed by a rectified linear unit
(ReLU) and a 2×2×2 max pooling operation. The bottleneck includes
two convolution operations. In the expanding path, each expanding
layer includes a 2×2×2 up-convolution operation and two convolution
operations. The feature maps extracted from the expanding path were
concatenated with copied feature maps from the contracting path. The
feature number in the first layer is 32.

Many works have shown that deep learning denising methods outperformed conventional
denoising methods. Here we compared with three conventional denoising methods, (1) Gaus-
sian filtering, (2) non-local-means. (3) BM4D. For the Gaussian filter, 1mm, 2mm, 3mm,
4mm and 5mm 3D filter kernels were used for the on the OSEM+5mm Gaussian post-filtering
images.

Figure S-2 shows the background noise and lesion SUVmean bias curves of 4 subjects in the

dynamic datasets. The SUVmean bias is defined as SUV E
mean−SUV L

mean

SUV L
mean

×100%, where SUV E
mean

is the SUVmean value of the lesion in denoised image, SUV E
mean is the SUVmean value of

the lesion in true-high-count image. The background ROI were manually drawn close to the
lesions using ITK-SNAP tool.

Figure S-3 and Figure S-4 plot the denoised images using deep learning, Gaussian filtering,
NLM, and BM4D methods. It is clearly shown that the deep learning method outperform
other conventional methods, with better reduced noise and well-preserved structures. Gaus-
sian filtering, NLM, and BM4D images suffer from details loss when suppressing the noise,
as indicated by the white arrows. In addition, quantitative evaluation was performed on
the two data in Figure S-3 for different denoised images with the true-high-count image as
the reference. The quantitative evaluation results showed that the deep learning method
achieves the best performance. We didn’t perform quantitative evaluation on the all multi-
pass dynamic datasets. The reason is that it is difficult to tune the denoising parameters
in Gaussian filtering, NLM, and BM4D methods to tradeoff the denoising performance and
detail loss. In addition, it cannot achieve optimal denoising performance when applying the



Figure S-2: Noise-bias curve of 4 patients with various noise reduction
methods.

same parameters across the whole datasets, which have different noise levels.

In the network training, we used the combination of 20%, 30%, and 40% downsampled data
of 27 dynamic data. This can not only augment the training sets but also make the noise
distribution of the combination downsampled data better match the noise distribution of
195 clinical data. Here we compared 4 networks, (1) only using 20% downsampled data as
training data, (2) only using 30% downsampled data as training data, (3) only using 40%
downsampled data as training data, (4) using all 20%, 30%, and 40% downsampled data as
training data. The training settings were the same except the training data. After training,
the trained models applied on the clinical data to get the virtual high-count images.

Figure S-5, Figure S-6, and Figure S-7 show the different virtual-high-count images from
the above four networks. The virtual-high-count images using 20% downsampled data for
training showed substantial blurring, which indicates that the unmatched noise could cause
over-smoothing when training with higher noise level than the test data with less noisy. Using
30% and 40% downsampled data for training could better preserve the image structures at
the cost of slightly remaining noise, which could be observed in Figure S-5 and Figure S-6.
The virtual-high-count image using the combined downsampled data have not only reduced



Figure S-3: Visual comparison of different denoising methods in two
dynamic data. The white arrows indicates that the AI-denoised images
could substantially suppress the noise and preserve important struc-
tures, while the Gaussian filtering, NLM, and BM4D reduce the noise
but at the cost of blurring. The quantitative metrics also indicates that
the AI-denoised images have the best quantitative metric scores.

noise but also well-preserved details.



Figure S-4: Visual comparison of different denoising methods in one
clinical data. The AI-denoised images could substantially suppress the
noise and preserve important structures (white arrows). The Gaussian
filtering, NLM and BM4D reduce the noise but at the cost of blurring.



Figure S-5: Visual comparison of the standard-count and virtual-high-
count using different training data. All virtual-high-count images sup-
pressed the noise and showed less noisy than the standard-count im-
ages. The virtual-high-count images using 20% downsampled data for
training showed substantial blurring, while using 30% and 40% down-
sampled data for training could better preserve the image structures
at the cost of remaining noise. The virtual-high-count image using the
combined downsampled data showed reduced noise and well-preserved
details. (Patient: male, BMI 48.1 kg ·m2).



Figure S-6: Visual comparison of the standard-count and virtual-high-
count using different training data. All virtual-high-count images sup-
pressed the noise and showed less noisy than the standard-count im-
ages. The virtual-high-count images using 20% downsampled data for
training showed substantial blurring, while using 30% and 40% down-
sampled data for training could better preserve the image structures
at the cost of remaining noise. The virtual-high-count image using the
combined downsampled data showed reduced noise and well-preserved
details. (Patient : male, BMI 37.9 kg ·m2).



Figure S-7: Visual comparison of the standard-count and virtual-high-
count using different training data. All virtual-high-count images sup-
pressed the noise and showed less noisy than the standard-count im-
ages. The virtual-high-count images using 20% downsampled data for
training showed substantial blurring, while using 30% and 40% down-
sampled data for training could better preserve the image structures
at the cost of remaining noise. The virtual-high-count image using the
combined downsampled data showed reduced noise and well-preserved
details. (Patient 3: male, BMI 26.7 kg ·m2).


