SUPPLEMENTARY FIGURES

Chen C, et al. "Cancer coopts differentiation of B-cell precursors into macrophage-like

cells"

Suppl. Fig.1

Suppl. Fig.1

Supplementary Figure 1. Co-expression of B-cell and macrophage specific markers. a, gating strategy showing co-expression of B-cell specific markers (CD19, CD79a, CD20) and macrophage markers (F4/80 and CD11b) in TIB and TAM in the tumor from BALB/c mice with s.c. 4T1.2 cancer. **b,** Representative FACS profiling data of surface markers in CD79a⁺

TAM (presumably B-MF) as compared with CD79a⁻ TAM ("classic" TAM) in in the tumor of mice with 4T1.2 breast cancer (n=4). (CD20⁺ P=0.0003, IgM⁺ P=0.0001, IgD⁺ P=0.0015, F4/80 MFI P=0.0016, Mean SSC-A P=0.0004, CD206⁺ P=0.0029, IL4Ra⁺ P=0.0002, Filipin III MFI P=0.0047 in CD79a⁺ vs CD79a⁻). P values were calculated using two-tailed paired t test. c, Representative histogram showing B-cell specific makers (CD19, CD20 and IgM) within TAM (F4/80⁺CD11b⁺) in the peritoneum of B-cell sufficient (Mogp) and B-cell deficient (Mogp-J_HT) C57BL/6 mice with peritoneal Mogp ovarian cancer. **d**, Box-Whiskers plot quantification of tumor infiltrated CD19⁺ TIB frequency from B-cell sufficient (BALB/c) vs B-cell deficient (µMT BALB/c) mice with 4T1.2 cancer (n=14 for BALB/c group, n=9 for µMT BALB/c group, P<0.0001). P values were calculated using two-tailed unpaired t test. Representative FACS profiling data of surface markers in CD79a⁺ TAM as compared with CD79a⁻ TAM in Mogp mice (n=7, CD20⁺ P=0.0004, IgM⁺ P=0.0005, IgD⁺ P=0.0073, F4/80 MFI P=0.0004, Mean SSC-A P<0.0001, IL4Ra⁺ P=0.0018, CD274⁺ P<0.0001, Filipin III MFI P<0.0001 in CD79a⁺ vs CD79a⁻, e) and C57BL/6 mice with MC-38 cancers (n=5, CD20⁺ P=0.0007, IgM⁺ P=0.0115, IgD⁺ P<0.0001, F4/80 MFI P=0.0012, Mean SSC-A P=0.0002, CD206⁺ P=0.0018, IL4Ra⁺ P=0.0062, CD274⁺ P=0.0001, Filipin III MFI P=0.0237 in CD79a⁺ vs CD79a⁻, f). P values were calculated using two-tailed paired t test. Representative immunohistochemistry staining for B cells (CD19) and macrophages (CD68) in the tumor of BALB/c and C57BL/6 mice with s.c. 4T1.2 cancer (g) and MC38 colon cancer (h), respectively. White arrow shows CD19⁺CD68⁺ cells, and scale bars represent 50 μ m (upper panel) and 10 μ m (lower 2 panels). G and H, n=3 mice per group. B, E and F, each dot is an independent mouse. Results shown here were reproduced at least twice. From here on, Error bars are for SEM.

Supplementary Figure 2. EYFP+F4/80+CD11b+ cells in the tumor of naïve and tumor bearing Mb1-EYFP mice. Representative FACS plots (a) and quantification (b) showing

Mean \pm SEM of F4/80⁺CD11b⁺ of EYFP⁺ cells in spleen, LN and PeC (*P*<0.0001) of Mb1-EYFP mice vs without (naïve) peritoneal ID8 cancer. "MC-38 (s.c.)" is for F4/80⁺CD11b⁺ EYFP⁺ cells (Mean \pm SEM) in the tumor of Mb1-EYFP mice with MC38 tumor. (n=4 for naïve group, n=3 for ID8 group and n=3 for MC-38 group). *P* values were calculated using two-tailed unpaired *t* test. **c**, Quantification of LAP/TGF β and PD-L1 expression in F4/80⁺CD11b⁺EYFP⁺ cells (Mean \pm SEM) in the peritoneum of naïve vs ID8 cancerbearing mice (LAP⁺ *P*=0.0039, CD274⁺ *P*=0.0108, and LAP⁺CD274⁺ *P*=0.0059, n=3/group). *P* values were calculated using two-tailed unpaired *t* test. Each symbol is an independent mouse.

Suppl. Fig.3

e

Suppl. Fig.3

Supplementary Figure 3. Cancer CM causes differentiation of BM B cells into macrophages. a, representative FACS plots showing the purity (> 99%) of CD19⁺ B cells independently FACS-purified from 6 mice (sort 1-6), which we used in the *in vitro* B-MF

conversion assays. **b** and **c**, Quantification of FACS results (Mean \pm SEM) for indicated expression of markers (X-axis) in F4/80⁺CD11b⁺ cells generated from BM B cells cultured in 4T1.2 CM for 7 (n=3, **b**) and 14 days (red, 7 days, and blue, 14 days, n=3/group, **c**). **d**, Representative Imagestream images for expression of EYFP, F4/80, CD11b, CD19, and CD20 in single CD19⁺F4/80⁻, CD19⁺F4/80⁺ and CD19⁻F4/80⁺ cells (gated and arrows) after incubation of BM B cells of EYFP⁺ mice in 4T1.2-CM for 7 days. See that pure B cells (F4/80⁻CD19⁺ cells) are smaller in size than F4/80⁺ cells. e, Immunofluorescent microscopy image showing B-MF generated from RAG2-GFP⁺ BM B-cells can phagocytize pHrodo[™] red-labeled *E. coli*. Reproduced twice. Scale bar represents 20 µm. f, Representative FACS plots showing FACS-purified BM B-cell precursors (pro-B and pre-B cells) and immature B cells, but not splenic transitional, marginal zone and follicular B cells, can generate F4/80⁺CD11b⁺ cells upon culture with 4T1.2-CM for 7 days. g, Gating strategy of FACS-purified BM B-cell subsets used. h, Quantification of results shown in Fig2G, showing Mean ± SEM of F4/80⁺CD11b⁺ cells after culture of BM B cells in cRPMI or CM from 4T1.2, EMT6, AT3, B16-F10, and MC38 cancer cells (n=3 per group). i, Representative FACS plots of pre-B cell line 70z/3 cultured for 7, 14, or 28 days with CM from indicated cancer cells. Shows surface upregulation of CD11b and CD68. j, Representative FACS plots and **k**, quantification (Mean \pm SEM, n=4 per group) for surface expression of macrophage markers in 70z/3 cells after 30-day culture in cRPMI vs 4T1.2-CM. P values were calculated using two-tailed unpaired t test. The results shown here were independently reproduced at least three times.

a

BM B cell and monocyte sort gating strategy

b

Suppl. Fig.4

Supplementary Figure 4. Gating strategy of FACS-sorted cells and cells used in vivo in Fig.2h-j. a, Gating strategy of FACS-sorted BM B cells and monocytes. **b**, Gating strategy of the experiment depicted in Fig 2H. It shows CD45.1⁺ and CD45.2⁺ F4/80⁺CD11b⁺ macrophages after a mixed culture of CD45.1⁺ monocytes and EYFP⁺CD45.2⁺ BM B cells in 4T1.2-CM. **c**, Gating strategy of the experiment depicted in Fig 2I. It shows EYFP, surface CD45.1 and CD45.2 expression in peritoneal F4/80⁺CD11b⁺ (macrophages) and CD19⁺ B cells in CD45.1 mice with ID8 cancer. EYFP⁺CD45.2⁺ BM B cells were i.p. transferred into CD45.1 mice with ID8 cancer in the peritoneum.

b

a

Suppl. Fig.5

Supplementary Figure 5. Distinct gene expression profiles of B-MF and Mo-MF. a,

Quantification of FACS staining shows Mean \pm SEM expression of indicated markers (X-axis) on the surface of in vitro generated F4/80⁺CD11b⁺ B-MF vs Mo-MF (CD19⁺ *P*<0.0001, CD79a⁺ *P*<0.0001, IgM⁺ *P*<0.0001, F4/80 MFI *P*<0.0001, and Mean SSC-A P=0.0007, n=3 per group). b, Representative light microscopy images showing morphology of *in vitro* generated B-MF and Mo-MF as compared to macrophages from peritoneum (PeC) of naïve mice, which were cultured in cRPMI or 4T1.2-CM. Independently reproduced twice. Scale bar represented 20 µm. c, in vitro generated B-MF differ from Mo-MF. Shown are frequency Mean ± SEM of CD19, CD79a and IgM expression and MFI Mean \pm SEM of F4/80 within F4/80⁺ CD11b⁺ cells and Mean \pm SEM of cell sizes (n=3 per group). P values were calculated using two-tailed unpaired t test between B-MF vs Mo-MF. d, Heatmap showing 2041 differential expressed genes between B cells and macrophages (B-MF and Mo-MF) identified from mRNA expression profiling (microarray). Scale bar is for expression z-score. Heatmap of expression of canonical B-cell (e) and macrophage (f) genes in B-MF, Mo-MF, peritoneal macrophages (MF) and BM B cells. g, Heatmap showing expression of M1 and M2 signature genes (M1/M2 signature genes were from GSE5099) in B-MF and Mo-MF. h, KEGG oxidative phosphorylation and glycolysis pathway gene signature in in vitro generated B-MF and Mo-MF in scRNA-seq data. i, Frequency of B-MF or Mo-MF in the individual cell clusters j, Violin plot of Apoe expression in the B-MF and Mo-MF among 12 clusters. k, Violin plot of expression of Apoe, Egr1, Slc40a1, S100a8, S100a9 and CD74 in clusters 0, 6, 8 identified from scRNA-seq results of TAM from mice with 4T1.2 cancer.

Suppl.Fig.6

g

Supplementary Figure 6. B-MF and Mo-MF are functionally different cells. a, Representative FACS plots showing $BrdU^+$ frequency in *in vitro* generated B-MF and Mo-MF after pulsing with BrdU for 24h. **b**, Quantification of Ki-67 expression of *in vitro* generated B-MF and Mo-MF, n=2. **c** and **d**, Unlike Mo-MF, B-MF suppress proliferation of T cells *in vitro*. Representative histogram showing the proliferation of CD4⁺ T cells (**c**)

and CD8⁺ T cells (d) after B-MF and Mo-MF were cultured with T cells stimulated with anti-CD3/CD28 Abs at 10:1, 20:1 and 40:1 (T cell: MF) ratio for 4 days. e, Quantification (Mean \pm SEM, n=5 per group) of FoxP3⁺ Tregs *in vitro*-converted from CD25⁻CD4⁺ non-Tregs T cells (isolated from naïve mouse spleen) after 5-day co-culture with B-MF vs Mo-MF at 5:1(P=0.0004), 10:1(P<0.0001) and 20:1 (T cell: MF) ratio. P values were calculated using two-tailed unpaired t test. **f** and **g**, Box-Whiskers plot quantification (frequency and absolute numbers) of tumor-infiltrating CD4⁺ T cells and CD8⁺ T cells within CD45⁺ cells and their GrB and IFN- γ -expressing cells, and FoxP3⁺CD4⁺ T cells in s.c. tumor of µMT C57BL/6 mice with B16-F10 melanoma (n=10 for PBS group, n=12 for B-MF group, CD45⁺#/g P=0.017, **f**) vs PBS and 4T1.2 μ MT BALB/c mice (n=12 for PBS group, n=14 for B-MF group, $GrB^+\%$ of CD4⁺ P=0.0018, g) vs PBS. P values were calculated using two-tailed unpaired t test. Schema of adoptive transfer experiment in µMT BALB/c mice (upper panel, h). Equal numbers of in vitro-generated B-MF or FACSpurified FOB ($3x10^5$ cells/mouse) were i.v. injected 3 and 10 days after s.c. challenge with 4T1.2. cancer (n=5 for B-MF group, n=8 for FOB group). Lung metastasis and tumorinfiltrated cells (TIL) were quantified at day 30 (lower panel, **h**). Shown are frequency within CD45⁺ cells and absolute numbers of TIL (CD4⁺% P=0.0081, IL10⁺% of CD4⁺ P=0.001, GrB⁺% of CD8⁺ P=0.0244, LAMP1⁺% of CD8⁺ P=0.0135, CD4⁺#/g P=0.0479, **h**) after B-MF vs FOB. *P* values were calculated using two-tailed unpaired *t* test. Schema of B-MF tracking experiment (i). eflour450-labelled B-MF $(5x10^5)$ were i.v. injected into uMT BALB/c mice bearing a 14-day 4T1.2 tumor. After 3 days, absolute numbers (Mean \pm SEM, n=3 per group) of eFluor450⁺ in CD11b⁺F4/80⁺ were quantified (left panel, i) and proportion of CD11b⁺F4/80⁺ in eFluor450⁺ cells were determined by FACS (right panel, j) in indicated tissues and in the tumor. Absolute numbers of transferred eFluor450⁺ CD11b⁺F4/80⁺ cells per gram tumor was compared with that of B-MF in 4T1.2 tumor in BALB/c mice (CD79a⁺F4/80⁺CD11b⁺CD19⁻) and in MC38 tumor in Mb1-EYFP mice (EYFP+F4/80+CD11b+CD19, k). Each symbol in **b** and **e**-**j**) is for independent mouse.

Suppl. Fig.7

Suppl. Fig.7

Supplementary Figure 7. CSF1/CSF1R signaling axis is needed for the generation **B-MF. a,** Mean \pm SEM frequency (top) and numbers (bottom) of CD19⁺B220⁺ B cells (frequency P < 0.0001, number P = 0.0002) and their subsets (pro-B frequency P = 0.0019) number P=0.001, pre-B number P<0.0001, immature B frequency P=0.0023 number P=0.0041 and mature B cells frequency P=0.0019 number P=0.001) in BM of mice with 4T1.2 cancer or naïve mice (n=5/group). P values were calculated using two-tailed unpaired t test. **b**, Numbers of B-cell precursors (CD19⁺CD93⁺, Mean \pm SEM) in BM (P < 0.0001), PB(P = 0.0207), and spleen (P = 0.0043) of mice with Mogp cancer and naïve mice (n=6 for naïve group, n=10 for Mogp group). P values were calculated using twotailed unpaired t test. c, Representative FACS plots showing F4/80⁺CD11b⁺ cells after in vitro culture of splenic CD19⁺, CD19⁺CD93⁺, and CD19⁺CD93⁻ B cells isolated from mice with 4T1.2 cancer (top) or naïve (bottom) mice in 4T1.2-CM for 7 days. d and e, Cytokine array image for expression of secreted factors in cancer CM (**D**) and relative levels (Mean) of M-CSF (red boxes in d) in CM of 4T1.2, EMT6, AT3 and B16-F10 cells (n=2 mouse samples per group, e). f, Box-Whiskers plot amount of MCSF (pg/ml) in sera of naïve and 4T1.2 cancer-bearing mice (n=14/group, ELISA data, P=0.0169, f).

P values in **f** were calculated using two-tailed unpaired *t* test. **g**, Mean \pm SEM frequency (top) and numbers (bottom) of indicated CSF1R⁺ B-cell subsets in BM of mice with 4T1.2 cancer or naïve mice (pro-B frequency *P*=0.004 number *P*=0.0002, pre-B frequency *P*<0.0001 number *P*<0.0001, immature B frequency *P*<0.0001 number *P*=0.0021 and mature B cells frequency *P*=0.0001 number *P*<0.0001, n=5/group). *P* values were calculated using two-tailed unpaired *t* test. **h** and **i**, anti-MCSF Ab or Ki20227 (a specific *c-fms*/CSF1R inhibitor) inhibits ability of 4T1.2-CM to generate B-MF from of BM B-cell precursors (**h**) and 70z/3 cells (**i**) in dose-dependent manner. Numbers in dot plots are for % of CD11b⁺F/80⁺ cells. **a-c** and **g-i** were independently reproduced at least three times.

Supplementary Figure 8. Gating strategy for data presented in Fig.5F, G, showing surface CSF1R expression in BM CD93⁺CD19⁺ B-cell precursors of Mb1-CSF1R^{Flox/Flox} (bottom) and littermate Mb1-Cre (WT, top) mice. Numbers in the pots are for expression frequency of CSF1R (%) in the gated areas.

Supplementary Figure 9. Cancers induce PAX5 downregulation in B-cell precursors. a, FACS evaluation of Pax5 (MFI Mean \pm SEM) in PB CD19⁺CD93⁺ B cells from naïve mice and mice with EMT6 and 4T1.2 cancers (n=5 for naïve group, n=4 for

oċ

нD

0Ċ

HD

нD

OC

4T1.2 CM

EMT6 group and n=5 for 4T1.2 group, P=0.0043 naïve vs EMT6 and P=0.0061 naïve vs 4T1.2). *P* values were calculated using two-tailed unpaired *t* test. **b**, Expression of Pax5 (MFI Mean \pm SEM) in 70z/3 cells after treatment with M-CSF or 4T1.2-CM (n=3/group) for overnight (P=0.0021 cRPMI vs RPMI+MCSF and P=0.0011 cRPMI vs 4T1.2 CM, left) or 5 days (P=0.0052 cRPMI vs 4T1.2 CM, right). P values were calculated using two-tailed unpaired t test. c, Pax5 (MFI Mean \pm SEM) in B-cell precursors (CD19⁺CD93⁺) from BM(P=0.0179), PB(P<0.0001) and spleen(P<0.0001) from mice with Mogp cancer and naïve mice (n=6 for naïve group, n=10 for Mogp group). *P* values were calculated using two-tailed unpaired t test. **d** and **e**, FACS evaluation of PB cells of breast cancer patients (n=5) and healthy human donors (n=7). P values were calculated using two-tailed unpaired t test. **d**, Mean \pm SEM frequency of CD10 expression in CD19⁺ B cells(P=0.0941) and CSF1R expression in CD19⁺CD10⁺ (P=0.0378) and CD19⁺CD10⁺CD20⁻ B cells(P=0.0002); and e, CD19⁺ cells and CD10 expression in CD19⁺ cells(P=0.0361) and CSF3R expression in CD19⁺CD10⁺ cells(P<0.0001) in PB of ovarian cancer patients and healthy donors. P values were calculated using two-tailed unpaired *t* test.

Supplementary Table 1. List of antibodies used in the study

		Species	Species	
Antibody	Clone	reactivity	Catalog #	Company
CD19-PE	1D3	Mouse	152408	BioLegend
CD19-APC	1D3	Mouse	152410	BioLegend
CD19-BUV421	HIB19	Human	302234	BioLegend
F4/80-APC	BM8	Mouse	123116	BioLegend
F4/80-BV421	BM8	Mouse	123137	BioLegend
		Mouse/Huma		
CD11b-BV510	M1/70	n	101263	BioLegend
		Mouse/Huma		
CD11b-FITC	M1/70	n	101206	BioLegend
CD64-PE/Dazzle 594	X54-5/7.1	Mouse	139319	BioLegend
CX3CR1-PerCP/Cyanine5.5	SA011F11	Mouse	149009	BioLegend
CD68-BV421	FA-11	Mouse	137017	BioLegend
CD93-APC	AA4.1	Mouse	136510	BioLegend
CSF1R-PE	AFS98	Mouse	135505	BioLegend
CSF1R-PE/Cyanine7	AFS98	Mouse	135524	BioLegend
lgM-PE/Cyanine7	RMM-1	Mouse	406514	BioLegend
lgD-BV510	11-26c.2a	Mouse	405723	BioLegend
CD20-BV421	SA275A11	Mouse	150405	BioLegend
CD20-APC	2H7	Human	302310	BioLegend
CD10-PE	HI10a	Human	312204	BioLegend
CD79a-PE	F11-172	Mouse	133103	BioLegend
TER119-Biotin	TER-119	Mouse	116204	BioLegend
		Mouse/Huma		
CD11b-Biotin	M1/70	n	101204	BioLegend
Gr-1-Biotin	RB6-8C5	Mouse	108404	BioLegend
CD3ε-Biotin	145-2C11	Mouse	100304	BioLegend
NK1.1-Biotin	PK136	Mouse	108704	BioLegend
CD49b-Biotin	ΗΜα2	Mouse	103522	BioLegend
CD49b-Biotin	DX5	Mouse	108904	BioLegend
Ly6C-Biotin	HK1.4	Mouse	128004	BioLegend
Ly6C-FITC	HK1.5	Mouse	128005	BioLegend
Ly6G-Biotin	1A8	Mouse	127604	BioLegend
Ly6g-BV650	1A9	Mouse	127641	BioLegend
CD11c-Biotin	N418	Mouse	117304	BioLegend
CD11c-BV510	N419	Mouse	117353	BioLegend
CD117-Biotin	2B8	Mouse	105804	BioLegend

Alexa Fluor [®] 488				
Streptavidin	-	-	405235	BioLegend
I-A/I-E-PerCP/Cyanine5.5	M5/114.15.2	Mouse	107626	BioLegend
CD206-FITC	C068C2	Mouse	141704	BioLegend
CD207-PE/Cyanine7	4C7	Mouse	144209	BioLegend
		Mouse/Huma		
B220-FITC	RA3-6B2	n	103206	BioLegend
lgM-PE/Dazzle™ 594	RMM-1	Mouse	406530	BioLegend
CD93-PE	AA4.1	Mouse	136504	BioLegend
CD43-APC	S11	Mouse	143208	BioLegend
CD24-BV605	M1/69	Mouse	101827	BioLegend
CD274-PE/Cyanine7	10F.9G2	Mouse	124314	BioLegend
LAP-PerCP/Cyanine5.5	TW7-16B4	Mouse	141410	BioLegend
CD4-PerCP/Cyanine5.5	GK1.5	Mouse	100434	BioLegend
CD8a-FITC	53-6.7	Mouse	100706	BioLegend
IFN-γ-APC	XMG1.2	Mouse	505810	BioLegend
		Mouse/Huma		
PAX5-Alexa Fluor [®] 488	1H9	n	562816	BD
CD71-BV605	C2	Mouse	563013	BD
CD124-BV421	Mil4R-M1	Mouse	564086	BD
CD366-BV421	5D12	Mouse	747626	BD
CD19-BUV395	1D3	Mouse	563557	BD
		Mouse/		
CD11b-BUV395	M1/70	Human	565976	BD
		Mouse/		
CD11b-BV786	M1/70	Human	740861	BD
CSF1R-BB515	9-4D2-1E4	Human	565346	BD
LDLR-BUV805	C7	Human	748950	BD
CSF3R-BUV395	LMM741	Human	743524	BD
	NCZD		12-8898-	eBioscienc
Granzyme B-PE/Cyanine/	NGZB	Mouse	82 13 5773	e
		Mouro	12-5//3- 07	ebioscieric
FOXP3-PE	131-102	Mouse/Huma	02 18-5698-	eRioscienc
Ki67-eEluor 450	SolA15	n	40-3090- 82	
	30//(13		61-0689-	eBioscienc
CD68-PE-eFluor 610	Y1/82A	Human	42	e
Anti-CD19	rabbit		ab24523	
antibody[EPR23174-145]	monoclonal Rat	Mouse	5	abcam
Anti-CD68 antibody[FA-11]	monoclonal	Mouse	ab53444	abcam