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Section S1. Graphene’s surface conductivity with the consideration of nonlocality 

We adopt the random phase approximation (RPA) method to analytically model the graphene’s 

surface conductivity with the consideration of nonlocality. The nonlocal surface conductivity is expressed 

as [1,2] 

𝜎s(𝑞, 𝜔) = −i𝜔𝜒𝜏(𝑞, 𝜔)                                                       (1.1) 

where 𝑞  is the in-plane wavevector and ω is the angular frequency. In Eq. (1.1), the nonlocal susceptibility 

is given by  

𝜒𝜏(𝑞, 𝜔) =
(1+

i

𝜔𝜏
)𝜒(𝑞,𝜔+

i

𝜏
)

1+

i
𝜔𝜏𝜒(𝑞,𝜔+

i
𝜏)

𝜒(𝑞,0)

                                                     (1.2) 

where τ is the relaxation time of carriers in graphene. Considering the low-temperature limit, the 𝜒(𝑞, 𝜔) 

can be analytically written as  

𝜒(𝑞, 𝜔) =
𝑒2

4𝜋ℏ
[
8𝑘F

𝑞2𝑣F
+
(𝐺(−𝛥−)−i𝜋)𝛩(−𝛥−−1)+𝐺(𝛥−)𝛩(𝛥−+1)−(𝐺(𝛥+)−i𝜋)

√𝜔2−𝑞2𝑣F
2

]               (1.3)  

where 𝑘F =
𝜔

𝑣F
, 𝛥± =

ℏ𝜔±2𝜇c

ℏ𝑞𝑣F
, 𝐺(𝑥) = 𝑥√𝑥2 − 1 − ln(𝑥 + √𝑥2 − 1) and 𝛩 is the heaviside step function. 

In addtion, vF is the Fermi velocity and µc is the chemical potential in graphene. When |𝑥| < 1 (|𝑥| > 1), 

the square root in G(x) is chosen to yield a positive imaginary (real) part. Besides, the imaginary part of the 

logarithm should fall within (−𝜋，𝜋) . On the other hand, the analytical expression of 𝜒(𝑞, 0) is obtained 

as  

𝜒(𝑞, 0) =
𝑒2

2𝜋ℏ𝑣F𝑞
{
4𝑘F

𝑞
− 𝛩 (1 −

2𝑘F

𝑞
) [
2𝑘F

𝑞
√1 − (

2𝑘F

𝑞
)
2
− cos−1

2𝑘F

𝑞
]}.                (1.4) 

 

Section S2. Dispersion curve of surface plasmons in graphene-based heterostructures 
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We consider the graphene-based heterostructure as shown in Figure S1. To determine the 

dispersion curve of eigenmode (i.e., graphene plasmons) in this structure, we establish the (ℎ, 𝑦, 𝜌 ) 

coordinate where the in-plane wavevector 𝑞̅ of the eigenmode is parallel to the ρ-axis. In this coordinate 

system, the eigenmode (i.e., graphene plasmons) takes the form as  

𝐸𝜌(𝑟, 𝜔) =

{
 
 

 
 

1

𝜔𝜀0

𝑘𝑦1

𝜀r1
𝑅p1𝑒

i𝑘𝑦1𝑦 𝑒i𝑞𝜌                                                     𝑦 > 0

1

𝜔𝜀0

𝑘𝑦2

𝜀r2
(−𝑇p2𝑒

-i𝑘𝑦2𝑦 + 𝑅p2𝑒
i𝑘𝑦2𝑦)𝑒i𝑞𝜌        − 𝑑 < 𝑦 < 0

−
1

𝜔𝜀0

𝑘𝑦3

𝜀r3
𝑇p3𝑒

-i𝑘𝑦3𝑦𝑒i𝑞𝜌                                            − 𝑑 > 𝑦

                 (2.1a) 

𝐸𝑦(𝑟, 𝜔) =

{
 
 

 
 −

𝑞

𝜔𝜀0

1

𝜀r1
𝑅p1𝑒

i𝑘𝑦1𝑦 𝑒i𝑞𝜌，                                                𝑦 > 0

−
𝑞

𝜔𝜀0

1

𝜀r2
(𝑇p2𝑒

-i𝑘𝑦2𝑦 + 𝑅𝑝2𝑒
i𝑘𝑦2𝑦)𝑒i𝑞𝜌               0 > 𝑦 > −𝑑

−
𝑞

𝜔𝜀0

1

𝜀r3
𝑇p3𝑒

-i𝑘𝑦3𝑦𝑒i𝑞𝜌                                               − 𝑑 > 𝑦

               (2.1b) 

𝐻ℎ(𝑟,𝜔) = {

𝑅𝑝1𝑒
i𝑘𝑦1𝑦 𝑒i𝑞𝜌，                                             𝑦 > 0

(𝑇p2𝑒
-i𝑘𝑦2𝑦 + 𝑅p2𝑒

i𝑘𝑦2𝑦)𝑒i𝑞𝜌          0 > 𝑦 > −𝑑

𝑇p3𝑒
-ik𝑦3𝑦𝑒i𝑞𝜌                                            − 𝑑 > 𝑦

                         (2.1c) 

where 𝑘𝑦𝑖 = √𝜖ri𝑘0
2 − 𝑞2 is the y component of wavevector in the region j and 𝑇pj (𝑅pj) is the transmission 

(reflection) coefficient in the region j. Via applying the boundary condition on electromagnetic fields (i.e., 

tangent continuity of field components), we obtain the dispersion curve of graphene plasmon in the 

graphene-based heterostucture as,  

[
𝜀r1

𝑘𝑦1
+
𝜀r2

𝑘y2
+

𝜎s

𝜔𝜀0
] (

𝜀r2

𝑘y2
+
𝜀r3

𝑘y3
) 𝑒−i𝑘y2𝑑 + [

𝜀r1

𝑘y1
−
𝜀r2

𝑘y2
+

𝜎s

𝜔𝜀0
] (

𝜀r2

𝑘y2
−
𝜀r3

𝑘y3
) 𝑒i𝑘y2𝑑 = 0.          (2.2) 
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Figure S1. Structural schematic of the designed graphene-based heterostructure. Here, the distance between 

the particle trajectory plane and single-layer graphene sheet is 𝑦0. The separation distance between the 

graphene and the metal is 𝑑 . 𝐴p0  is the amplitude of TM-polarized source field. 𝑅pj  and 𝑇pj  are the 

reflection coefficients and transmission coefficients in the region j. The subscripts 𝑗 = 1,2,3 refer to the air, 

dielectric and metal domain, respectively. 

 

As a concrete example, we plot in Figure S2 the dispersion relation of surface plasmons supported 

by the graphene-based heterostructure as schematically shown in Figure 1a under different separation 

distances. The graphene-based heterostructure can support different kinds of surface plasmons by adjusting 

the separation distances. To be specific, when the separation distance is large enough (e.g. 𝑑 = 20 nm), the 

heterostructure supports conventional plasmons, whose dispersion relation has 𝜔 ∝ √𝑞 which is akin to 

that of deep water waves [3-5]. On the contrary, when the separation decreases to 𝑑 = 2 nm, the surface 

mode supported by the heterostructure becomes dispersionless acoustic plasmons. Remarkably, the 
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dispersion relation of acoustic plasmons approximately has 𝜔 ∝ 𝑞, analogous to that of shallow water 

waves [3].  

The acoustic plasmon results from the coupling between the graphene plasmon and its image in the 

metal substrate. When the coupling is strong enough, the surface mode is highly confined regardless of 

propagation constants. This makes graphene plasmons move extremely slowly (close to the Fermi velocity) in a 

broad frequency range. As a result, the dispersion curve is almost linear leading to the dispersionless acoustic 

plasmons. 

We emphasize that such a linear dispersion relation of acoustic plasmons plays a key role to 

eliminate the chromatic dispersion, resulting in efficient Cherenkov radiation over a broad frequency range. 

 

 

Figure S2. Dispersion relation of surface plasmons supported by the graphene-based heterostructure as 

schematically shown in Figure 1a under different values of the separations. The studied separation is 2 nm, 

4 nm and ∞, respectively. Other parameter setups are same as that in Figure 1a. 

 

Section S3. Calculation of the radiation pattern of Cherenkov radiation in the time domain 
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In the (x,y,z) coordinate as shown in Figure 1a, the current density of a free electron 𝐽(𝑟, 𝑡) =

𝑧̂𝑣e𝑒𝛿(𝑥)𝛿(𝑦 − 𝑦0)𝛿(𝑧 − 𝑣e𝑡) induces a vector potential as [6] 

𝜙0 = 𝑧̂ ∫ d𝑘𝑥
+∞

−∞

i𝑒

8𝜋2𝑘𝑦1
𝑒
i𝑘x𝑥+i𝑘𝑦|𝑦−𝑦0|+i

𝜔

𝑣e
𝑧
 .                                         (3.1) 

where 𝑒 is the elementary charge. The source field is determined by the vector potential as  

{
𝐸(𝑟,𝜔) =

i

𝜔𝜀0𝜀r1
∇ × ∇ × 𝜙0

𝐻(𝑟,𝜔) = ∇ × 𝜙0                   
 .                                                 (3.2) 

Since the graphene plasmons are transverse magnetic (TM) polarized, only TM-polarized incidence 

from the free electron interacts with the graphene plasmons. For convenience, we express the field 

component of TM-polarized light from the free electron in the (h,y,ρ) coordinate by using the 

rotation matrix 

[
𝜌̂

ℎ̂
] = [

cos 𝛼 − sin𝛼
sin𝛼 cos𝛼

] [
𝑧̂
𝑥
]                                                  (3.3) 

where tan𝛼 =
𝑘𝑥

𝑘𝑧
 . Thus, we determine the TM-polarized component of source field with a specific 

kx in the (ℎ, 𝑦, 𝜌) coordinate as,  

 

{
 
 

 
 𝐸𝜌

𝑠 =
1

𝜔𝜀0
𝐴p0 (−

𝑘𝑦1

𝜀r1
) 𝑒i𝑘𝑦1|𝑦−𝑦0|+i𝑞𝜌                   

𝐸𝑦
𝑠 =

1

𝜔𝜀0𝜀r1
𝐴p0(𝑞 sgn(𝑦 − 𝑦0))𝑒

i𝑘𝑦1|𝑦−𝑦0|+i𝑞𝜌

𝐻ℎ
𝑠 = 𝐴p0(− sgn(𝑦 − 𝑦0))𝑒

i𝑘𝑦1|𝑦−𝑦0|+i𝑞𝜌          

                           (3.4) 

where 𝐴p0 =
𝑒𝜔

8𝜋2𝑞𝑣e
 . Via matching the boundary conditions, the scattering coefficients of the 

induced scattering field are obtained as  

𝑅p1 =
𝑚1+𝑚2

𝑠1+𝑠2
                                                           (3.5a) 

𝑇p2 =
𝑚3

𝑠1+𝑠2
                                                             (3.5b) 
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 𝑅p2 =
𝑚4

𝑠1+𝑠2
                                                             (3.5c) 

𝑇p3 =
𝑚5

𝑠1+𝑠2
                                                             (3.5d) 

where 

𝑚1 = [
𝑘𝑦1

𝜀r1
+
𝑘𝑦2

𝜀r2
(−1 +

𝜎𝑠𝑘𝑦1

𝜔𝜀0𝜀r1
)](

𝑘𝑦2

𝜀r2
+
𝑘𝑦3

𝜀r3
)𝑒−i𝑘𝑦2𝑑 

𝑚2 = [
𝑘𝑦1

𝜀r1
−
𝑘𝑦2

𝜀r2
(−1 +

𝜎𝑠𝑘𝑦1

𝜔𝜀0𝜀r1
)](

𝑘𝑦2

𝜀r2
−
𝑘𝑦3

𝜀r3
)𝑒i𝑘𝑦2𝑑 

𝑚3 = 2
𝑘𝑦1

𝜀r1
(
𝑘𝑦2

𝜀r2
+
𝑘𝑦3

𝜀r3
)𝑒−i𝑘𝑦2𝑑 

𝑚4 = 2
𝑘𝑦1

𝜀r1
(
𝑘𝑦2

𝜀r2
−
𝑘𝑦3

𝜀r3
)𝑒−i𝑘𝑦2𝑑 

𝑚5 = 4
𝑘𝑦1

𝜀r1

𝑘𝑦2

𝜀r2
𝑒−i𝑘𝑦2𝑑 

𝑠1 = [
𝑘𝑦1

𝜀r1
+
𝑘𝑦2

𝜀r2
(1 +

𝜎𝑠𝑘𝑦1

𝜔𝜀0𝜀r1
)](

𝑘𝑦2

𝜀r2
+
𝑘𝑦3

𝜀r3
)𝑒−i𝑘𝑦2𝑑 

𝑠2 = [
𝑘𝑦1

𝜀r1
−
𝑘𝑦2

εr2
(1 +

𝜎𝑠𝑘𝑦1

𝜔𝜀0𝜀r1
)] (

𝑘𝑦2

𝜀r2
−
𝑘𝑦3

𝜀r3
) 𝑒i𝑘𝑦2𝑑. 

Finally, the time-domain radiation pattern of Cherenkov radiation from the moving 

electron in the graphene-based heterostructure is obtained by applying the reversed rotation matrix 

on the field components. For example, the field distribution Ez in region 1 (i.e., the air domain) is 

determined as 

𝐸𝑧(𝑟, 𝑡) = 2Re(
1

𝜔𝜀0
∫ d𝜔
∞

0 ∫ d𝑘𝑥
+∞

−∞
[−

𝑘𝑦1

𝜀r1
+
𝑘𝑦1

𝜀r1
𝑅𝑝1]

𝜔

𝑣e𝑞
𝐴p0) 𝑒

i𝑘𝑥𝑥+i
𝜔

𝑣e
𝑧−i𝜔𝑡

.                (3.6) 
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Section S4. Calculation of the frequency spectrum of Cherenkov radiation   

We proceed to calculate the loss probability spectrum. The loss probability corresponds to the 

number of photons generated per unit length of electron path per unit frequency. The loss probability can 

be obtained via the Green function as [7] 

𝛤(𝜔)=-
4𝛼

𝑐
∫d𝑧 ∫d𝑧′ Im [𝐺𝑧𝑧,ind(𝑟̅, 𝑟̅′)𝑒

−i
𝜔

𝑣𝑒
(𝑧−𝑧′)

]                                 (4.1) 

, where 𝛼 =
𝑒2

4𝜋𝜀0ℏ𝑐
 is the fine structure constant. The zz component of induced dyadic Green function is  

𝐺zz,ind(𝑟, 𝑟′) =
1

8𝜋2
∫ 𝑞d
∞

0
𝑞 ∫ d𝜃

[
 
 
 
 

(sin2 𝜃)𝑅TE𝑒
i𝑘𝑦1𝑦0⏟            

TE−polarized

ℎ-component

+ (
𝑘𝑦1
2

𝑘2
cos2 𝜃)𝑅TM𝑒

i𝑘𝑦1𝑦0
⏟              

TM−polarized

𝜌−component ]
 
 
 
 

2𝜋

0

𝑒i𝑞𝑥 sin 𝜃+i𝑞𝑧 cos𝜃+i𝑘𝑦1𝑦

𝑘𝑦1
    

(4.2) 

, where θ is the in-plane angle relative to z-axis and 𝑘 = √𝜀r1𝑘0. Since the TE-polarized components of 

Cherenkov radiation is generally weak and they cannot be enhanced by the surface plasmons, it is 

reasonable to neglect the term of TE-polarized components. As such, the loss probability can be reduced as  

𝛤(𝜔) =
2𝛼𝐿

𝜋𝑐
Re∫ 𝑞d

∞

0
𝑞 ∫ d𝜃 [

1

𝑘𝑦
(
𝑘𝑦
2

𝑘2
cos2 𝜃)𝑅TM𝑒

2i𝑘𝑦1𝑦0𝛿 (𝑞 cos 𝜃 −
𝜔

𝑣e
)]

𝜋

2
0

                       (4.3) 

where reflection coefficient 𝑅TM corresponds to the -𝑅p1 in Eq. (3.5a). Using the identity 

𝛿 (𝑞 cos 𝜃 −
𝜔

𝑣e
) =

1

𝑞
𝛿 (cos 𝜃 −

𝜔

𝑞𝑣e
)                                       (4.4) 

the expression of loss probability of free electrons in the graphene-based heterostructure can be further 

simplified as  

𝛤(𝜔) =
2𝛼𝐿

𝜋𝑐
Re∫ d𝑞

∞

𝜔/𝑣e

(

 
 (

𝜔/𝑣e
𝑞
)
2
√𝜀r1𝑘0

2−𝑞2

𝜀r1𝑘0
2√1−(

𝜔/𝑣e
𝑞
)
2

)

 
 
𝑅TM𝑒

2i𝑘𝑦𝑦0.                       (4.5) 
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Therefore, the expression of loss probability per unit length of electron path is  

d

d𝐿
𝛤(𝜔) =

2𝛼

𝜋𝑐
∫ d𝑞
∞

𝜔/𝑣e

(

 
 (

𝜔/𝑣e
𝑞
)
2
Im√𝜀𝑟1𝑘0

2−𝑞2

𝜀𝑟1𝑘0
2√1−(

𝜔/𝑣e
𝑞
)
2

)

 
 
Im[𝑅TM𝑒

2i𝑘𝑦1𝑦0].                (4.6) 

Importantly, the coupling factor between the free electron and surface plasmon at a specific propagation 

constant q is given by the term [8] 

𝑔 = Im[𝑅TM𝑒
2i𝑘𝑦1𝑦0].                                                    (4.7) 

These equations are derived by assuming that the structure is sufficiently large in the lateral dimension (i.e., 

x-z plane). However, our results are valid as long as the in-plane size of structure is larger than the 

propagation length of generated surface plasmons, e.g., 4×4 µm2 for graphene acoustic plasmons if the 

relaxation time is τ=1 ps. 

On the other hand, the expression of loss probability per unit length of electron path in a 

homogeneous dielectric with the permittivity of 𝜀r is  

d

d𝐿
𝛤(𝜔) =

𝛼

𝑐
[1 −

1

𝜀r
(
𝑐

𝑣e
)
2
]𝛩 [1 −

1

𝜀r
(
𝑐

𝑣e
)
2
] =

𝛼

𝑐
[1 − (

1

𝑛𝛽
)
2
]𝛩 [1 − (

1

𝑛𝛽
)
2
]                 (4.8) 

, where 𝛩(𝑡) is the Heaviside step function.  Eq. (4.8) clearly shows that the photon yield of Cherenkov 

radiation in a homogenous dielectric highly depends on the product of the electron velocity 𝛽 and the 

refractive index 𝑛 of dielectric. In particular, when the product 𝑛𝛽 goes to the infinity, the photon yield 

approaches to its upper bound, i.e., 𝑎/𝑐 ≈ 2.4 × 10−11(m ∙ rad/s)−1.  

 

Section S5. Calculation of the angular spectrum of Cherenkov radiation 

To obtain the angular spectrum of Cherenkov radiation, we simplify the Eq. (4.3) alternatively 

with the identity 
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𝛿 (𝑞 cos 𝜃 −
𝜔

𝑣e
) =

1

|cos𝜃|
𝛿 (𝑞 −

𝜔

𝑣e cos𝜃
).                                    (5.1) 

As a consequence, Eq. (5.1) is simplified as  

𝛤(𝜔) =
2𝛼𝐿𝜔

𝜋𝑐𝑣e
∫ 𝑑𝜃 (

Im√𝜀 𝑘r1
 
0
2−(

𝜔/𝑣e
cos𝜃

)
2

𝜀 𝑘r1
 
0
2 )Im[𝑅TM𝑒

2i𝑘𝑦1𝑦0]
𝜋

2
0

                                (5.2) 

Note that Eq. (5.2) is equivalent to Eq. (4.5). Thus, the power emitted by the free electron in the time 

domain can be determined with the loss probability as  

𝑃 = ∫ d𝜔𝛤(𝜔)ℏ𝜔
𝑣e

𝐿

∞

0
= ∫ d𝜔

𝑒2𝜇0𝜔
2

2𝜋3
∫ d𝜃(

Im√𝜀 𝑘r1
 
0
2−(

𝜔/𝑣e
cos𝜃

)
2

𝜀 𝑘r1
 
0
2 ) Im[𝑅TM𝑒

2i𝑘𝑦1𝑦0]
𝜋

2
0

∞

0
             (5.3) 

Therefore, we obtain the radiation power per angle in the time domain as  

d𝑃

d𝜃
=
𝑒2𝜇0

2𝜋3
∫ 𝜔2d𝜔
∞

0
(
Im√𝜀 𝑘r1

 
0
2−(

𝜔/𝑣e
cos𝜃

)
2

𝜀 𝑘r1
 
0
2 ) Im[𝑅TM𝑒

2i𝑘𝑦1𝑦0].                         (5.4) 

 

Section S6. More discussions on the cutoff frequency of Cherenkov radiation 

We proceed to analyze the influence of permittivity and chemical potential on the cutoff frequency 

of Cherenkov radiation. As shown Figure S3, the permittivity of dielectric spacer and the chemical potential 

in graphene provide new degrees of freedom to control the cutoff frequency of Cherenkov radiation, in 

addition to the separations. To be specific, increasing the permittivity of dielectric spacer will reduce the 

cutoff frequency, while increasing the chemical potential of graphene will increase the cutoff frequency.  
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Figure S3. Controlling the cutoff frequency of Cherenkov radiation. a) The influence of the permittivity of 

dielectric spacer on the cutoff frequency. b) The influence of the chemical potential in graphene on the 

cutoff frequency. Other parameter setups are 𝑣e = 1.3𝑣F and 𝜏 = 0.5 ps.  

 

Section S7. More discussions on the frequency spectrum of Cherenkov radiation 

In this section, we first discuss the influence of the permittivity of dielectric spacer and the chemical 

potential on the bandwidth of acoustic-plasmon Cherenkov radiation. From Figure S4, the increase of 

permittivity of dielectric spacer can effectively broaden the radiation bandwidth of acoustic-plasmon 

Cherenkov radiation, whereas there is an optimal value of chemical potential that enables the maximum 

bandwidth. Therefore, the permittivity of dielectric spacer and the chemical potential provide additional 

degrees of freedom to control the bandwidth of Cherenkov radiation in the proposed platform.  
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Figure S4. Controlling the frequency bandwidth of acoustic-plasmon Cherenkov radiation. a) Influence of 

the permittivity of dielectric spacer on the normalized bandwidth. The chemical potential is 𝜇c = 0.3 eV. 

b) Influence of the chemical potential of graphene on the normalized bandwidth. The permittivity of 

dielectric is 𝜀𝑟2 = 12. In all the panels, the studied relaxation time are 𝜏 = 0.3 ps, 𝜏 = 0.5 ps and 𝜏 = 1.0 

ps, respectively. Other parameter setups are: 𝑑 = 2 nm, 𝑣e = 1.3𝑣F and 𝑣F = 1 × 10
6 m/s.  

 

Moreover, we explore the influence of the distance between the free electron and graphene sheet 

on the spectrum of surface-plasmon Cherenkov radiation with 𝑑 = 2 nm. Figure S5 demonstrates that the 

dispersionless-plasmons still leads to the broadband enhancement of Cherenkov radiation below 50 THz, 

when y0 varies from 5 nm to 15 nm. The flexibility in the distance between the free electron and graphene 

sheet facilitates the experiment realization of broadband efficient Cherenkov radiation. 
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Figure S5. Influence of distance between the free electron and graphene sheet on the spectrum of acoustic-

plasmon Cherenkov radiation. The black dashed line indicates the upper bound of the spectrum for 

conventional Cherenkov radiation induced by a swift electron moving inside any homogeneous dielectrics. 

 

Section S8. More discussions on the angular spectrum of Cherenkov radiation 

We plot in Figure S6 the relation between the emission frequency of surface-plasmon Cherenkov 

radiation emission angle. The emission angle is defined as the one between the propagation direction of 

surface plasmons and electron trajectory. Such an emission angle is generally dispersive as 𝜃(𝜔) =

cos−1(𝑣p(𝜔) 𝑣e⁄ ). The upper bound of emission angle is fixed at 𝜃max = cos
−1(𝑣F/𝑣e), while the lower 

bound of emission angle depends on the separation between the graphene sheet and metal substrate. From 

Figure S6, we find that when the separation d>4 nm, the minimum achievable emission angle is zero since 

min𝑣p < 𝑣e ; when the separation d=2 nm, the minimum achievable emission angle is non-zero, i.e., 
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𝜃min = cos
−1(𝑣p,min/𝑣e) since 𝑣p,min > 𝑣e. Therefore, the acoustic-plasmon Cherenkov radiation is more 

directional than conventional surface-plasmon Cherenkov radiation.  

 

 

Figure S6. Relation between the emission frequency of surface-plasmon Cherenkov radiation and emission 

angle. The emission angle is defined as the one between the propagation direction of surface plasmons and 

electron trajectory.  

 

We further demonstrate the influence of the separation distance, permittivity of dielectric spacer 

and graphene’s chemical potential on the angular width of Cherenkov radiation in the time domain. From 

Figure S7, the decrease of separation distance will effectively reduce the angular width, making Cherenkov 

radiation more directional. Moreover, the permittivity of dielectric spacer and chemical potential in the 

graphene provide additional routes to control the directionality. As shown in Figure S8, the increase of 
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permittivity of dielectric spacer will enhance the directionality of acoustic-plasmon Cherenkov radiation 

while the increase of chemical potential will reduce the directionality.  

 

 

Figure S7. The angular width of Cherenkov radiation versus the separation distance. The studied relaxation 

time are 𝜏 = 0.3 ps, 𝜏 = 0.5 ps and 𝜏 = 1.0 ps, respectively. Other parameter setups are: 𝑑 = 2 nm, 𝑣e =

1.3𝑣F, and 𝜇c = 0.3 eV. 
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Figure S8. Controlling the angular width of acoustic-plasmon Cherenkov radiation. a) Influence of the 

permittivity of dielectric spacer on the angular width. The chemical potential is 𝜇c = 0.3 eV. b) Influence 

of graphene’s chemical potential on the angular width. The permittivity of dielectric is 𝜀r2 = 12. In all the 

panels, the studied relaxation time are 𝜏 = 0.3 ps, 𝜏 = 0.5 ps and 𝜏 = 1.0 ps, respectively. Other parameter 

setups are: 𝑑 = 2 nm and 𝑣e = 1.3𝑣F. 

 

Section S9: Measuring nanoscale distance via sharp bandwidth transition of Cherenkov radiation 

Here we reveal that the observed sharp bandwidth transition of Cherenkov radiation can inspire 

future research on the nanoscale distance sensing. The sharp bandwidth transition arises when conventional 

plasmons are converted to acoustic plasmons. We remark that such a sharp bandwidth transition is highly 

sensitive to the separation variations. As clearly demonstrated in Figure S9, the chemical potentials 𝜇c of 
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graphene that enable the sharp transition are 0.34, 0.28 and 0.24 eV, respectively, when the separation d is 

2.5, 3.0 and 3.5 nm. Thus, our structure offers a new platform to measure the nanoscale distance.  

 

 

Figure S9. Normalized bandwidth of surface-plasmon Cherenkov radiation as the function of the chemical 

potential of graphene. Other adopted parameters are: 𝑣e = 1.3𝑣F, 𝜏 = 0.5 ps, and 𝜀r2 = 12. 

 

Section S10. Dispersionless-plasmon Cherenkov radiation on metal/semiconductor substrate  

In this section, we reveal that the semiconductor/metal considering the nonlocality also provides a 

potential platform to realize the dispersionless plasmons, thus enabling the broadband enhancement of 

Cherenkov radiation. Here, we study the configuration as shown in the insets of Figure 5: a free electron 

(in region 1) is moving atop a semiconductor or metal substrate (region 2). When the semiconductor/metal 

is in the local approximation, the permittivity is given by the local Drude model 𝜀rT2 = 𝜀∞ −
𝜔𝑝
2

𝜔(𝜔+i𝛾)
. 

nonlocality arises if the quantum repulsion between induced surface charges at the semiconductor/metal 

interface is taken into consideration [6]. As a consequence, the longitudinal field is induced with the 
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corresponding permittivity given by the nonlocal Drude model εrL2 = 1 −
𝜔𝑝
2

𝜔(𝜔+i𝛾)−(𝑘𝐿𝛽)
2 = 0, where 𝑘𝐿 

is the wavevector of longitudinal field and 𝛽 = √3 5⁄ 𝑣F is the nonlocal parameter.  

To determine the dispersion relation of surface plasmons with the consideration of nonlocality, we 

add the longitudinal field induced by the nonlocality (in addition to the transverse field) in the 

semiconductor/metal region (region 2). The expression of longitudinal field takes the form as  

𝐸𝜌(𝑟, 𝜔) = i𝑞𝑇𝑝2
𝑙 𝑒-i𝑘𝑦2

𝑙 𝑦𝑒i𝑞𝜌                                             (10.1a) 

𝐸𝑦(𝑟, 𝜔) = −i𝑘𝑦2
𝑙 𝑇𝑝2

𝑙 𝑒-i𝑘𝑦2
𝑙 𝑦𝑒i𝑞𝜌                                         (10.1b) 

𝐻ℎ(𝑟,𝜔) = 0                                                           (10.1c) 

where 𝑘𝑦2
𝑙 = √𝑘𝐿

2 − 𝑞2  is the y-component of wavevector of longitudinal field [9]. By applying the 

traditional boundary condition (i.e., the tangent continuity of field component) and additional boundary 

condition (i.e, the normal continuity of current density) [6], we can determine the dispersion relation of 

surface plasmons in nonlocal case expressed as 

𝑘𝑦1

𝜀r1
+

𝑘𝑦2

𝜀rT2
− (

1

𝜀∞
−

1

𝜀rT2
)
𝑞2

𝑘𝑦2
𝑙 = 0.                                                (10.2) 

Here 𝜀r1 = 1 if the adopted dielectric in the region 1 is air. Particularly, if 𝑞 → 0, dispersion relation Eq. 

(10.2) is reduced to the local one. 

With a similar methodology, we can obtain the reflection coefficients from the interface of 

semiconductor/metal as 

𝑅TM = −

𝑘𝑦1

𝜀r1
−
𝑘𝑦2

𝜀rT2
+(

1

𝜀∞
−

1

𝜀rT2
)
𝑞2

𝑘𝑦2
𝑙

𝑘𝑦1

𝜀r1
+
𝑘𝑦2

𝜀rT2
−(

1

𝜀∞
−

1

𝜀rT2
)
𝑞2

𝑘𝑦2
𝑙

                                                      (10.3) 

Making use of the reflection coefficients Eq. (10.3) and formula Eq. (4.6), one can compute the spectrum 

of surface-plasmon Cherenkov radiation with the consideration. 
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As shown in Figure S10a, when the optical response of semiconductor InSb is in the local 

approximation (without the consideration of nonlocality), the plasmonic frequency is always smaller than 

2.8 THz. However, if we consider the nonlocality, such a maximum plasmonic frequency disappears. In 

fact, the plasmonic frequency approximately satisfies 𝜔 ∝ 𝑞 if 𝑞/(𝜔/𝑐) is greater than 200. In other words, 

the surface plasmons on semiconductors are dispersionless plasmons in the deep subwavelength regime. 

Similar phenomenon is also observed in Figure S10b, where the substrate InSb is replaced by the metal Ag.  

 

Figure S10. Dispersion relation of surface plasmons. a) Dispersion relation of surface plasmons at the 

interface of semiconductor substrate. In calculation, we choose InSb as the semiconductor. Parameters 

adopted for Indium antimonide (InSb) are: the permittivity for bound charges 𝜀∞ = 15.6, the plasmonic 

frequency  𝜔𝑝 2𝜋⁄ = 7.16 × 1013 THz and the damping rate 𝛾 = 0.01𝜔𝑝. b) Dispersion relation of surface 

plasmons at the interface of metal substrate. In calculation, we choose silver (Ag) as the metal.  Parameters 

adopted for the Ag are: the permittivity for bound charges 𝜀∞ = 1 , the plasmonic frequency 𝜔𝑝 =

1.37 × 1016 rad/s and the damping rate 𝛾 = 0.01𝜔𝑝. Here, 𝑣𝑒 = 1.3𝑣𝐹 and 𝑣𝐹 = 𝑐/300. 
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Section S11. Detection scheme of acoustic-plasmon Cherenkov radiation 

The detection of acoustic-plasmon Cherenkov radiation can be achieved with the silicon-based 

blocked impurity band (Si-based BIB) detectors and grating technology (Figure S11). To be specific, the 

acoustic surface plasmons generated from the free electrons will interact with the sub-wavelength grating 

coupler, leading to the free-space photons in midinfrared to terahertz frequencies. The free-space photons 

in midinfrared to terahertz frequencies are probed by the Si-based BIB detector [10,11]. 

 

  

Figure S11. Scheme for the detection of acoustic-plasmon Cherenkov radiation. The grating coupler is 

etched on the metallic substrate. The acoustic surface plasmons generated from the free electrons is coupled 

to the free-space photons through the sub-wavelength grating coupler. Si-based BIB detector is applied to 

detect free-space photons in midinfrared to terahertz frequencies.  
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