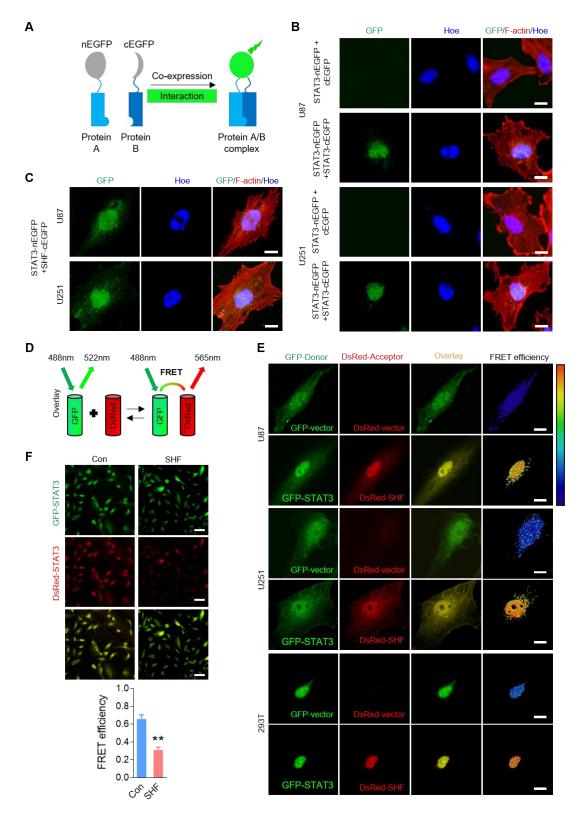


Supplementary Fig. 1 SHF expression in GBM cells lines and stable expressing cell lines.

- A. Western blot assay of SHF expression in indicated GBM cell lines and 293T.
- B. Western blot assay of ectopic SHF expression in stable expressing cell lines.



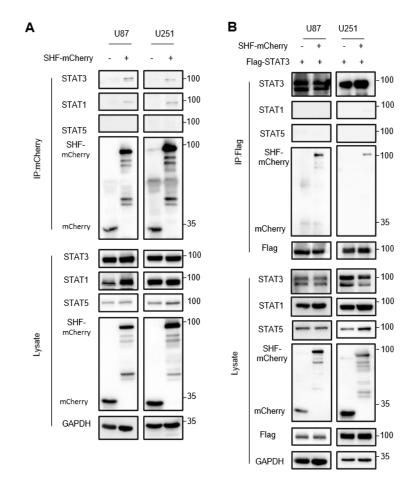
Supplementary Fig. 2 SHF expression enhances cellular apoptosis induced by DOX in GBM cells.

A. Flow cytometry assay of cells under normal culture conditions using Annexin V. The percentage of apoptosis was indicated (n=4).

B. Chromosomal DNA fragmentation analysis of cells treated with Dox (2 μ M) for 48 h.

C. Western blot analysis of Caspaes-3, Cleaved Capase-3, and BcL-xL using the indicated antibodies. The relative quantification of the indicated proteins was listed.

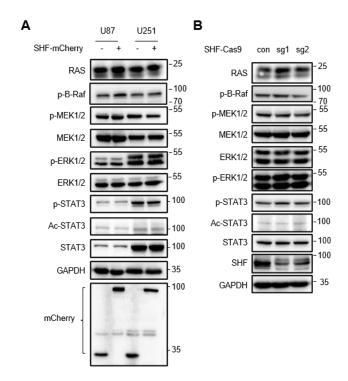
Supplementary Fig. 3 BiFC and FRET assay of the binding between SHF and STAT3.

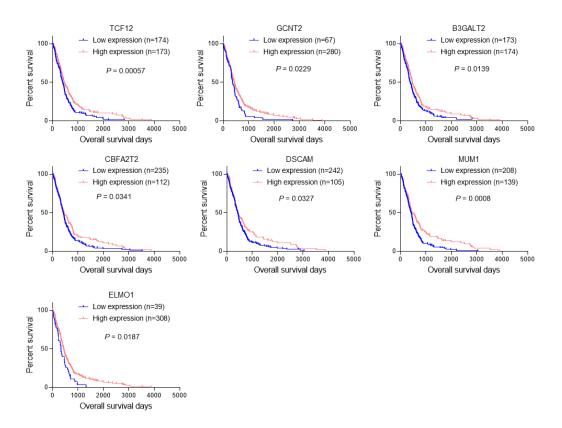

A. Diagram indicating the BiFC assay for detection of SHF-STAT3 interaction.

B,C. Representative images of GBM cells transiently transfected with the indicated vectors for 16 h. Bars, 10 um.

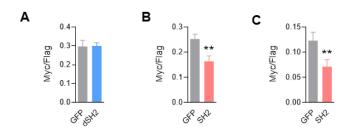
D. Diagram indicating the FRET assay for detection of SHF-STAT3 interaction.

E. Representative images of GBM cells and 293T cells transiently transfected with GFP-STAT3 and DsRed-SHF (or GFP-vector and DsRed-vector as negative control) for 24 h. Cells were excited at GFP-specific excitation wavelength (488 nm). The FRET ratios were calculated by reporting emission intensity of DsRed, measured at 565 nm, to the GFP emission peak measured at 522 nm. The pseudocolored ratio images (FRET images) represent the emission changes between negative control (GFP-vector and DsRed-vector) and STAT3-SHF interaction. The colorscale (top right) indicates that a shift toward the red end of the spectrum, which corresponds to higher FRET efficiency. Bars, 10 um.

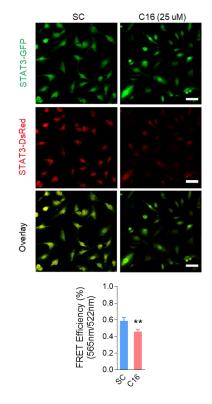

F. Quantitative analysis of normalized FRET ratio in U251 stable cells transiently transfected with GFP-STAT3 and DsRed-STAT3 for 24 h (n=3, **p < 0.01). U251 cells expressing ectopic SHF showed a significantly lower 565/522 ratio compared with control cells. Bars, 50 um.


Supplementary Fig. 4 SHF has no effect on the interaction between STAT3 and STAT1 or STAT5.

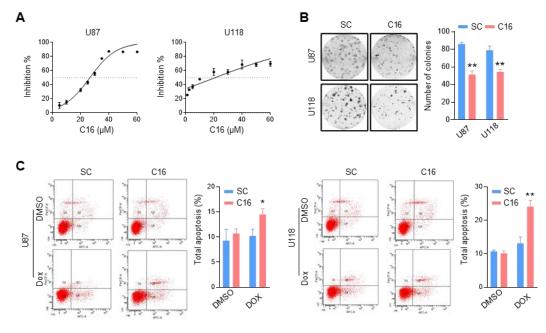
A. IP analysis showing the interaction between SHF and STAT1/ STAT3 but not STAT5 in the indicated cells expressing ectopic SHF.


B. IP analysis indicating the effect of SHF on the interaction between STAT3 and STAT1 or STAT5. Indicated cells were analyzed by IP using STAT3 antibody.

Supplementary Fig. 5 Western blot analysis of RAS/RAF/MEK signaling pathway in GBM cells expressing ectopic SHF (A) or with CRISPR/Cas9 mediated SHF knockdown (B) using the indicated antibodies.



Supplementary Fig. 6 Overall survival analysis based on the indicated mRNA expression in the TCGA-GBM Affy Exon 1.0 ST dataset (Kaplan–Meier survival test).



Supplementary Fig. 7 STAT3 dimerization and STAT3/DNMT interaction.

- A. The effect of HA-dSH2 on the dimerization of STAT3 (n=3, Student's t test).
- **B.** SH2 disrupts the dimerization of STAT3 (n=3, Student's t test, **P < 0.01).
- C. SH2 disrupts the interaction between STAT3 and DNMT1 (n=3, Student's t test, **P < 0.01).

Supplementary Fig. 8 Quantitative analysis of normalized FRET ratio in U251 cells (n=3, **P < 0.01). U251 cells were transiently transfected with the indicated vectors for 24 h and treated with C16 for another 2 h. Bars, 50 um.

Supplementary Fig. 9 C16 inhibits tumor growth and promotes chemosensitivity in vitro.

- A. C16 inhibited cell growth with concentration dependence in U87 and U118 cells (n=6).
- **B.** Colony formation of cells treated with SC or C16 (left) and the accompanying statistical analysis (right; n=6, Student's *t*-test, **P < 0.01).
- C. Annexin V staining flow cytometry assay of cells simultaneously treated with Dox with SC or C16 for 48 h (n=3, Student's *t*-test, *P < 0.05, **P < 0.01).

Status		SHF expression [#] , n		Total	P value*
		Low	High	n	r value
Gender	Male	14	15	29	0 702
	Female	15	14	29	0.793
Age	<55 yrs	9	7	16	0 557
	≥55 yrs	20	22	42	0.557
Survival ^{\$}	≤1 yrs	11	10	21	
	1-3 yrs	12	10	22	0.462
	>3 yrs	4	8	12	

Supplementary Table 1. Association between SHF expression and information of patients with GBM

**P* values were analyzed by Chi-square test.

According to the immunoreactive scores (IRS) from IHC of GBM tissue array: the cutoff between LOW and HIGH was set at the median IRS of GBM tissues.

\$ The total number of patients used in survival analysis was 55, those without survival information were excluded.

Antigen	Primary Antibody	Dilution	
SHF	Sigma; HPA046113; rabbit	1:4000 for IHC/IF; 1:1000 for WB;	
511	polyclonal	1:100 for IP	
STAT3	Cell Signaling;9139; mouse	1:1000 for WB; 1:100 for ChIP;	
SIAIS	monoclonal	1:600 for IF	
Phospho-STAT3	Cell Signaling; 9145; rabbit	1:1000 for WB	
(Tyr705)	monoclonal		
Phospho-STAT3	Cell Signaling; 94994; rabbit	1:1000 for WB	
(Ser727)	monoclonal	1:1000101 WB	
Acetyl-STAT3	Cell Signaling; 2523; rabbit	1:1000 for WB	
(Lys685)	monoclonal	1:1000101 WB	
Histone H3	Cell Signaling; 4620; rabbit	1:50 for ChIP	
Thistone Ths	monoclonal	1.30 101 CHIF	
Normal Rabbit	Cell Signaling; 2729	1:100 for IP or ChIP; 1:500 for	
lgG		IHC or IF	
Normal Mouse	ABCAM; ab188776	1:100 for IP; 1:500 for IF	
lgG			
	ThermoFisher;		
GAPDH	MA5-15738-1MG; mouse	1:2000 for WB	
	monoclonal		
β-tubulin	Sigma; T5201; mouse	1:200 for IF	
p-tubuiiri	monoclonal		
Flag-tag	Abmart; M20008; mouse	1:5000 for WB; 1:200 for IP	

Supplementary Table 2. List of antibodies

	monoclonal		
	Abmart; M20004; mouse		
GFP-tag	monoclonal	1:2000 for WB	
	GeneTex; GTX128508; rabbit	1:2000 for M/P: 1:50 for IP	
mCherry-tag	polyclonal	1:2000 for WB; 1:50 for IP	
LIA to α	Abcam; ab9110; rabbit	1:5000 for WB; 1:50 for IP	
HA-tag	monoclonal	1.5000 IOI WB, 1.50 IOI IP	
	Proteintech; 66005; mouse	1.5000 for M/D	
His-tag	monoclonal	1:5000 for WB	
Mue tea	Abmart; M20002; mouse	1:5000 for M/P: 1:500 for ID	
Myc-tag	monoclonal	1:5000 for WB; 1:500 for IP	
GST	ABCAM; ab19256; rabbit	1:2000 for WB	
651	polyclonal	1.2000 IOI WB	
DNMT1	ABCAM; ab19256; mouse	1:2000 for WB	
	monoclonal	1.2000 101 WB	
DyLight 594	Cell Signaling; 12877	1:20 for IF	
Phalloidin		1:20 101 IF	
KRAS	Proteintech; 12063; rabbit	1:1000 for WB	
KKAS	polyclonal	1.1000101 WB	
MEK1/2	Proteintech; 11049; rabbit	1:1000 for WB	
	polyclonal	1.1000 101 WB	
phospho-MEK1/2	Cell Signaling; 9154; rabbit	1:1000 for WB	
(Ser217/221)	polyclonal	1.1000101 WB	
p44/42 MAPK	Cell Signaling; 4695; rabbit	1:1000 for WB	
(Erk1/2) (137F5)	monoclonal		
phospho-p44/42	Cell Signaling; 4370; rabbit		
MAPK (Erk1/2)	monoclonal	1:1000 for WB	
(Thr202/Tyr204)	monocional		
Caspase 3	Cell Signaling; 9662; rabbit	1:1000 for WB	
	polyclonal		
Cleaved Caspase	Cell Signaling; 9664; rabbit	1:1000 for WB	
3	polyclonal		
BcL-xL	ABCAM; ab178844; rabbit	1:1000 for WB	
	monoclonal		
STAT1	Cell Signaling; 9172; rabbit	1:1000 for WB	
	polyclonal		
STAT5	Cell Signaling; 94205; rabbit	1:1000 for WB	
01/10	monoclonal		

Supplementary Table 3. Primers used for qPCR

	,		
Gene	Forward	Reverse	
IL6	AGACAGCCACTCACCTCTTCAG	TTCTGCCAGTGCCTCTTTGCTG	

JAK2	CCAGATGGAAACTGTTCGCTCAG	GAGGTTGGTACATCAGAAACACC
IKBKE	GGCTACAACGAGGAGCAGATTC	GGACGCTTGATACTTCTGCACG
GAPDH	CAACTTTGGTATCGTGGAAGGACT	AGGGATGATGTTCTGGAGAGCC
	С	AGGGATGATGTTCTGGAGAGGCC
TCF12	TCAGTGCGATGTTTTCCCCA	GGTTGACCACTTGTTCCCCA
DSCAM	CTCGGACTCAGGCAGCTATG	GGTCCTCAGTTCCTGTCACG
MUM	GCTGGAGAAAGAGTGCCAGT	GCTGGCCAGAAGGGGTATTT
CBFA2T2	AGGCAATGGAAAGTTGGTCC	GCACCATTCAGGGTAGGAGG

Supplementary Table 4. Primers used for qPCR of ChIP

Gene	Forward	Reverse
IL-6	ACACTTAGTGGAGGGCTTGG	AGCTTGCGTCTTGCTCCTAC
JAK2	GTCACAGCCGTTGTCTCCAC	GGCCTAGCGAATGTTTCTCCT
IKBKE	CCTCCAGCCTCCTAGGACAT	GCTCTTCAGAGACTGCTGGG

Supplementary Table 5. Primers used for qMSP

Gene	Forward	Reverse
TCF12	TAATAGAATTGATAAGTTGTAG	CGAAAACGAAACTAATTATCGAA
(methylated)	GGAACG	CGAAAACGAAACTAATTATCGAA
TCF12	AATAGAATTGATAAGTTGTAGG	СААССАААААСААААСТААТТАТ
(unmethylated)	GAAT	CAAAA
DSCAM	GGTATTYGGYGTTTAGAATG	GCCCGCCTACTACCTAAATAC
(methylated)	GGTATTTGGTGTTTAGAATG	GEEEGEETACTACETAAATAC
DSCAM	GTAGGTGGAGAGAGTTGTAGA	ТАСССАСССАССТАСТАССТААА
(unmethylated)	TGT	TAC
МИМ	GTCGTAATAGCGGAGGATTC	AAACCGACGCTCCTTAAAAAC
(methylated)	GICGIAAIAGCGGAGGAIIC	AACCGACGCTCCTTAAAAC
МИМ	GGTTGTAATAGTGGAGGATTT	CAACACTCCTTAAAAACACACA
(unmethylated)	G	CAT