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Appendix Figure S1. Simulations of the circuit dynamics in response to various stimulation 

patterns. 

(A-F) The circuit output, measured as calcium levels (middle), in response to various input 

gradients (Ligand, top). Also shown are the simulated levels of inhibition and receptor activation 

(bottom). (A)  In response to periodic on-steps of the ligand (5 s on and 60 s off), the output activity 

gradually weakens until it reaches a fixed response. The same qualitative response to a similar 
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stimulation pattern was observed in the AWA neuron (Larsch et al, 2015). (B) When extending 

the on-step period and shortening the off-step period (30 s on and 30 s off), the output activity 

reaches a fixed response after the first step. (C) Further increasing the frequency of the stimulus 

pattern (15 s on and 15 s off) leads to periodic activity skipping, where a calcium pulse is observed 

in response to every other on-step of the ligand. Skipping occurs because the recovery time from 

the inhibition (𝐼, equations 1-4) during the short off period (between two consecutives on steps) 

is too short. This is an expected outcome of negative feedback loops that was also observed in 

the AWA neuron (Rahi et al, 2017). (D) Nearly identical output responses when doubling the 

concentration at each step, reflecting a typical fold-change response. (E) In response to a linear 

gradient, the model outcome is a series of pulses whose frequency and amplitude decay over 

time. (F) In response to an exponential gradient, neural activity increases with the gradient’s first 

derivative. Calcium dynamics in (E) and (F) is also in agreement with experimental 

observations(Itskovits et al, 2018). All ligand patterns start at time 0 and from a baseline 

concentration of 1.15μM. 

 

https://paperpile.com/c/iakjft/dSAJC
https://paperpile.com/c/iakjft/dSAJC
https://paperpile.com/c/iakjft/dSAJC
https://paperpile.com/c/iakjft/cG17o
https://paperpile.com/c/iakjft/cG17o
https://paperpile.com/c/iakjft/cG17o
https://paperpile.com/c/iakjft/7KCeX
https://paperpile.com/c/iakjft/7KCeX
https://paperpile.com/c/iakjft/7KCeX
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Appendix Figure S2. The model is insensitive to the exact values of the parameters, and it 

performs robustly for a wide range of input concentrations. 

(A) Varying each of the model parameters by ~100-fold (10-fold higher and 10-fold lower than the 

chosen parameters) largely did not affect the model’s outcome. In each simulation, we varied only 

one of the parameters, while fixing all the other parameters, and analyzed if the system fulfilled 

two main features: (1) exact adaptation and (2) adaptation of the pulsatile response to the first 

derivative of the stimulus (see methods). As the various parameters differ in their units and scales, 

their ranges are presented as a multiplication of their initial value. (B) 𝑅𝑡values (Fraction of active 

receptors, above which a signaling cascade initiates) are in the [0,1] interval and thus shown 
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separately. (C) The range of ligand concentrations (almost 6 orders of magnitude) in which the 

two main features of the model were maintained. In all panels, the black dots represent the values 

used for the simulations in this work (presented in table 1) and error bars denote the range of 

values for which the system fulfilled the above-mentioned features. (D-F) Simulation outputs when 

randomly varying the different parameters by up to ~10-fold (3.2-fold higher and 3.2-fold lower 

than the chosen parameters). (D) Shown are five examples for varying the different parameters 

and the corresponding outputs: (E) for a step function, and (F) for a sigmoidal gradient function. 

The overall qualitative shape of the responses is similar, though the fine details (e.g., number of 

pulses and their rise/decay times) may differ.    
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Appendix Figure S3. Activity traces of the different mutants in response to sigmoidal 

gradients.  

(A) WT; (B) tax-6(ok2065); (C) tax-6(p675); (D) tax-6(p675)+AWA::TAX-6; (E) eat-16; (F) arr-1; 

(G) grk-2; (H) odr-3; (I) osm-6; . Activity of tax-6 mutant animals reaches a higher amplitude and 

lacks exact adaptation properties. Note the high variability between and within the various strains. 

Black dots denote the location of the pulses, as identified by our algorithm (see Methods), and 

which were used in the statistical analysis of Figure 3D,E. 
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Appendix Figure S4. Calcium levels in eat-16 mutant animals show exact adaptation 

following an on-step stimulus.  

(A) Neural responses of eat-16 mutants (𝑁 = 14 worms) to a five-minutes step increase of diacetyl 

(shown on top). While amplitude response in some neurons was low, all animals showed robust 

increased levels following the on step. These calcium levels gradually decreased until reaching 

baseline levels despite the fact that the stimulus remained on. This is in contrast to tax-6 mutants 

that fail to return to their baseline activity (as seen in Figure 4). (B) Median neural activity of eat-

16 worms in response to the step. Shaded area marks mean absolute deviation. 
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Appendix Figure S5. In tax-6 mutants, the response amplitude is higher than in wt animals, 

while the response time remains the same.  

(A) Responses to steps of diacetyl in individual worms. Worms were subjected to either one long 

step (top panel, 𝑁 = 18 wt worms) or twenty short 5-seconds long steps (middle and bottom 

panels, 𝑁 = 19, 10 wt and tax-6(p675) worms respectively), followed by a 40-seconds off step and 

a final 5-seconds on step. Each trace is normalized to its maximal level. (B) While the pulse 

amplitude of tax-6(p675) mutants is higher than that of wt worms, the time to reach the peak is 

similar. A zoomed-in view of representative responses of wt and tax-6(p675) worms. Top, 

absolute values of the response. Bottom, normalized values (by its maximal levels). (C-D). 

Quantification of the response time, defined as the time to reach 80% of the maximal amplitude 

(C) and the peak pulse amplitude (D). While the median response time is not significantly different 

between tax-6(p675) mutants and wt worms, the median amplitude of tax-6(p675) mutants is 

significantly higher (Wilcoxon rank-sum test, 𝑝 = 9 ∙ 10−5, 𝑁 =  19, 10 for wt and tax-6(p675) 

worms respectively). (E) Comparison between the amplitudes of wt worms and tax-6(p675) 

mutants in the first and last steps of the short interval steps protocol (shown in (A), middle and 

bottom panels). In both wt and tax-6(p675) worms, the response amplitude to the last step was 

lower (signed-rank test, 𝑝 = 1.3 ∙ 10−4 and 0.002 respectively), with tax-6(p675) mutants having a 

significantly higher amplitude in both the first and last steps (Wilcoxon rank-sum test, 𝑝 = 1.1 ∙

10−4 and 6 ∙ 10−5 respectively). Black bars mark the median. (F) The difference between the 

amplitudes of the first and last steps is plotted as a function of the first step’s amplitude. While wt 

worms show a larger amplitude difference when the response to the first step is stronger (𝑟 =

 0.93, 𝑝 < 10−8), tax-6(p675) worms do not (𝑟 = 0.22, 𝑝 = 0.53). This suggests a link between 

calcium influx and habituation in wt worms, but not in tax-6(p675) mutant worms. (G) Comparison 

between the neural responses of wt worms in the last step of the long-exposure protocol and the 

multiple-steps protocol. Mean calcium levels are higher during the multiple-steps protocol (as 

each step generates a new calcium wave response), and this neural activity is also stronger in 

the last step following the multiple-steps protocol (Wilcoxon rank-sum test, median of 𝑝 < 2 ∙

10−4). This suggests that calcium is not the sole factor leading to habituation and additional 

inhibitory mechanisms may exist. 
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Appendix Figure S6. Eliminating the calcium-dependent inhibition from the model 

recapitulates key responses observed in tax-6 mutants, indicating that calcium-

independent processes contribute to the inhibitory processes.  

Simulations of the model outputs (denoted as calcium concentration, middle) and the inhibition 

dynamics (bottom) in response to various patterns of stimulus presentation (top). To simulate the 

responses of tax-6 mutants, we eliminated calcium-dependent inhibition (by setting k5 in the model 

to zero). This is the implicit model (based on Equations 1-4) which does not implement the 

dynamics of the AWA ion channels (Liu et al, 2018) as shown in Figure 6. The output features 

are qualitatively similar to the detailed model showing that tax-6 mutants are unable to achieve 

exact adaptation and habituate to past stimuli. They also lack pulsatile activity. (A) In contrast to 

the wt dynamics, in response to a sigmoidal gradient (top), simulated tax-6 worms fail to generate 

a pulsatile activity and their calcium levels remain at their maximal level for the duration of stimulus 

presentation, so that exact adaptation was not achieved. (B) wt worms exhibit lower responses 

(increased habituation) following the second on-step. In contrast, tax-6 mutants did not show 

exact adaptation, nor a reduced activity in response to the second on-step (no habituation). 

Indeed, the inhibition remained low compared to wt worms. (C) Response dynamics of wt worms 

following a first long (continues line) or short (dashed line) on-step. A second on-step following a 

short on-step elicits calcium levels that match the response to the first step. This is due to the 

long off-step where inhibition is decreasing, thus allowing recovery (purple, note it partially 

overlaps with the blue and hence not visible). This contrasts with the attenuated response 

following a long on-step that results in a short recovery time (and hence inhibition remains high, 

https://paperpile.com/c/iakjft/Q3rPz
https://paperpile.com/c/iakjft/Q3rPz
https://paperpile.com/c/iakjft/Q3rPz
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blue). Notably, even though in both protocols, calcium concentrations returned to baseline levels, 

the longer the recovery time period, the higher the response activity to a second step (in 

agreement with experimental results, Figure 4A). This suggests that calcium-independent 

processes contribute to the inhibitory processes in the neuron. 
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Appendix Figure S7. tax-6 mutants are impaired in chemotaxis. 

(A) A layout of a chemotaxis assay. About 100-200 worms are loaded to the starting point and 

allowed to chemotax towards the target attractant (diacetyl, see methods).  (B) Worms’ 
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accumulation in the target chemoattractant region of three independent experimental repeats of 

both wt and tax-6 mutants. (C) Probability distribution of trajectories’ directedness(Itskovits et al, 

2018) for all three experiments, ranging from -1 (trajectory in opposite direction) to +1 (trajectory 

straight towards the target). Distribution of tax-6 animals is centered around zero, while the wt 

distribution is skewed towards positive values. (D) Probability distribution of movement angles 

relative to the target region. An angle was calculated for each frame and concatenated for all 

trajectories and experiments. While wt distribution is highly biased towards small angles (more 

directed towards the target), tax-6 distribution is more uniformly distributed, an expected result 

given their mostly circular undirected trajectories (Movies EV2-3). 

 

  

https://paperpile.com/c/iakjft/7KCeX
https://paperpile.com/c/iakjft/7KCeX
https://paperpile.com/c/iakjft/7KCeX
https://paperpile.com/c/iakjft/7KCeX
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Appendix Table S1. The parameters used in the model and their values 

Equation Description Parameter Value [units] 

1 Activation facilitation by ligand coefficient  𝑘1 25 

1 
Scales the dynamic range of detectable input 
concentration - determined from(Larsch et al, 2015) by 
the minimal concentration detected by worms. 

𝐿0 1 [𝜇𝑀] 

1 Activation inhibition by modification coefficient 𝑘2 10 

2 Self-enhancing component time constant 𝑘3 1 [
1

𝑚𝑠
] 

2 Threshold of required Receptor activation to elicit a pulse 𝑅𝑡 0.95 

3 Calcium influx coefficient 𝑘4 1 ∙ 10−7  [
𝑀

𝑚𝑠
] 

3 
Calcium removal time constant, determined from(Itskovits 
et al, 2018). 

𝜏𝑐 4 ∙ 103 [𝑚𝑠] 

3 
Steady state calcium level, determined from(Liu et al, 
2018). 

𝐶0 0.1 [𝜇𝑀] 

4 Calcium mediated inhibition coefficient 𝑘5 5 [
1

𝑀 ∙ 𝑚𝑠
] 

4 Receptor activity mediated inhibition constant  𝑘6 2 ∙ 10−6  [
1

𝑚𝑠
] 

4 Inhibition removal time constant 𝜏𝐼 3 ∙ 105 [𝑚𝑠] 

2.1 Current influx constant for integrated model 𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑡 35 [𝑝𝐴] 

3.1 
Calcium current to concentration change AWA constant 
(determined from physical properties of the AWA neuron) 

𝑐𝐴𝑊𝐴 2.6 ∙ 10−8 [
𝑀

𝑚𝑠 ∙ 𝑝𝐴
] 

 

 

  

https://paperpile.com/c/iakjft/dSAJC
https://paperpile.com/c/iakjft/dSAJC
https://paperpile.com/c/iakjft/dSAJC
https://paperpile.com/c/iakjft/7KCeX
https://paperpile.com/c/iakjft/7KCeX
https://paperpile.com/c/iakjft/7KCeX
https://paperpile.com/c/iakjft/7KCeX
https://paperpile.com/c/iakjft/Q3rPz
https://paperpile.com/c/iakjft/Q3rPz
https://paperpile.com/c/iakjft/Q3rPz
https://paperpile.com/c/iakjft/Q3rPz
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Appendix Note S1.  

 

Part 1. A detailed description and analysis of the mathematical model 

Our model for chemo-sensation in the AWA neurons is composed of a system of time 

dependent differential equations. The circuit’s topology (Figure 1) is analogous to the negative 

feedback loop circuit found in the chemosensory system of E. coli (Tu et al, 2008). We therefore 

capitalized on the mathematical framework developed in these studies and modified it to adjust 

to the known GPCR signaling pathway found in the AWA neurons of C. elegans worms. 

 

 Our model consists of five variables. The “Ligand” (𝑳) denotes the input stimulus (e.g., 

diacetyl). The Receptor Activation term (𝑹𝒂) represents the fraction of active ligand-bound 

receptors in the cell membrane. 𝑹𝒂 is facilitated by ligand binding and is regulated by Inhibition 

(𝑰) which represents the effect of inhibiting factors. Overall, 𝑹𝒂 is modeled as a sigmoidal function 

of the difference between the Ligand and Inhibition terms: 

(1)                                    𝑹𝒂 = (1 + 𝑒𝑥𝑝 (−𝑘1𝑙𝑜𝑔 (
𝑳

𝐿0
) + 𝑘2𝑰))

−1

           , 𝑹𝒂 𝜖 (0,1) 

Where 𝑘1, 𝐿0, 𝑘2 are positive constants. In this functional form, 𝑰 serves as the system’s “memory” 

of past ligand concentrations. The logarithmic-scale coding of the ligand and the linear regulation 

of the negative feedback (“Inhibition” motif) are concepts borrowed from chemo-sensation models 

in E. coli(Shimizu et al, 2010; Yi et al, 2000; Tu et al, 2008). 

 

𝑹𝒂 facilitates a self-enhancing component (𝑺), which represents the VGCC and TRPV 

channels combined. Their dynamics can be described by: 

(2)                                                        
𝑑𝑺

𝑑𝑡
= 𝑘3(𝑹𝒂 − 𝑅𝑡)𝑺                                  , 𝑺 𝜖 (0,1) 

Thus, when 𝑹𝒂 crosses a critical activation threshold 𝑅𝑡 (0 < 𝑅𝑡  < 1), 𝑺 will grow/fall 

exponentially. 𝑺 is approximated to form a self-enhancing motif where a small calcium influx 

generated by the 𝑹𝒂-mediated opening of TRPV channels initiates further opening and self-

amplification of VGCCs, through which most of the calcium enters the cell(Larsch et al, 2015; Liu 

et al, 2018). 

 

𝑺 values are limited by code to the interval 𝑺 𝜖 (0,1], to simplify a more realistic sigmoidal 

behavior. Its lower limit is a small (<<1) positive number, and its exact limit does not affect the 

model performance (not shown). Thus, 𝑺 produces a “two-state” switch where the neuron is either 

https://paperpile.com/c/iakjft/ZDnNF
https://paperpile.com/c/iakjft/4dE7e+ENJoq+ZDnNF
https://paperpile.com/c/iakjft/dSAJC+Q3rPz
https://paperpile.com/c/iakjft/dSAJC+Q3rPz
https://paperpile.com/c/iakjft/dSAJC+Q3rPz
https://paperpile.com/c/iakjft/dSAJC+Q3rPz
https://paperpile.com/c/iakjft/dSAJC+Q3rPz
https://paperpile.com/c/iakjft/dSAJC+Q3rPz
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active or inactive. For this, the time constant 𝑘3
−1, needs to be smaller than the other time 

constants in the system, though its specific values do not significantly affect the model 

performance. 

  

In equation 3, 𝑺 facilitates calcium accumulation in the cell (𝑪): 

(3)                                                            
𝑑𝑪

𝑑𝑡
= 𝑘4𝑺 −

1

𝜏𝑐

(𝑪 − 𝐶0) 

Calcium enters through open channels (𝑺) and is removed by calcium pumps. The removal time 

constant, 𝜏𝑐 was approximated experimentally to be in the order of several seconds (Itskovits et 

al, 2018). 𝐶0 is the calcium level at rest so that 𝑪 ≥ 𝐶0. The calcium in the cell facilitates the 

Inhibition term, according to equation 4: 

(4)                                                  
𝑑𝑰

𝑑𝑡
= 𝑘5(𝑪 − 𝐶0)𝑹𝒂 + 𝑘6𝑹𝒂 −

1

𝜏𝐼
(1 − 𝑹𝒂)𝑰 

Where 𝑘5, 𝑘6 and 𝜏𝐼 are positive constants. Two components increase inhibition levels: the first 

depends on calcium (with the constant 𝑘5) and the second is calcium independent (denoted with 

the constant 𝑘6). The calcium-dependent term is consistent with homologous adaptation by G 

protein-coupled receptor kinases (GRKs) that phosphorylate only active receptors (which is why 

the term is multiplied by 𝑹𝒂). The second term depends on receptor activity only and is consistent 

with phosphorylation driven by second messenger-stimulated kinases(Lefkowitz, 1998). 

 

These two terms fulfill two different features in the system. To achieve robust exact 

adaptation, the circuit’s output needs to directly inhibit the receptor(Yi et al, 2000). Therefore, as 

calcium directly correlates with the synaptic output(Katz & Miledi, 1970; Llinás et al, 1976), its 

regulation of receptor inhibition underlies robust exact adaptation. However, as calcium levels are 

transient, adaptation should also depend on the degree of receptor activation to promote inhibition 

for as long as the stimulus is present. Our experimental results support this logic as we find that 

calcium levels correlate with adaptation magnitude, and this adaptation persists even after 

calcium removal (Figure 4). These results suggest two separate adaptation mechanisms: one 

that is calcium dependent and the other which relies on the receptor's activity. 

 

The last term in equation 4 denotes inhibition removal which depends on inactive 

receptors only (thus multiplying 𝑰 by (1 − 𝑹𝒂)), similar to methylation dynamics in E. coli(Shimizu 

et al, 2010). To close the negative feedback loop, this inhibition (𝑰) regulates receptor activation 

according to equation 1. 

https://paperpile.com/c/iakjft/7KCeX
https://paperpile.com/c/iakjft/7KCeX
https://paperpile.com/c/iakjft/7KCeX
https://paperpile.com/c/iakjft/7KCeX
https://paperpile.com/c/iakjft/4Qpiz
https://paperpile.com/c/iakjft/ENJoq
https://paperpile.com/c/iakjft/ENJoq
https://paperpile.com/c/iakjft/ENJoq
https://paperpile.com/c/iakjft/KZDoa+wq5s8
https://paperpile.com/c/iakjft/KZDoa+wq5s8
https://paperpile.com/c/iakjft/KZDoa+wq5s8
https://paperpile.com/c/iakjft/4dE7e
https://paperpile.com/c/iakjft/4dE7e


18 

 

Part 2. Mathematical analysis of the model’s steady state shows how exact adaptation is 

achieved 

The mathematical formulation of exact adaptation requires that following a step increase 

in the attractant, the steady state value of the circuit output must return to its basal pre-stimulation 

levels. To examine this transition, we set 𝑳 → 𝐿1and require 
𝑑𝑺

𝑑𝑡
=

𝑑𝑪

𝑑𝑡
=

𝑑𝑰

𝑑𝑡
= 0. From equation 2, a 

stable equilibrium can only be reached by 𝑺 = 1 or 𝑺 → 0. A steady state in which 𝑺 = 1 represents 

a non-pulsatile response, in which calcium stays at its maximum, and can be obtained by choices 

of parameters where calcium-mediated inhibition is low (as in tax-6 mutants, Appendix Figure 

S6). A steady state in which 𝑆 → 0 may lead to exact adaptation as follows: by plugging 𝑆 = 0 in 

equation 3, we get a steady-state calcium level that does not depend on the input: 𝐶𝑆𝑆 = 𝐶0. 

Furthermore, plugging these results in equation 4, yields: 

(5)                                                                𝑰 = 𝑘6𝜏𝐼

𝑅𝑆𝑆

1 − 𝑅𝑠𝑠
 

If we plug 𝑰 in equation 1, we get a closed form for the receptor activation during steady state: 

(6)                            𝑅𝑆𝑆 = (1 + 𝑒𝑥𝑝 (−𝑘1𝑙𝑜𝑔 (
𝐿1

𝐿0
) + 𝑘2𝑘6𝜏𝐼

𝑅𝑆𝑆

1−𝑅𝑆𝑆
))

−1

 

This relation can be solved numerically, and by plugging this solution back to equation 5, we get 

the steady state inhibition level, 𝐼𝑆𝑆. We can see that steady-state activation and inhibition do 

depend on the input level 𝐿1, thus serving as a ‘memory’ of the input, even after output returns to 

basal levels. 

 

Considering dynamics, when responding to a step-function input, receptor activation will 

rise above 𝑅𝑡, elicit an output pulse that will, in turn, increase inhibition. Inhibition will eventually 

decrease receptor activation to terminate the pulse. In the regime where 𝑅𝑠𝑠 > 𝑅𝑡, receptor 

activation will rise and cross 𝑅𝑡 before reaching steady state, and thus elicit another pulse. 

Therefore, a strict requirement for exact adaptation in this simple model is 𝑅𝑠𝑠 < 𝑅𝑡. 

 

Part 3. How smooth gradients of input are encoded as a pulsatile response that adapts to 

the gradient's first derivative? 

Our model translates smooth gradients of the input into a pulsatile response output: 

Increased ligand levels lead to receptor activation (eq. 1). At this stage, since there is still no 

output, inhibition is relatively low (eq. 4), and for simplification, we assume its effect on receptor 
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activation to be negligible. When receptor activation reaches its threshold level, 𝑅𝑡, a pulse of 

calcium is generated (eqs. 2 and 3). High levels of calcium rapidly increase inhibition (eq. 4), 

though at this time scale, ligand concentrations remain relatively constant. The rapid increase in 

inhibition causes a sharp decline in receptor activation levels (eq. 1), and when decreased below 

𝑅𝑡, the pulse terminates (eq. 2,3). Calcium is being removed and hence calcium-mediated 

inhibition slowly decreases (eq. 4), while ligand concentrations increase to elicit another pulse (as 

can be seen in Figure 2B). 

 

To explain how the above pulsatile response adapts to the first derivative of the input 

gradient, we analyze the model with the following assumptions: (1) a calcium pulse is an 

immediate event, in which ligand levels remain constant, and the inhibition rises to a new higher 

level; (2) the change in inhibition during a pulse always results in a constant decrease of receptor 

activation; (3) between pulses, inhibition remains constant, so that only the ligand can change 

receptor activation. 

 

We assume a first pulse occurs when activation reaches 𝑅𝑡 at a ligand level 𝐿1 and 

inhibition level 𝐼1. This pulse increases inhibition to a new level, 𝐼2, so that receptor activation falls 

to a new level 𝑅0 < 𝑅𝑡:    

(7)                                              𝑅0 = (1 + exp (−𝑘1𝑙𝑜𝑔 (
𝐿1

𝐿0
) + 𝑘2𝐼2)

−1

 

To elicit an additional pulse, the ligand concentration has to rise to a new level, 𝐿2, so that receptor 

activation reaches 𝑅𝑡 once again. Inhibition is assumed to stay constant, thus when a second 

pulse is produced: 

(8)                                              𝑅𝑡 = (1 + exp (−𝑘1𝑙𝑜𝑔 (
𝐿2

𝐿0
) + 𝑘2𝐼2)

−1

 

Isolating 𝐼2 in equation 7, and placing in equation 8 yields: 

(9)                                                                     𝐿2 = 𝐴 ∙ 𝐿1 

Where 𝐴 = (
𝑅𝑡(1−𝑅0)

𝑅0(1−𝑅𝑡)
)

𝑙𝑛10

𝑘1  is greater than 1 since 𝑅𝑡 > 𝑅0 and 𝑘1 > 0. Thus, to produce the 

consecutive pulse, ligand levels need to increase by a factor 𝐴. For a linear increase in ligand 

levels, 𝑳 = 𝛼𝑡, this means that the n’th pulse time, and the time between consecutive pulses will 

be: 

(10)                                           𝑡𝑛 =
𝐿1

𝛼
𝐴𝑛−1      ;       𝛥𝑡𝑛 =

𝐿1

𝛼
𝐴𝑛−1(𝐴 − 1) 
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Thus, the time interval between consecutive pulses grows with the number of pulses. The 

same consideration will also dictate less pulses in the second half of a sigmoidal gradient 

(decreasing first derivatives of the gradient), effectively exhibiting adaptation to the first derivative. 

 

Part 4. Integrating the model with known dynamics of voltage gated ion channels in AWA.  

To accurately account for the main voltage-gated ion channels in the AWA neuron, we 

integrated our model with a model developed in the Bargmann lab based on intracellular 

recordings of the AWA neuron(Liu et al, 2018). This model takes electrical current influx as an 

input and simulates the dynamics of ion channels and membrane potential in the cell. To integrate 

this model into our simulations, the electrical current influx was considered to be proportional to 

our self-enhancing motif: 

(2.1)                                                                 𝑰 = 𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑺         

Where 𝑰 is the current influx, 𝑺 is the self-enhancing motif, and 𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑡  is the proportion constant 

which determines the connectivity between the models. Thus, the current influx is provided as the 

input to the model: 

(2.2)                                                               [𝑽, 𝑰𝑪𝒂] =  𝑓(𝑰)        

Where 𝑓 is the model, 𝑽 is the membrane potential and 𝑰𝑪𝒂 is the calcium influx entering the cell. 

Calcium influx is therefore plugged into equation 3, instead of 𝑆:  

(3.1)                                                        
𝑑𝑪

𝑑𝑡
= 𝑐𝐴𝑊𝐴𝑰𝑪𝒂 −

1

𝜏𝐶
(𝑪 − 𝐶0)  

Where 𝑐𝐴𝑊𝐴 is a constant that changes the electrical current units to concentration changes while 

accounting for the volume of the AWA neuron. To determine this constant, we approximated the 

cell volume based on our microscopy images to be: 𝑉𝐴𝑊𝐴 = 9 ∙ 4 ∙ 4 𝜇𝑚3  ∼ 2 ∙ 10−13 𝐿, and used 

the following transformation: 

𝑑𝑪

𝑑𝑡
=

1

2∙𝑞𝑒∙𝑁𝐴∙𝑉𝐴𝑊𝐴
𝑰𝑪𝒂  

Where 𝑞𝑒 is the elementary charge, 𝑁𝐴 is the Avogadro number, and 
1

2
 accounts for the charge of 

a calcium ion.  

 

Overall, in the detailed integrated model, equations 2.1 and 2.2 replace equation 2 (in the 

original model), and equation 3.1 replaces equation 3 (in the original model). 

 

 

https://paperpile.com/c/iakjft/Q3rPz
https://paperpile.com/c/iakjft/Q3rPz
https://paperpile.com/c/iakjft/Q3rPz
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Part 5. Comparing our model with the adaptive-threshold mechanism. 

Levy and Bergmann (Levy & Bargmann, 2020) proposed the adaptive threshold 

mechanism for the timing at which the AWC neurons in C. elegans are activated in response to a 

chemical cue. Here we show that this model can be viewed as mathematically analogous to our 

model (with minor assumptions) which also provides the initiation timing of the pulses in response 

to stimulus gradients. 

 

According to the adaptive threshold mechanism, the threshold is not fixed, but rather 

dynamically changes depending on the history of the perceived stimulus. To show how this can 

be equivalent to our model, we consider a smooth slowly-increasing gradient, for which we wish 

to calculate the concentration threshold required for the stimulus to cross in order to initiate a 

pulse. In our model, the condition for pulse initiation is that the fraction of active receptors crosses 

a threshold (eq. 2):  

𝑹𝒂 > 𝑅𝑡  

𝑹𝒂 is a sigmoidal function of the difference between the Ligand term and the inhibition term (eq. 

1):  

𝑹𝒂 = (1 + 𝑒𝑥𝑝(−𝒙))
−1

     ,     𝒙 ≡ 𝑘1 log (
𝑳

𝐿0
) − 𝑘2𝑰 

For simplicity, we will use Taylor approximation to expand the sigmoid function for a small 𝒙, 

such that the two terms of the right-hand equation are of the same magnitude, roughly canceling 

one another: 

(1 + 𝑒𝑥𝑝(−𝒙))
−1

≈
1

2
+

𝒙

4
   ,   𝒙 ∈ [0,1] 

For smooth increasing gradients, before pulse initiation, 𝑹𝒂 rises monotonically. Moreover, 𝑹𝒂 will 

not reach saturation (i.e., 𝑹𝒂 = 1), because a pulse will be initiated once 𝑹𝒂 crosses 𝑅𝑡   (𝑅𝑡 < 1). 

Thus, we continue to consider the linear regime of the function. With this simplification, we get: 

(𝑖)                                                       𝑹𝒂 ≈
1

4
(𝑘1 log (

𝑳

𝐿0
) − 𝑘2𝑰) +

1

2
 

 

Next, when considering the inhibition dynamics (eq. 4), we make the following 

assumptions: (1) before the initiation of the first pulse, or between consecutive pulses, calcium 

levels are close to baseline levels such that they do not contribute to the inhibition. (2) The 

inhibition removal term, which is a function of the non-active receptors, is negligible since its time 

constant is an order of magnitude larger (300 sec) than the inter-pulse time (~10 sec). This 

https://paperpile.com/c/iakjft/ghzn
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assumption should hold as long as the ligand concentration changes fast enough to promote 

several pulses within the ~300 seconds time frame. With these simplifications, we can neglect the 

first and the third terms in equation 4 and then substitute equation (i): 

(𝑖𝑖)                                              
𝑑𝑰

𝑑𝑡
=

1

4
𝑘1𝑘6 log (

𝑳

𝐿0
) −

1

4
𝑘2𝑘6𝑰 +

1

2
𝑘6 

The solution for this first-order, linear, ODE is: 

(𝑖𝑖𝑖)                   𝑰(𝑡) = (𝐼0 −
2

𝑘2
) 𝑒−

1
4

𝑘6𝑘2𝑡 +
2

𝑘2
+

1

4
𝑘6𝑘1 ∫ 𝑙𝑜𝑔 (

𝑳(𝑡′)

𝐿0
)

𝑡

0

𝑒−
1
4

𝑘6𝑘2(𝑡−𝑡′)𝑑𝑡′ 

Where 𝐼0 = 𝑰(𝑡 = 0) is the initial inhibition level. Plugging equation (iii) into equation (i), the 

condition for pulse initiation, 𝑹𝒂 > 𝑅𝑡, becomes:  

1

4
𝑘1 log (

𝑳

𝐿0
) −

1

4
𝑘2 (𝐼0 −

2

𝑘2
) 𝑒−

1
4

𝑘6𝑘2𝑡 −
1

16
𝑘2𝑘6𝑘1 ∫ 𝑙𝑜𝑔 (

𝑳(𝑡′)

𝐿0
) 𝑒−

1
4

𝑘6𝑘2(𝑡−𝑡′)𝑑𝑡′
𝑡

0

> 𝑅𝑡 

This can be reorganized to: 

 (𝑖𝑣)            log (
𝑳

𝐿0
) −

4𝑅𝑡

𝑘1
>

𝑘2

𝑘1
(𝐼0 −

2

𝑘2
) 𝑒−

1
4

𝑘6𝑘2𝑡 +
1

4
𝑘2𝑘6 ∫ 𝑙𝑜𝑔 (

𝑳(𝑡′)

𝐿0
) 𝑒−

1
4

𝑘6𝑘2(𝑡−𝑡′)𝑑𝑡′
𝑡

0

 

 

Thus, for initiating a pulse, the logarithm of the ligand concentration, shifted by a constant 

(left hand side of equation iv), needs to cross an adaptive threshold term (right hand side of the 

equation iv). At time zero, the threshold is 
𝑘2

𝑘1
(𝐼0 −

𝟐

𝑘2
). This initial threshold, however, is forgotten 

exponentially fast, and is replaced by a new adaptive threshold which integrates the history of 

ligand concentrations with an exponential kernel.  
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