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SI Materials and Methods  1 

1. Microwave signal in ecological monitoring  2 

Microwaves are electromagnetic waves with wavelengths ranging from ~1 mm to ~1 m (1). 3 

There are generally two types of microwave sensors: passive (radiometer) and active (radar). 4 

Since objects much smaller than the wavelength are invisible to microwaves, the microwave 5 

signal can penetrate surfaces (such as the forest canopy) to some extent, with the penetration 6 

depth increasing with increasing wavelength. Microwaves are not affected by clouds and 7 

raindrops over tropical rainforests, given a wavelength much larger than the size of raindrops, 8 

such as ~6 cm (or, C-band radio frequency; 1). Microwave data, especially those with a 9 

relatively long wavelength, are therefore suitable for monitoring changes in tropical forests. 10 

The spaceborne radar sensors used in this study are Earth-pointing active microwave 11 

instruments that transmit pulses of microwave radiation and record the signal backscattered 12 

from the Earth’s surface along the line of sight of the instrument (1, 2). The signal intensity 13 

measured by active sensors is higher than that of passive sensors, the latter measuring the 14 

microwave signal naturally emitted by the Earth’s surface. 15 

When microwave signals interact with canopies, the amount of water molecules 16 

contained in the leaves and branches, i.e., their dielectric properties, affects the backscattered 17 

signals. This amount of water is the total mass of water in the leaves and branches, which 18 

depends on the density of leaves and branches (i.e., dry biomass) and their water content 19 

(mass of water per unit mass of dry biomass) (1, 3). Thus, whether the temporal changes in 20 

microwave signals reflect dynamics of canopy structure or tissue moisture dynamics requires 21 

careful interpretation. On diurnal and seasonal time scales, it can be assumed that the change 22 

in canopy structure is small, and the dynamics of microwave signal represents the change in 23 

forest moisture (3). Over many years, in addition to moisture, changes in canopy structure 24 

could explain long-term trends in the microwave signal (3) caused by the mixed effects of 25 

forest growth, mortality, and possibly also long-term changes in forest species composition. 26 

Sections 12-17 below further explore the influence of various factors on the radar signal. 27 

 28 

2. Satellite radar data and pre-processing 29 

The backscatter of the radar signal, usually expressed in decibels (dB), is a function of the 30 

sensor parameters (frequency, polarization, look angle and spatial resolution), and the 31 

dielectric (as detailed above) and geometric properties of the scattering objects. Spaceborne 32 
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radars used for Earth observation currently operate in a wavelength (l) range between ~1 cm 33 

and 23 cm. Future radar sensors will operate with a wavelength of ~70 cm (4). For a forest, 34 

radar waves at l » 6 cm (C-band) interact with leaves, twigs, and small branches thereby 35 

penetrating the top few meters of the canopy (5), whereas at l » 70 cm the waves interact 36 

with larger branches and trunks and can reach the forest floor (1).  37 

Satellite-based active microwave sensors include Synthetic Aperture Radar (SAR) which 38 

maps the backscattered signal into high spatial resolution images, and scatterometers which 39 

provide data at footprints with a coarser spatial resolution (> 1 km), but with a much higher 40 

revisit rate. This last property makes scatterometers interesting for the study of large-scale 41 

land surface dynamics. Spaceborne radar sensors have been deployed since 1978 (NASA’s 42 

Seasat), but global radar coverage dates back to the European Remote Sensing satellite (ERS) 43 

in the 1990s (5-8). Over the last three decades, multiple missions have been launched with 44 

the aim of obtaining full and repeated global coverage (9, 10).  45 

For this study, we considered the contribution of all data sets acquired by satellites flying 46 

a radar instrument, with repeated observations over at least one decade and with a wavelength 47 

longer than 1 cm to avoid issues related to cloud cover and rainfall. Scatterometer data from 48 

the European Remote sensing Satellite (ERS) -1/-2 operating at l » 6 cm wavelength (C-49 

band, from 1992 to 2001), the Advanced Scatterometer (ASCAT, C-band, from 2007 to 50 

2018), and the Quik Scatterometer (QSCAT, operating at Ku-band, i.e., l » 2 cm, from 1999 51 

to 2009) were our primary candidates. In addition, we considered the use of data acquired by 52 

the ERS Synthetic Aperture Radar (SAR) (C-band, 1992 to 2011), the Advanced Synthetic 53 

Aperture Radar (ASAR, C-band, 2002 to 2012), Oceansat-2 Scatterometer (OSCAT, Ku-54 

band, since 2009), the Radarsat-1 and -2 SAR (C-band, 1995–now), and the Sentinel-1A and 55 

-1B SAR (C-band, since 2014). 56 

We found that data from the following four scatterometers together provided the longest 57 

time series of 27 years, namely ERS-1/-2 scatterometers (1992–2001, C-band), QSCAT 58 

(1999–2009, Ku-band), and ASCAT (2007–2018, C-band). A single time series at C-band 59 

would have been ideal, but reduced operations of the ERS-2 scatterometers began in 2001 60 

(11). We therefore sought to fill the gap in the C-band data with Ku-band QSCAT data. In 61 

theory, the Ku-band signal interacts more with the smaller vegetation elements in the upper 62 

canopy layer (e.g., leaves) than the C-band signal, as the latter penetrates deeper into the 63 

canopy (1). However, we found that the Ku-band QSCAT signal can be adjusted to the ERS 64 
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observations during 1999–2001 and to the ASCAT observations during 2007–2009 to obtain 65 

a simulated C-band signal (see sections 5 & 6 for more details).  We didn’t use the Ku-band 66 

OSCAT as it operates in an overlapping period with ASCAT but has a shorter wavelength.  67 

ERS-1/-2 scatterometer data were downloaded from the European Organisation for the 68 

Exploitation of Meteorological Satellites (EUMETSAT) while QSCAT (H-Polarization) and 69 

ASCAT (V-Polarization) data were available from the Center for Remote sensing at Brigham 70 

Young University (BYU). The latter provides images synthesised from acquisitions made 71 

over periods of five consecutive days. Ascending path images were used for QSCAT and 72 

ASCAT, and all path images for ERS-1/-2, thus guaranteeing the highest possible spatial and 73 

temporal coverages. Descending path ASCAT images and V-Polarization QSCAT images 74 

gave similar decreasing trends in radar signal. Since the radar backscattered signal was 75 

acquired under different look geometries, we normalized the observations to a common 40-76 

degree incidence angle to be free of angle influence on the observations (5). The radar 77 

observations were averaged into monthly layers with a global coverage at a spatial resolution 78 

of 25 × 25 km. Some ASCAT images were characterized by regions with a low number of 79 

radar observations (Fig. S31a). These locations were set to “not-a-number” after thresholding 80 

for a minimum number of observations, which was set to 20. A few ERS images had large 81 

areas of data gaps and were removed from our data set (Fig. S31b). The ERS-2 sensor 82 

experienced a sensor drift of 0.2 dB from July 1996 to June 1997 in our study region (12), 83 

which was corrected during our processing.  84 

 85 

3. Exploring alternative microwave data sets 86 

To complement the scatterometer data sets and, possibly, fill gaps in space and in time, we 87 

also explored archives of other satellite observations at C-band. However, the ERS-1/-2 SAR 88 

and the Radarsat-1/2 SAR did not achieve complete and repeated coverage throughout their 89 

missions (11). The ASAR data sets were more homogeneous in space and time but lacked 90 

observations for tropical Asia between 2002 and 2010, and were in general poorly calibrated. 91 

Because of the temporally dense set of observations by ASCAT, the contribution of Sentinel-92 

1 SAR data was not considered. The deficiencies of the SAR data sets here explored forced 93 

us to conclude that these could not act as an effective complement to the scatterometer data 94 

sets.  95 
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A further investigation was undertaken to see if passive microwave data could fill the 96 

data gap. C-band passive microwave data from the AMSR-E sensor operated between 2002 97 

and 2011 (13), thus not overlapping with ERS. Data from another C-band passive microwave 98 

sensor, AMSR2, are available since 2012 and do not overlap with AMSR-E (13). AMSR-E 99 

and AMSR2 also provide passive microwave data at X-band (10.6 GHz) but merging them 100 

has been proven as difficult (14) because of the disconnection between the two sensors. 101 

Passive microwave data at even higher frequencies (such as Ku-band, 12.5 GHz) covered a 102 

relatively long timespan (13, 15, 16) but can be sensitive to atmospheric corrections. We 103 

therefore decided not to use passive microwave data in our analysis.  104 

 105 

4. Definition of intact tropical rainforest  106 

We restricted our analyses to the intact evergreen tropical rainforests. First, we defined 107 

evergreen tropical rainforests using the 2015 Climate Change Initiative (CCI) land-cover 108 

map, with a spatial resolution of 300 metres. A 25 km radar pixel was labelled as evergreen if 109 

more than 50% of the CCI land-cover pixels were evergreen forest (classes labeled as: 50, 110 

160, 170 in the data set). To avoid confounding effects of land-use changes, we then defined 111 

intact tropical rainforests using the recently published 2020 baseline map of undisturbed 112 

tropical forests by Vancutsem et al. (17, 30 m resolution). Vancutsem et al. mapped 113 

deforestation and degradation events between 1990 and 2019 through combining big data 114 

information extraction and visual analytics aided by expert knowledge. The 2020 baseline 115 

map of undisturbed tropical forest contains the pixels fully covered with forests and have 116 

never been deforested or degraded during 1990-2019. A 25 km radar pixel was classified as 117 

intact tropical rainforest if the proportion of the 30 m undisturbed rainforest pixels within it 118 

was at least 95%. This filtering resulted in approximately 3800 pixels (about	2.4 million km2) 119 

in the American tropics, 1100 (about	0.7 million km2) in Africa and 430 (about	0.3 million 120 

km2) in Asia.  121 

 122 

5. Scaling radar time series 123 

We developed a two-step approach to harmonise C-band (ERS-1/-2 and ASCAT) and Ku-124 

band (QSCAT) data into a continuous long-term radar data set. The first step was to produce 125 

uniform ranges of backscatter values from different sensors (i.e., data scaling). The second 126 
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step was to harmonise the scaled data into a smooth time series by processing their monthly 127 

differences, as follows.  128 

We used the linear scaling method for rescaling time series. The linear scaling method 129 

involves first scaling a time series within the range of the reference time series, and then 130 

applying a linear regression equation between the two to minimise errors. We chose ASCAT 131 

as the baseline for the scaling because it has the best radiometric quality (lower sensitivity, 132 

higher radiometric resolution), and because it is still operational. The scaling procedure was 133 

performed pixel by pixel at a monthly time step. Specifically, a linear regression was 134 

established for each pixel using QSCAT and ASCAT data in the overlapping periods in 135 

2007–2009, which we then applied to the entire time series of QSCAT data. Thereafter, the 136 

ERS data were mean-shifted to match the QSCAT-ASCAT time series (18). The ERS-1 and 137 

ERS-2 data sets were already calibrated, so there was no need to rescale them separately. 138 

Figure S27 shows an example of data scaling, where radar data from different sensors have 139 

been successfully unified into one scale. 140 

 141 

6. Harmonising radar data 142 

The scaled radar data were then harmonised into a smooth time series. Differences were 143 

found between C-band and scaled Ku-band signals, despite similar interannual variations 144 

(Fig. S28). It is important to note that the differences showed a seasonal pattern. During dry 145 

periods, Ku-band radar signals were higher than C-band, but in the wet periods they were 146 

lower (19, 20). The differences were most evident in regions with higher annual precipitation 147 

(Fig. S28). To account for the seasonality of the signal, we investigated the role of rainfall 148 

amount as a predictor. We calculated the monthly differences of C-band minus Ku-band 149 

signals during the overlapping periods (Fig. S29a). We then regressed the signal differences 150 

against monthly precipitation measured by the TRMM (Tropical Rainfall Measurement 151 

Mission) 3B43 V7 data (Fig. S29b; 21) and predicted the signal differences. CHIRPS rainfall 152 

data was also tested, and highly similar results were obtained (Fig. S29d-f). Finally, we added 153 

the predicted differences to the original Ku-band signals (Fig. S29c). This procedure resulted 154 

in a much-improved match between C-band and Ku-band signals. Some poor-quality pixels 155 

(less than 10%) were concentrated in northwest Amazonia and the Asian tropics, where 156 

precipitation has no clear seasonality and signal differences consequently showed no clear 157 

temporal pattern (Fig. S30a). We therefore used the Decision Tree regression to capture the 158 
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non-linear relationship between signal differences and precipitation (22), and this improved 159 

the goodness of match in these pixels (Fig. S30, d & e). Quality assessment indicates a global 160 

median r value of 0.62 between C-band and corrected Ku-band signals in the overlapping 161 

years (1999-2001 and 2007-2009). For the pixels where Decision Tree regression was used to 162 

model the signal differences, their final median r value is 0.61. 163 

Lastly, the regression (linear or decision tree) between the signal differences and 164 

precipitation, established with data from the overlapping periods, was applied on TRMM 165 

precipitation data from 1999 to 2009, and the predicted signal differences were added to the 166 

full QSCAT time series. The data merging procedure was applied pixel by pixel. After 167 

transforming the QSCAT data, we built a time series for each pixel for the 1992–2018 period, 168 

averaging data from the overlapping periods (1999–2001 and 2007–2009). 169 

 170 

7. Validation of the time series construction method 171 

From January 2001 to 2011, the ERS-2 satellite experienced a series of failures that affected 172 

data continuity and global coverage. However, observations were occasionally available over 173 

some tropical regions (11), which allowed us to test whether the scaled Ku-band (QSCAT) 174 

signal is consistent with the C-band signal. We used the European Space Agency (ESA) 175 

reprocessed ERS-2 data set covering the period of 1996–2011 176 

(https://earth.esa.int/web/guest/missions/esa-operational-eo-missions/ers/news/-/article/ers-2-177 

scatterometer-l2-dataset-processing-with-asps-v-10-04-completed). Part of the American and 178 

Asian tropics were covered by this ERS-2-ESA data set, and we compared it to our merged 179 

radar data set in these two regions. Monthly radar backscatter coefficients at 40-degree 180 

incidence angle were calculated from the ERS-2-ESA data set, and compared with our 181 

merged radar data set. Both in tropical Americas and Asia, we found similar backscatter 182 

dynamics between ERS-2-ESA and our merged data (Pearson r ≥ 0.88, Fig. S3), validating 183 

our data merging approach. 184 

 We also compared the radar signal over different land-cover types where its seasonal 185 

amplitude is expected to be very different. We confirmed that the backscatter signal was 186 

lower in shrubland, savanna and deciduous forest than in evergreen rainforest, and that, as 187 

expected, the drier biome types displayed a higher seasonality than the evergreen forests (Fig. 188 

S2). 189 

 190 
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8. Influence of spatial autocorrelation on the significance of signal trends  191 

The decreasing trends in radar signal shown in Fig. 1 were averaged across pixels per 192 

continent.  However, we expect radar signals to be correlated from pixel to pixel. This could 193 

imply a spatial pseudo-replication in some of the trend analyses: trend results may appear 194 

falsely significant because of an over-inflated sample size. We thus tested whether the 195 

decreasing radar trends are robust to spatial autocorrelation.  196 

We used the following approach: 197 

1. randomly select N pixel pairs in each continent, each pair containing two pixels with 198 

a distance D of 0.25 (in degree unit, the size of radar pixel). N was set at 1/10 of the 199 

total number of pixel pairs with a distance D. 200 

2. calculate the Pearson r between pairs of radar time series, and then average r across 201 

all pairs. Repeat these two steps 500 times, and take the mean values. 202 

3. vary D by increments of 0.25 degrees, and record the D values and mean r values. 203 

4. plot the mean r values against D values, to identify the geographical distance (D2) 204 

corresponding to a mean Pearson r of 0.5. 205 

Once the spatial autocorrelation D2 was known, we selected a subset of pixels at least D2 206 

apart (15, 24, and 52 pixels in tropical Americas, Africa, and Asia, respectively), and 207 

recalculated the average radar signal trend over this reduced sample. This reanalysis resulted 208 

in very similar results for the signal trends calculated as average across all pixels and those 209 

averaged across the reduced sample of pixels (Pearson r ≥ 0.92, Fig. S6). This result confirms 210 

that the significant decreasing trend in radar signal found in this study is not caused by 211 

autocorrelation. 212 

 213 

9. Definition of past droughts  214 

Quantifying drought events across regions is difficult (23), especially in tropical rainforests 215 

where climate stations are scarce. The cumulative water deficit (CWD) is a useful metric for 216 

defining droughts in the tropics (23, 24). CWD was calculated at a monthly time-step as the 217 

cumulative difference between precipitation (P) and evapotranspiration (E). The cumulative 218 

water deficit (CWD) is always negative or equal to zero, and is defined as: 219 
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if	 	 CWDn-1-E+P<0	220 

then	 CWDn=	CWDn-1	-E+P	221 

else	 	 CWDn=0	222 

Precipitation P was taken from the CHIRPS data (25) because TRMM was unavailable 223 

between 1992 and 1998. The CHIRPS data set was created by integrating satellite 224 

observation with in situ rain gauge data (25). During the period 1998–2018, the CHIRPS 225 

precipitation product was similar to the TRMM product, but the former was extended through 226 

the period 1992–2018 in our analysis. Previous research has assumed a monthly value of 100 227 

mm for tropical rainforest evapotranspiration, E (24). Here, to better accounts for soil and 228 

atmosphere water stresses across regions, we used an improved version of CWD, with E 229 

taken from the long-term Global Land Evaporation Amsterdam Model (GLEAM) product, 230 

version 3.3a (https://www.gleam.eu/) (26; Fig. S4).  231 

To identify past drought events, we then computed the standardized anomaly (or Z-score) 232 

of the maximum CWD in a year (𝑍!"#$,&):  233 

𝑍!"#$,& =
max&(𝐶𝑊𝐷) −max'()('(𝐶𝑊𝐷)---------------------

𝜎*+,!"#"!("#$)
 234 

where 	max&(𝐶𝑊𝐷)  is the maximum of the cumulative water deficit in year y, 235 

max'()('(𝐶𝑊𝐷)--------------------- is the average of max(𝐶𝑊𝐷) during a reference period, and 𝜎*+,!"#"!("#$) 236 

is the standard deviation of  max(𝐶𝑊𝐷) during the same reference period. The reference 237 

period covers all the years excepted the year under study (27). The calculation was performed 238 

at pixel level and for each year of the period 1992-2018. A threshold of -1 on 𝑍!"#$,& was 239 

then used to decide whether a pixel was exposed to an anomalous drought in year y. The 240 

drought severity was finally calculated as the absolute value of 𝑍!"#$,&. 241 

 242 

10. Trend analysis of forest response  243 

The temporal radar signals were averaged over continental pixels (Fig. 1). To clearly show 244 

the long-term changes in radar signal, a 12-month moving average was calculated (thick lines 245 

in Fig. 1). Annual rates of radar signal change were then calculated as the slopes of the linear 246 

fits to monthly radar signals (equations labelled in Fig. 1). The linear fit was also applied at 247 

the pixel level to obtain the annual rate of radar signal change of each pixel (Fig. 2).   248 
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The BFAST (Breaks For Additive Season and Trend) algorithm was then used to 249 

check whether drought events had caused “breaks” in radar time series (Fig. S5). BFAST 250 

detects “breaks” in a time series by fitting piecewise linear models iteratively to different 251 

sections of the time series (28). Correlations between radar time series and water deficit were 252 

then calculated at pixel level (Fig. S8). We also explored the dependence on land surface 253 

temperature (𝑇/) as both water deficit and (𝑇/) could force vegetation stress (29). Diurnal (𝑇/) 254 

data were extracted from the MODIS database from 2002 to 2018. We also correlated the 255 

radar signal with air temperature (ERA5-Land; DOI: 10.24381/cds.68d2bb30; 30).  256 

 257 

11. Drought resistance and resilience of intact tropical rainforests  258 

Previous research has attempted to detect early-warning signals in non-linear systems, 259 

including with remotely sensed data (31, 32). Considering that meteorological conditions 260 

changes from year to year, here we used short-term forest resilience and resistance to clearly 261 

see the response of forests to each drought event. Drought resistance and resilience were 262 

defined, respectively, as:  263 

𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 	
𝑌( − 𝑌0'(
𝑌0'(

 264 

𝑟𝑒𝑠𝑖𝑙𝑖𝑒𝑛𝑐𝑒 = 	
𝑌01/2 − 𝑌0'(

𝑌0'(
 265 

Where Ye is the minimum radar data during a drought event, i.e., the extent of radar signal 266 

reduction during a drought, and Ypre and Ypost are the maximum radar values before and after a 267 

drought event, respectively. These definitions are directly inspired by Lloret et al (33). 268 

For each forest pixel, we detected drought events in that pixel based on the basis of the 269 

standardized anomaly (Z-score) of MCWD. As described above, a pixel was considered to 270 

have experienced a drought in a year if the Z-score of MCWD reached a value lower than -1, 271 

and drought severity was calculated as the absolute value of the Z-score of MCWD. For the 272 

year in which a drought occurred, we then identified the month when drought intensity 273 

reached its maximum. Ye was then calculated by looking for the minimum radar value within 274 

a three-month range centred on the month when drought intensity reached its maximum, 275 

considering that there might be a time-lag between a drought and forest response. Ypre was 276 

calculated as the maximum radar value within the two years prior to the drought, and Ypost 277 

was calculated as the maximum radar values in the two years after the event, because 278 
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previous research has reported a drought legacy effect of two years in rainforests (34). This 279 

also avoids the situation where the year prior to the drought was also droughted, thus leading 280 

to an overestimation of drought resilience. We used radar signal maxima before and after the 281 

drought because they correspond to wet-season conditions, and thus have comparable 282 

moisture levels, their difference (namely, resilience) thus measures forest structure changes 283 

from canopy disturbance, rather than moisture changes. 284 

The amplitudes of the radar signal vary across regions, and we therefore also rescaled the 285 

radar time series to fall into the range 1-100 for each pixel before calculating the resistance 286 

and resilience indices. By definition, resistance and resilience could not be calculated for the 287 

droughts occurring in the first (1992) and the last year (2018) of the study period. In the 288 

tropical Americas, only six months in the year of 1998 had qualifying radar observations, 289 

hence we did not calculate drought resistance and resilience in 1998 for the tropical 290 

Americas. Resistance and resilience associated with all other drought events were calculated 291 

at the pixel scale, and were further summarized in continents (Figs. 3 & 4).  292 

The Mann-Kendall trend test, a classical nonparametric test for identifying trends in time 293 

series data, was used to check whether there are significant trends in the drought 294 

resistance/resilience time series (Figs. 3 & 4; 35). Kendall’s tau, or τ, indicates whether a 295 

trend exists. The value of τ ranges from -1 (negative trend) to 1 (positive trend). A trend is 296 

considered strong if the absolute value of τ is close to 1. The significance of the trend was 297 

judged by a two-sided P value. We used the R package ‘Kendall ’for Mann-Kendall test 298 

(https://cran.r-project.org/web/packages/Kendall/index.html). As the Mann-Kendall test has a 299 

requirement on the length of the input time series that cannot be satisfied at the pixel level, 300 

we used Spearman’s rho (SR) test (36) to check the temporal changes in resistance/resilience 301 

in pixels where more than two droughts occurred during the study period (Fig. S16). 302 

Spearman’s rho test is a rank-based method widely used for trend analysis, and its value also 303 

ranges from -1 (strong negative trend) to 1 (strong positive trend). We used Matlab R2018 to 304 

evaluate Spearman’s rho test.  305 

We checked that our conclusion was not altered by the use of a longer drought legacy 306 

window, a lower threshold for Z-score of MCWD, a constant evapotranspiration of 100 mm 307 

per month (24), and detrended radar signals (Figs. S10-S13). The results of these sensitivity 308 

tests consistently indicated an increasing vulnerability of intact rainforests to drought, 309 

especially in the tropical Americas. The conclusion was also verified when the monthly CRU 310 

Self-calibrating Palmer Drought Severity Index (scPDSI) was used instead of the Z-score of 311 
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MCWD to identify past drought events (Fig. S14; 37). A threshold of -1 was applied on 312 

scPDSI to define droughts, and the absolute value of the minimum scPDSI value during 313 

droughted months was used as a quantification of drought severity.  314 

 315 

12. Interpreting the long-term radar signal declines: Sensitivity of C-band radar data to forest 316 

degradation/deforestation 317 

We found sustained declining trends in radar signal over the past decades in all three 318 

continents. To interpret the sustained declines in radar signal, we analysed possible drivers of 319 

radar signal change. We first assessed the sensitivity of C-band radar data to forest 320 

degradation/deforestation, using three approaches. 321 

In the first approach, we grouped the intact tropical rainforest radar pixels into 322 

different categories of forest degradation or deforestation intensities, namely less than 1%, 1-323 

2%, 2-3% and 3-5% (cumulative degradation/deforestation ratio between 1992 and 2018). 324 

The degradation/deforestation information were derived from the Vancutsem et al. maps (17).  325 

If degradation or deforestation had contributed to the radar signal trend, we would expect a 326 

steeper slope in the 3-5% class than in the <1% class. However, we found that the radar 327 

anomaly showed a similar decline in all four classes of degradation/deforestation in tropical 328 

Americas. In tropical Africa and Asia, pixels with a 3-5% degradation/deforestation ratio 329 

even showed less severe declines in radar anomaly than in the <1% class (Fig. S19). This 330 

shows that the long-term decline in radar signal was not driven by the small fraction (<5%) of 331 

degradation/deforestation within the intact rainforest radar pixels. 332 

Secondly, we used pixels with an increasing trend in radar signal as a test set, in 333 

tropical Americas and Africa. Too few pixels showed an increasing trend in radar signal in 334 

tropical Asia, so this continent was not included in the analysis. One possible hypothesis is 335 

that the pixels with an increasing trend in radar signal cover the true intact tropical forests, 336 

and that all other forests are exposed to some form of deforestation or degradation explaining 337 

the decline in radar signal. Using Vancutsem et al.’s maps (17), we explored the temporal 338 

dynamics of degradation/deforestation intensity for pixels with decreasing radar trends, and 339 

we compared these with the degradation/deforestation intensity in pixels with increasing 340 

radar trends. We found no difference in the pattern of degradation/deforestation intensity in 341 

the two groups of pixels (Fig. S7). In contrast, water stress explained the differences: the 342 

pixels with an increasing radar signal trend experienced much less severe water deficit during 343 
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2005-2014, which corresponds to the period when one time series declined while the other 344 

remained relatively stable (Fig. S7). This phenomenon was observed in both tropical 345 

Americas and Africa. The results are therefore consistent with the hypothesis that droughts 346 

rather than degradation/deforestation dominate changes in the radar signal. 347 

Lastly, we verified that other masks of intact tropical rainforest did not alter the 348 

findings. We used Hansen et al’s (38) forest change maps between 2000 and 2018 and the 349 

Forest Integrity Index (FII) map which reflects the state of global forests for the year of 2019 350 

(39). Using the forest-cover and annual degradation/deforestation maps from Hansen et al. 351 

(38, 30 m resolution), we created an intact rainforest mask at 25 km resolution as follows: all 352 

30 m pixels were classified as intact tropical rainforest if they had >90% forest cover in 2000 353 

and did not show any sign of deforestation from 2000 to 2018; a 25 km radar pixel was then 354 

classified as intact rainforest if the proportion of 30 m intact rainforest pixels within it was at 355 

least 90%. Using the Forest Integrity Index (FII, ~300 m resolution; 39), we created a mask at 356 

25 km resolution by selecting the radar pixels in which at least 90% of the FII pixels have a 357 

high integrity index (>9.6 as defined in ref 39). We reached the same conclusion of a decline 358 

in radar signal irrespective of the selected mask (Fig. S20), confirming that the result is 359 

neither sensitive to the mask used to define intact tropical rainforests nor to the extent of 360 

residual degradation/deforestation found in radar pixels defined as “intact”. 361 

 362 

13. Interpreting the long-term radar signal declines: Sensitivity of C-band radar data to soil 363 

moisture 364 

We tested whether the radar signal contained mainly canopy backscatter information, and that 365 

contributions from the ground through canopy gaps represented a minor fraction. To this end, 366 

we compared our radar data with the L-band time series (l » 20 cm) of brightness 367 

temperatures from the Soil Moisture and Ocean Salinity (SMOS) radiometer. SMOS 368 

brightness temperature is more sensitive to soil moisture than C-band scatterometer signals 369 

(40). We used a “worst-case” scenario in which a severe flood occurred under a forest in 370 

southwestern Amazonia near the Beni savannas in Bolivia. As expected, the SMOS 371 

brightness temperature dropped suddenly during the flood, but C-band signal showed no 372 

abrupt change (Fig. S22), suggesting that the contribution of soil moisture to the C-band radar 373 

backscatter is negligible over dense tropical forests.  374 

 375 
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14. Interpreting the long-term radar signal declines: Influence of heavy rain events 376 

Heavy rain (e.g., due to local thunderstorm) could reduce the backscatter by a few dB at C-377 

band. However, heavy rain is often localized, thus its impact should become less severe at the 378 

scale of 25 km. Besides, the impact of heavy rain on radar signal is usually short, causing 379 

drops in radar backscatter that last less than a few days. Since we averaged the radar data into 380 

monthly composites, the effect of heavy rain on the radar signal used in our study is 381 

negligible.  382 

To quantitatively assess the influence of heavy rain on radar signal, we calculated the 383 

temporal trends in rain rate (>5 mm/hour) observed at the time of the QSCAT acquisition 384 

(6:00 am of each day in 1999-2009) and ASCAT acquisition (21:30 pm of each day in 2007-385 

2018), using TRMM 3B42 3-Hourly rainfall data (41). We found that globally 56% and 62% 386 

of intact rainforests showed decreasing trends in rain rate (>5 mm/hour) when QSCAT and 387 

ASCAT observations were acquired, respectively (Fig. S18). The spatial pattern contrasts 388 

with the observed widespread decline in radar signals. Thus, we concluded that the heavy rain 389 

events should not be responsible for the long-term radar signal decreases. 390 

 391 

15. Interpreting the long-term radar signal declines: Shifts in dry season length  392 

Previous research has detected a significant increase in dry season length in the rainforests of 393 

southern Amazonia (42) and Central Africa (43), and this could be a potential driver of the 394 

long-term radar signal change. We calculated the duration of the dry season using 395 

precipitation data from the GPCC (44; available until 2016), to be consistent with Jiang et al. 396 

(43). Mean yearly radar signal was correlated with dry season length between 1992 and 2016 397 

in southern Amazonia but the relationships were mainly caused by extreme drought events 398 

(Fig. S21c). Thus, the effect of increase in dry season length on radar signal changes is 399 

insignificant. 400 

 401 

16. Interpreting the long-term radar signal declines: Influences of leaf surface water  402 

Leaf water is a key component of the canopy water content and has been reported to 403 

influence microwave signal. The influence was found to be most pronounced at the diurnal 404 

time scale (45). To clarify the role of leaf water changes on radar signal trends, we explored 405 

the long-term dynamics in leaf surface water (LWs, including dew and intercepted rainfall) 406 

and leaf internal water (LWi) —two components of leaf water content.  407 



16 
 

First, we tested whether the radar signal decreases reflect reduction in LWs. Both 408 

dynamics in dew duration and intercepted rainfall were explored. Intercepted rainfall 409 

correlates with monthly rainfall amount. Monthly dew duration was calculated as the 410 

percentage of hours within a month when air temperature is lower than dew-point 411 

temperature, with dew point temperature and air temperature provided by the ERA5 hourly 412 

climate data set. We found no evidence for a significant decrease in rainfall amount or dew 413 

duration except in Africa (Fig. S23). We noted that the temporal dynamics in dew duration in 414 

African rainforests did not coincide with the radar signal trend: the latter showed a sustained 415 

decline after 2004/2005 while dew duration increased during this period. 416 

Second, we explored whether the decline in radar signal is driven by a decline in leaf 417 

internal water (LWi). Plant physiology constrains the moisture of a leaf: even small moisture 418 

loss within the leaf creates a loss of turgor and eventually leaf abscission (45, 46). Thus, LWi 419 

should not vary with time except for through changes in leaf amount (loss or gains of leaves). 420 

As a result, LWi changes can be indicated by changes in forest leaf amount. We used 421 

Normalized Difference Vegetation Index (NDVI) and Leaf Area Index (LAI) to explore the 422 

long-term changes in leaf amount in our study area. Since it is challenging to draw inferences 423 

from optical remote sensing images over tropical rainforests, we used four sets of NDVI/LAI 424 

products, including the Global Inventory Monitoring and Modeling System (GIMMS) third 425 

generation NDVI (available between 1981 and 2015; 47, 48), GIMMS LAI3g (available 426 

between 1981 and 2016; 49), GLOBMAP LAI (available between 1981 and 2020; 50) and 427 

Moderate Resolution Imaging Spectroradiometer (MODIS) LAI (available since 2000). For 428 

GIMMS LAI and NDVI, we used the quality flag embedded in the data to include only the 429 

high-quality observations in the data analyses. MODIS LAI was also quality-controlled as in 430 

ref (51). We failed to detect trends in NDVI in all three continents. Regarding LAI, the three 431 

sets of LAI products differed in temporal dynamics, but they showed no sign of significantly 432 

sustained decrease since 1992 (Fig. S24). In Africa and Asia, GIMMS LAI decreased after 433 

2010, but this temporal trajectory did not match with radar signal changes in Africa and Asia. 434 

More specifically, GIMMS LAI increased around 2004/2005 in Africa when radar signal 435 

started to decrease continuously (Fig. S24). GIMMS LAI was stable between 2000 and 2010 436 

in Asia but radar signal decreased continuously during the same period.  437 

Based on the above analyses, we concluded that neither leaf surface water nor leaf 438 

internal water are the drivers of the long-term declining radar signal trends. 439 

 440 
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17. Interpreting the long-term radar signal declines: Forest biomass changes 441 

In addition to forest water stress, drought can also cause forest structure and biomass changes 442 

through, for example, drought-induced defoliation, branch fall, or tree mortality (34, 52, 53), 443 

thus influencing forest radar signals at the inter-annual or even longer time scales. We 444 

therefore also explored whether the long-term radar signal declines could correspond to 445 

drought-induced forest biomass changes. We first compared the radar signal trends with two 446 

long time series of forest aboveground biomass carbon data sets from Liu et al. (54) and Xu 447 

et al. (55), for the American tropics. The time series of forest carbon of Liu et al. was created 448 

mainly using Ku-band (19.3 GHz) and X-band (10.7 GHz) Vegetation Optical Depth (VOD) 449 

data. The Xu product was created using extensive forest inventory and multiply remote 450 

sensing data such as airborne laser scanning, satellite lidar measurements of vegetation 451 

height, and time series of microwave images. Our radar signal showed similar temporal 452 

trends with the two forest carbon time series (Fig. S25). The Pearson r value between the 453 

yearly radar signal and Xu carbon density is 0.86. The Pearson r value between the yearly 454 

radar signal and Liu carbon density is 0.84 (Fig. S25). 455 

We then conducted a stricter comparison. We compared changes in the radar signal with 456 

plot biomass changes caused by the Amazon droughts of 2005 and 2010. For the 2005 457 

drought, 55 RAINFOR plots with a median size of ca. 1 ha were censused before and after 458 

the drought (23), some in the same radar pixel. During the censuses, all trees ≥ 10 cm trunk 459 

diameter were measured, and new individuals were tagged and identified taxonomically. The 460 

census periods of plots varied: the median start date of the 2005 census periods of all plots 461 

was June 2004, and median end date was April 2006, with a variation of ~5 months in both 462 

cases. Therefore, to match these census periods, we used the maximum monthly radar value 463 

within a 5-month window centered at June 2004 (i.e., from April to August 2004) as the 464 

starting radar value, and the maximum value during February–June 2006 as the ending value. 465 

As with the calculation of the resistance/resilience index, the aim of using the maxima of the 466 

radar signal is to minimize the influence of moisture level variations on the trends in radar 467 

signal.  468 

For the 2010 event, a total of 97 plots across Amazonia were available (56), also with a 469 

median size of ca. 1 ha. Changes in plot biomass caused by the 2010 drought were calculated 470 

as the anomalies with respect to a baseline average for 1998–2010 (56). This calculation can 471 

be readily applied to radar signals without the necessity of controlling for inter-census 472 

duration as for the 2005 plot data. Thus, we expect the comparison with the 2010 drought 473 
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ground data to be more reliable. We calculated the radar anomalies for the 2010 event the 474 

same way as Feldpausch et al. (56) calculated the biomass anomalies. For both drought 475 

events, plot data within the same radar pixel were averaged, and radar signals were smoothed 476 

using a moving window of 3 months to improve robustness. Regression analyses were then 477 

conducted using the standard major axis (SMA) regression implemented in the R package 478 

“smatr” (57).  479 

Significantly positive relationships between radar signal and plot biomass changes were 480 

observed (Fig. S26a & b), although the R-squared values were low. As an attempt to address 481 

the mismatch of scales between radar data (25 x 25 km) and plot data (1 ha), we included 482 

only radar pixels with at least two ground plots, with inter-plot distance at least 5 km or 10 483 

km (Fig. S26c & d). From this analysis, we concluded that although the radar signal measures 484 

changes in the upper canopy, it not only captures drought-induced water stress but also 485 

rainforest biomass dynamics at the inter-annual time scale.  486 
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Fig. S1. (a) Histograms of the C-band ASCAT signal (in unit of dB, monthly averaged 

between 2007 and 2018) for four land-cover types in part of the Neotropics. (b) shows the 

spatial distribution of the four types of land-cover. Land cover information was taken from 

the European Space Agency (ESA) Climate Change Initiative (CCI) land-cover map for the 

year 2015 (maps.elie.ucl.ac.be/CCI/viewer/). 
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Fig. S2. Merged radar data in different land-cover types. Each panel shows the time 

series of the merged radar signal over one 25 km pixel. The position of the pixel is displayed 

as a red dot in the lower-left part of each panel.  
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Fig. S3. Validation of merged radar data against ERS-2-ESA data. The orange line 

represents the radar data set used in the present study. It was compared with the ERS-2-ESA 

data set at a subset of pixels sampled by the ERS-2 satellite. The correlation between the two 

timeseries is high, both in the Americas and in Asia.  
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Fig. S4. Spatial patterns of GLEAM month evapotranspiration, averaged across all 

months in 1992–2018. The histograms beside each regional map show the proportion of 

pixels in each evapotranspiration class. The colour scheme is the same in the histograms and 

maps. 
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 Fig. S5. BFAST (Breaks for Additive Season and Trend algorithm) decomposition of 

the radar signal. The monthly radar anomalies (averaged across all pixels within a 

continent) are presented in the upper panel, followed by the estimated seasonal amplitude, the 

“breaks” in radar signal detected by BFAST, and finally the remainder (the variation of the 

signal after removing the trend).   
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Fig. S6. Influence of spatial autocorrelation on the radar signal trends. (a-c) show the 

decrease in radar signal correlation as a function of distance between pixel pairs. The distance 

is calculated on the basis of the latitudes and longitudes of the pixel centers, and therefore has 

a unit of degree which is about 110 kilometers at the equator. A distance D2 corresponding to 

a Pearson r of 0.5 was identified, which was 5.6 degrees in tropical Americas, 2.2 degrees in 

Africa, and 1.1 degrees in Asia. (d-f) show the time series of radar signal as in Fig. 1 of the 

main text (in green) or calculated as average across pixels greater than the D2 distance (in 

orange).  
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Fig. S7. Time series of radar signal anomaly, cumulative water deficit (CWD), and 

cumulative forest degradation/deforestation intensity, for two types of rainforests in 

tropical Americas (a-c) and Africa (d-f). Pixels with an increasing radar signal trend 

(colored in green), were compared to pixels with a decreasing trend (colored in orange). See 

Fig. 2a & 2b in the main text for the spatial distributions of the pixels. The time series shown 

in (a), (b), (d) and (f) are 12-month moving averages. Panels (c) and (f) show the cumulative 

intensity of degradation/deforestation, calculated as the cumulative area of the 30 m 

resolution degraded/deforested forest pixels, divided by the total area of all the radar pixels 

with an increasing (colored in green) or a decreasing (colored in orange) signal trend.   
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Fig. S8. Spatial pattern of total water deficit between 1992 and 2018 (a), and 

correlations (Pearson r) between radar time series and (b) cumulative water deficit, (c) 

MODIS daytime land surface temperature, and (d) ERA5 monthly mean air 

temperature. The total water deficit in (a) was calculated as the sum of all monthly 

cumulative water deficits between 1992 and 2018. In (b-d), regions with increased radar 

signals were coloured light gray (‘Unexplained’) and were explored independently (Fig. S7). 
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Fig. S9. Radar signal and cumulative water deficit (CWD) in two typical forest regions. 

(a) Caqueta moist forests in northwestern Amazonia. (b) Tapajós-Xingu moist forests in 

southern Amazonia. CWD values were generally close to zero in (a), in contrast to those in 

(b). However, in the rare cases of water deficit in (a), the radar signal still decreased. 
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Fig. S10. Drought resistance and resilience calculated with a three-year drought legacy 

length. a-f show the drought resistance and resilience as a function of drought severity for 

intact tropical rainforests in three continents. g-l show the time series of drought resistance 

and resilience. The notations are the same as those described in the legends to Figs. 3 & 4 in 

the main text. 
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Fig. S11. Drought resistance and resilience calculated with droughts defined by Z-score 

of MCWD but assuming a monthly evapotranspiration of 100 mm for calculating 

MCWD. a-f show the drought resistance and resilience as a function of drought severity for 

intact tropical rainforests in three continents. g-l show the time series of drought resistance 

and resilience. The notations are the same as those described in the legends to Figs. 3 & 4 in 

the main text. 
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Fig. S12. Drought resistance and resilience calculated with a threshold of -1.5 for Z-

score of MCWD for defining droughts. a-f show the drought resistance and resilience as a 

function of drought severity for intact tropical rainforests in three continents. g-l show the 

time series of drought resistance and resilience. The notations are the same as those described 

in the legends to Figs. 3 & 4 in the main text. 
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Fig. S13. Drought resistance and resilience calculated after detrending the radar signal. 

a-f show the drought resistance and resilience as a function of drought severity for intact 

tropical rainforests in three continents. g-l show the time series of drought resistance and 

resilience. The notations are the same as those described in the legends to Figs. 3 & 4 in the 

main text.  
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Fig. S14. Drought resistance and resilience calculated with droughts defined by CRU 

scPDSI.  a-f show the drought resistance and resilience as a function of drought severity for 

intact tropical rainforests in three continents. g-l show the time series of drought resistance 

and resilience. A threshold of -1 was applied on scPDSI to define past droughts. The absolute 

value of scPDSI was used to indicate the drought severity. Other notations are the same as 

those described in the legends to Figs. 3 & 4 in the main text. 
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Fig. S15. Spatial pattern of the drought severity threshold beyond which the forest 

cannot recover its pre-drought state. Pixels coloured in gray are forests where such 

threshold was not detected. Drought severity was calculated as the absolute value of the Z-

score of maximum cumulative water deficit within a year (MCWD). The drought severity 

threshold was such that above the threshold all estimated resilience values were negative. 
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Fig. S16. Temporal trends in drought resistance (a-c) and resilience (d-f) for intact 

tropical rainforests. Trends were tested using Spearman’s rho test. Negative values (warm 

colours) mean decreasing trends, and positive values (cool colours) mean increasing trends, 

with their absolute value representing the strength of the trend.  Trends with a P value < 0.05 

were deemed as significant. The histogram shows the distribution of trend strengths across all 

pixels, with the median value marked and labelled in red. Pixels coloured in gray are forests 

where less than two droughts occurred, so where no trend is available.  
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Fig. S17. Effect of polarisation and the choice of the ascending versus descending paths 

on the radar signal. (Top) Comparison of monthly mean QSCAT signals from V-polarization 

and H-polarization modes over Amazonian intact rainforests. (Bottom) Comparison of 

monthly mean ASCAT signals from ascending and descending paths over Amazonian intact 

rainforests.  
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Fig. S18. Spatial pattern of the temporal trends in rain rate (>5 mm/hour) observed at the 

time of the QSCAT acquisition (a, 6:00 am of each day in 1999-2009) and ASCAT 

acquisition (b, 21:30 pm of each day in 2007-2018).  
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Fig. S19. Spatial patterns and radar signals for intact tropical rainforest pixels 

categorized into four groups of degradation/deforestation intensity. The shown intact 

tropical rainforest pixels were defined using the 2020 baseline map of undisturbed tropical 

forests provided by Vancutsem et al. (17, See Section 4).  For each pixel, its 

degradation/deforestation intensity was calculated as the total area of all the 30 m forest 

pixels that were either degraded or deforested during 1992 -2018, divided by the radar pixel 

area (25 × 25 km). For each pixel group, anomalies of the averaged radar signals were 

plotted. A trend line was fitted to the anomalies, and the regression and P value were 

provided. 
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Fig. S20. Radar signals averaged across intact rainforest pixels defined by (a-c) the 

Hansen forest cover change maps and (d-f) the Forest Integrity Index map. This figure 

demonstrates that the results reported in Fig. 1 in the main text do not strongly depend on the 

definitions of intact rainforest pixels. Please see the last paragraph of Section 12 for more 

details on these alternative definitions of intact rainforest pixels. 
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Fig. S21. Dry season length as a function of radar signals for southern Amazonia (a-c) 

and central Africa (d-f). The unit of the dry season length is pentad (5 days), and the unit of 

radar signal anomaly is decibel (dB). The length of the dry season was correlated with the 

decrease in the annual radar signal in southern Amazonia, although with a low correlation 

coefficient (R2=0.18). This effect was attributed to the increased frequency of severe droughts 

during the study period. 
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Fig. S22. ASCAT backscatter and SMOS brightness temperature (TB) during a severe 

flood in February 2014 in southwestern Amazonia. The progression of this flood was 

captured by SMOS brightness temperature images in (a) December 2013, (b) January 2014, 

and (c) February 2014. The red rectangle shows the location of a forest that was flooded (a–

d). The ASCAT and SMOS TB signals of this forest were shown in (e). European Space 

Agency (ESA) Climate Change Initiative (CCI) land-cover map for the year 2015 

(maps.elie.ucl.ac.be/CCI/viewer/) was used as background in (d). 
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Fig. S23. (Top row) Dynamics of monthly leaf surface dew duration for American, African, 

and Asian intact tropical rainforests. Shown are the averages across all intact rainforest 25 km 

pixels. (Bottom row) Dynamics of monthly CHIRPS rainfall for American, African, and 

Asian intact tropical rainforests. The thin line in each panel shows the monthly rainfall or 

dew duration, and the thick line shows a 12-month moving average. A linear regression was 

fitted to the monthly rainfall or dew duration and the regression equation was labeled in each 

panel. 
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Fig. S24. Dynamics of monthly radar signal (top row), GIMMS NDVI (second row), 

GIMMS LAI (third row), GLOBMAP LAI (fourth row) and MODIS LAI (bottom row) 

in American, African, and Asian intact tropical rainforests. Shown are the averages 

across all intact rainforest 25 km pixels. In each subset, the monthly NDVI/LAI observation 

is shown as a thin line, on top of which a 12-month moving average is shown as a thick line.  

Linear regression was fitted to the monthly radar signal, NDVI or LAI, and the regression 

equation was labeled within each panel. 
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Fig. S25. Radar signal compared with time series of forest biomass carbon for the 

American tropics. Both the radar signal and forest biomass carbon shown here have been 

averaged across intact rainforest pixels within the American tropics. Time series of forest 

biomass carbon were taken from ref (54) and ref (55). The Pearson r between the yearly radar 

signal and Xu carbon density is 0.86 (P < 0.01). The Pearson r between the yearly radar 

signal and Liu carbon density is 0.84 (P < 0.01). 
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Fig. S26. Changes in radar signal versus changes in plot biomass during two mega-

droughts. Significant positive correlations between radar signal changes and plot biomass 

changes were obtained, suggesting that the radar signals detect drought-induced biomass loss. 

(a) and (b) show the changes in the radar signal versus changes in plot biomass caused by the 

droughts of 2005 and 2010, respectively. (c) is similar to (b), but includes only radar pixels 

with at least two ground plots in the pixel footprint, and 5 km apart. (d) is similar to (c), but 

with a distance between plots at least 10 km. (c) and (d) attempted to solve the scale 

mismatch between the radar pixel (25 km) and the ground plot (~1 ha). The colours were 

randomly assigned to the points in each panel. 
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Fig. S27. Illustration of the rescaling of radar data from different sensors. The top panel 

shows the original time series prior to rescaling. The bottom panel shows the same time series 

but after rescaling.  
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Fig. S28. Comparisons between Ku-band (QSCAT) and C-band (ASCAT) radar signals 

over a 3-year overlapping period (2007-2010). The signals are from two pixels with 

different annual precipitations as measured by TRMM 3B43 V7 data. Pixel locations are 

shown as red dots in the right panels. 
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Fig. S29. Illustration of the rainfall-assisted correction on Ku-band (QSCAT) signals. a, 

C-band and Ku-band signals before correction. b, regression between signal differences and 

TRMM precipitation. c, C-band and Ku-band signals after correction. The vertical dotted line 

in a and c separates the ERS-QSCAT overlapping (1999–2001) and QSCAT-ASCAT (2007–

2009) overlapping periods. (d-f) show the same Ku-band signal but corrected by CHIRPS 

rainfall.  

  



53 
 

 

 

 



54 
 

 

Fig. S30. Spatial pattern and examples of the rainfall-assisted correction on Ku-band 

signals. a. Two regions (distinguished by colour) where rainfall-assisted correction on the 

Ku-band signal was made using different regression techniques. In the region coloured green, 

linear regressions were performed between the signal differences and the precipitation (i.e., 

linear regression correction). In the region coloured yellow, a decision tree analysis was 

performed between the signal differences and the precipitation (i.e., Decision Tree regression 

correction). b & c. Two examples of the rainfall-assisted correction in the “green” region. 

The match between the Ku-band and C-band signals was greatly improved after the 

correction. d & e. An example of the rainfall-assisted correction in the “yellow” region. 

Precipitation is less seasonal in this region, so linear regression between signal differences 

and precipitation did not improve the match between the two signals (d). Decision tree 

analysis was finally used to model the signal differences from rainfall amounts; this improved 

the match (e). 
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Fig. S31. (a) An example of ASCAT image with data strips (light gray strips in the image) 

acquired in May 2010, and (b) an example of a low-quality ERS-1 image acquired in March 

1992.  

 

 

 

 

 

 


