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Abstract: Non-alcoholic fatty liver disease (NAFLD), represents an unmet medical need that can
progress to non-alcoholic steatohepatitis (NASH), which, without intervention, can
result in the development of cirrhosis and hepatocellular carcinoma (HCC).
Inflammation is a pathological hallmark of NASH, and targeting key inflammatory
mediators of NASH may lead to potential therapeutics for the disease. Herein, we
aimed to investigate the role of IL-23 signaling in the disease progression in murine
NASH models. We showed that recombinant IL-23 can promote IL-17 producing cell
expansion in the liver and that these cells are predominately  T cells and Mucosal
Associated Invariant T cells (MAITs). Reciprocally, we found that IL23R is necessary
for the expansion of  T cells and MAIT cells in the western diet (WD) diet induced
NASH model. However, we did not observe any dramatic differences in liver
inflammation and fibrosis between wild type and Il23r-/- mice in the same NASH model.
Furthermore, we found that Il23r deletion does not impact liver inflammation and
fibrosis in the choline-deficient, L-amino acid-defined and high-fat diet (CDA-HFD)
induced NASH model. Based on these findings, we therefore propose that IL-23
signaling is not a crucial determinant of NASH pathogenesis in preclinical models and
targeting this pathway may not be sufficient to ameliorate the disease progression in
NASH patients.
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IL23 signaling is not an important driver of liver inflammation and fibrosis in murine non-1 
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Abstract 16 

Non-alcoholic fatty liver disease (NAFLD), represents an unmet medical need that can progress 17 

to non-alcoholic steatohepatitis (NASH), which, without intervention, can result in the 18 

development of cirrhosis and hepatocellular carcinoma (HCC). Inflammation is a pathological 19 

hallmark of NASH, and targeting key inflammatory mediators of NASH may lead to potential 20 

therapeutics for the disease. Herein, we aimed to investigate the role of IL-23 signaling in the 21 

disease progression in murine NASH models. We showed that recombinant IL-23 can promote IL-22 
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17 producing cell expansion in the liver and that these cells are predominately 𝛾𝛿 T cells and 23 

Mucosal Associated Invariant T cells (MAITs). Reciprocally, we found that IL23R is necessary for 24 

the expansion of 𝛾𝛿 T cells and MAIT cells in the western diet (WD) diet induced NASH model. 25 

However, we did not observe any dramatic differences in liver inflammation and fibrosis between 26 

wild type and Il23r-/- mice in the same NASH model. Furthermore, we found that Il23r deletion 27 

does not impact liver inflammation and fibrosis in the choline-deficient, L-amino acid-defined and 28 

high-fat diet (CDA-HFD) induced NASH model. Based on these findings, we therefore propose 29 

that IL-23 signaling is not a crucial determinant of NASH pathogenesis in preclinical models and 30 

targeting this pathway may not be sufficient to ameliorate the disease progression in NASH 31 

patients. 32 

 33 

Introduction 34 

Non-alcoholic fatty liver disease (NAFLD) is defined as a chronic liver disease that imparts excess 35 

lipid accumulation in the liver in the absence of secondary causes such as viral infections or 36 

alcohol abuse[1, 2]. NALFD can progress from simple hepatic steatosis to non-alcoholic 37 

steatohepatitis (NASH) characterized by inflammation and fibrosis, which is a significant risk 38 

factor for cirrhosis and hepatocellular carcinoma (HCC) [3-6]. Within the past decades, the 39 

epidemic of obesity has led to the sharp rise of NALFD/NASH occurrence [2, 7]. However, there 40 

are no FDA-approved therapies for NASH driven chronic liver disease, which may be largely due 41 

to our limited understanding of molecular underpinnings of liver inflammation and fibrosis.  42 

 43 
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IL-23 is a cytokine that has been implicated in IL-17 driven pathologies such psoriasis, colitis, and 44 

autoimmune diseases [8-11]. As an IL-12 cytokine family member, IL-23 is composed of a 45 

heterodimer of IL-12p40 subunit and IL-23p19 subunit (IL-23p19/p40) which signals through the 46 

IL-23R and IL-12R1 dimeric receptor [12]. Mice that lack IL-23p19 demonstrate an inability to 47 

drive the expansion of pathogenic IL-17 producing cells [13-15]. All IL-17 expressing cells also 48 

express RAR-related orphan receptor gamma t (RORt), the master transcription factor driving 49 

the TH17 signature [16, 17]. In this regard, previous studies have implicated that IL-17 producing 50 

cells promote hepatic inflammation and fibrosis[18]. It has also been reported that there is 51 

accumulation of IL-17 producing cells in the livers from NASH patients or diet induced NASH 52 

preclinical murine models [19-22].  Additionally, IL-17 has been shown to be elevated by liver 53 

damaging agents such as Carbon Tetra-Chloride and Concanavalin A in models of acute hepatitis 54 

[18, 20-23]. While these studies suggest that IL-17 producing cells may contribute to chronic liver 55 

disease, the role of IL-23 signaling in NASH has not been fully dissected.  56 

 57 

In this study, we hypothesized that IL-23 signaling may play an important role in the NASH 58 

pathogenesis. We showed that systemic administration of recombinant IL-23 protein induces IL-59 

17 producing cell expansion in the liver and that these cells are predominately 𝛾𝛿 T cells and 60 

Mucosal Associated Invariant T cells (MAITs). Reciprocally, genetic ablation of Il23r attenuated 61 

𝛾𝛿 T and MAIT cell expansion in western diet (WD)-induced NASH model. However, we did not 62 

observe that Il23r deletion exhibits dramatic effects on liver inflammation, fibrosis and liver 63 

function in the same model.  Similarly, we found that Il23r-/- mice are not protected from liver 64 

inflammation and fibrosis in another model, the choline-deficient, L-amino acid-defined and 65 
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high-fat diet (CDA-HFD) induced NASH model. Thus, these results do not support a causal role of 66 

IL-23 signaling in the NASH pathogenesis and suggest that targeting IL-23 signaling may not be a 67 

viable therapeutic strategy to treat NASH patients. 68 

 69 

Results 70 

Recombinant IL-23 increases RORt cell accumulation in liver 71 

In order to determine whether IL-23 is sufficient to induce hepatic expansion of RORt positive 72 

IL-17 producing cells, we intraperitoneally injected 0.5ug recombinant mouse IL-23 (rmIL-23) 73 

daily for three consecutive days into mice fed on normal diet (ND) and analyzed the livers 24hrs 74 

after the last injection. Administration of rmIL-23 led to a five-fold expansion of hepatic Ki67+ 75 

RORt cells (Figures 1A and 1B) and a two-fold increase in the percentage of Ki67+ RORt cells 76 

when compared to vehicle control (Figure 1C). RORt cells that proliferated actively were 77 

identified as MAIT and  T Cells (Figures 1D and 1E). rmIL-23 treatment also induced an increase 78 

in the percentage of hepatic neutrophils and inflammatory monocytes when compared to vehicle 79 

control (Figures 1F and 1G). These results thus suggest that IL-23 is sufficient to induce RORt cell 80 

accumulation and pro-inflammatory response within the livers. 81 

 82 

Western Diet induced hepatic expansion of RORt cells is dependent on IL-23R  83 

Next, we investigated whether IL-23 signaling is required for of RORt cell accumulation in the 84 

animal model of NASH. Western Diet (WD) consisting of high fat, high fructose, and added 85 

cholesterol have been established to induce several NASH phenotypes including hepatic 86 

inflammation, fibrosis and an increase in liver damage measured by the serum biomarkers such 87 
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as alanine aminotransferase (ALT), aspartate aminotransferase (AST), all in a nutritional setting 88 

without liver damaging chemicals [24, 25]. We fed WT and Il23r-/- mice with normal diet (ND) or 89 

WD for 20 weeks (Figure 2A)  [26]. The WD induced the expansion of RORt+  T cells and MAIT 90 

cells in livers from WT mice (Figure 2B and 2C). In Il23r-/- mice, we found that WD-induced 91 

expansion of   T cells and MAIT cells were dramatically normalized to the baseline. 92 

Furthermore, by intracellular staining of liver  T cells, we observed a significant decrease of IL-93 

17A production from Il23r-/- compared to WT. These data suggest that IL-23 plays an important 94 

role in regulating IL17 producing cells in WD induced NASH model. 95 

 96 

IL-23 signaling is not critical for hepatic inflammation and fibrosis induced by WD in mice  97 

Having established its critical role in WD-indued RORt cell accumulation, we explored the 98 

contribution of IL-23 signaling to WD-induced liver inflammation and fibrosis. While there is a 99 

clear increase of hepatic inflammation induced by WD, we did not observe any noticeable 100 

differences in liver inflammation between WT and Il23r-/- livers from WD fed mice as assessed 101 

by histology and pro-inflammatory gene expression (Figures 3A and 3B). On the other hand, while 102 

we observed a modest, but statistically significant, reduction of pro-inflammatory monocytes in 103 

the WD indued Il23r-/- liver (Figure 3C), there was no significant difference of neutrophil 104 

infiltration to the liver between Il23-/- and WT mice (Figure 3D), the main myeloid cell known to 105 

be recruited by IL-17 induced chemokines. In addition, we found that the serum levels of 106 

Keratinocytes-derived chemokine (KC) (Figure 3E) and Interferon gamma-induced protein 10 (IP-107 

10) (Figure 3F) were not changed in Il23r-/- mice. Next, to address the role of IL23R signaling in 108 

liver fibrosis in the WD-induced NASH model, we evaluated hepatic collagen content by 109 



trichrome staining analysis and hepatic collagen gene expression. We did not observe a 110 

significant difference of collagen content at the histology level as well as at the transcriptional 111 

level (Figures 4A and 4B). Overall, these results do not suggest IL-23 signaling as the main driver 112 

of liver inflammation and fibrosis in the WD-induced NASH model. 113 

 114 

IL-23 signaling does not contribute to WD induced liver dysfunction 115 

Next, we examined the impact of Il23r deletion on liver function.  In this regard, we measured 116 

several serum biomarkers of liver function. The results showed that there is little difference of 117 

serum ALT/AST, alkaline phosphatase (AP), albumin, cholesterol, and triglyceride levels between 118 

WT and Il23r-/- mice fed on WD (Figure 5C-5H). Similarly, IL-23R deficiency appears not to affect 119 

the WD-induced whole-body weight as well as liver weight gains (Figure 5A and 5B). Collectively, 120 

these data suggests that IL-23 signaling may not contribute to liver dysfunction caused by WD-121 

induced metabolic imbalance. 122 

 123 

IL-23 signaling does not contribute to liver inflammation and fibrosis in the CDA-HFD model of 124 

NASH 125 

To complement our findings in WD-induced NASH model, we sought to determine whether IL23 126 

signaling contributes to the pathogenies of NASH in another animal model. In this regard, we 127 

chose the CDA-HFD model (Figure 6A) because this model has been demonstrated to recapitulate 128 

steatosis, inflammation, and advanced fibrosis in liver  [27]. The CDA-HFD significantly induced 129 

the expansion of ROR+  T Cells and MAIT cells in mouse livers (Figures 6B and 6C). Consistent 130 

to our observation in WD-induced NASH model, we found no impact of IL-23R depletion on liver 131 



inflammation and fibrosis by histology (Figures 6D). Furthermore, no significant changes in 132 

hepatic inflammatory or fibrotic gene expression were detected between WT and Il23r-/- mice 133 

fed on CDA-HFD (Figure 6G). In addition, we did not observe any significant change in body 134 

weight, liver weight, and a variety of serum biomarkers for liver function between WT and Il23r-135 

/- mice. Taken together, these results suggest that IL-23 signaling does not contribute to hepatic 136 

inflammation and fibrosis in the CDA-HFD NASH model. 137 

 138 

Discussion 139 

NAFLD/NASH is an unmet medical need that is increasingly common around the world. The 140 

incidence of NAFLD world-wide is approximately 25%, and the global prevalence of NASH patients 141 

from NAFLD biopsied patients was estimated to be 59.1% based on Meta-analysis data [7, 28]. 142 

There are currently no approved therapies for NAFLD/NASH, and pro-inflammatory pathways 143 

have been proposed to be a class of appealing targets for this complex disease [29]. In this regard, 144 

it came to our attention that hepatic IL-17 producing cells have been shown to promote liver 145 

inflammation and dysfunction [18-21]. However, genetic dissection of this pathway, particularly 146 

its upstream regulator IL-23, in the preclinical NASH models is lacking and the target candidacy 147 

of this Il-17/Il-23 axis in NASH is yet to be fully established.  148 

 149 

In this context, we therefore chose to investigate the contribution of Il-23 signaling to NASH 150 

pathogenesis by testing IL-23R deficient mice in animal models of NASH. Our data showed that, 151 

while recombinant IL-23 is sufficient to drive IL-17A producing cell expansion and pro-152 

inflammatory myeloid cell infiltration in liver, Il-23r-/- mice are not protected from liver 153 

Highlight

Sticky Note
fibrogenic

Highlight

Highlight

Sticky Note
'The' is not needed here

Highlight

Sticky Note
I think this is potentially misleading. In the paper, Zounossi et al specifcally state that this igure may be subject to selection bias, as the NAFLD patients who were biopsied were those with a high likelihood of having steatohepatitis based on noninvasive parameters.



inflammation and fibrosis in two NASH models, suggesting the contribution of Il-23 signaling to 154 

NASH pathogenesis is minimal. These observations thus challenge the assumption that IL-17 155 

producing cells that have been shown to be present in NASH patient liver samples may play a 156 

causal role in the disease pathogenesis[30]. It should also be noted that we cannot rule out IL-157 

23’s contribution to non-NASH liver fibrosis as some reports suggest IL-23 signaling plays a role 158 

in cholestatic or viral driven liver fibrosis [18, 31]. Nevertheless, the dispensability of IL-23 159 

signaling in NASH driven liver inflammation is intriguing given its critical role in a wide variety of 160 

pro-inflammatory diseases. Since it is well documented that many inflammatory factors such as 161 

cytokines and PAMPs are elevated in NASH models, it is not inconceivable that the accumulation 162 

of these factors may mask any effects of IL-23 in the NASH models [29, 32]. Further studies are 163 

warranted to dissect the potential crosstalk between IL-23 and other proinflammatory cytokines 164 

during the pathogenesis of NASH.  165 

 166 

In summary, we present the evidence that IL-23r -/- mice are not protected from liver 167 

inflammation and fibrosis in two NASH preclinical models, thus suggesting that IL-23 signaling 168 

may not be an effective therapeutic target for NASH. Our study also supports the necessity of 169 

leveraging genetic models to validate drug targets when possible and the notion that the overall 170 

role of IL-23/IL-17 axis in NASH may need to be re-evaluated. 171 

 172 

Material and Methods 173 

Mouse studies 174 
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Il23r-/- mice were generated as described previously [33], the control group were littermate wild 175 

type mice. Diets used in this study were purchased from Research Diets; Normal Diet (ND) was 176 

compared either to Western Diet (WD) (Diet #D19021501) composed of 40% kcal Fat, 22% kcal 177 

Fructose, and 1.25% Cholesterol or Choline Deficient L-Amino Acid Derived High Fat Diet (CDA-178 

HFD) (Diet #A06071302) composed of 60% kcal Fat, 0.1% Methionine, and no added choline. All 179 

mice started the diets at 8 weeks of age, and all mice used were males. The ND vs WD cohort 180 

were challenged with the diet for 20 weeks. The ND vs CDA-HFD cohorts were on the diets for 9 181 

weeks. C57Blk/6 mice from Jackson Laboratory were used for the Intraperitoneal (IP) injects of 182 

PBS vs IL-23. Recombinant murine IL-23 was purchase from R&D, mice were IP with either PBS or 183 

0.5ug IL-23 for three consecutive days and livers were harvested 24hrs after last injection. All 184 

animal activity were performed as required by the Institutional Animal Care and Use Committee 185 

(IACUC) of Genentech Inc., Animal Welfare Act, and in Accordance with the Guide for the care 186 

and use of laboratory animals (The Guide). 187 

 188 

Liver digestion and flow cytometry 189 

Upon CO2 euthanasia, serum was collected, and livers were perfused with 1X PBS, via the portal 190 

vein. Livers were collected for either histology, snap frozen, or tissue processing for non-191 

parenchymal cell (NPC) isolation. All liver samples per cohort were processed at the same time 192 

by transferring the livers in c-tubes (Miltenyi) and adding 5mL of digestion media consisting of 193 

0.2% Collagenase Type 2 (Worthington), 0.1% DNAse I (Roche), 1% BSA (Sigma), in RPMI. Samples 194 

were digested using MACS Miltenyi Dissociator using liver dissociation settings, and incubating 195 

samples at 37degrees C for 30mins in shaker at 120rpm. After digestion incubation, samples were 196 



centrifuged at 1600rpm for 5mins, ACK treated pellets were resuspended in 1X PBS and passed 197 

through a 70um cell strainer. Samples were pelleted, and resuspend in 15% Percoll, centrifuged 198 

for 1600rpm for 15mins without brake. These pellets were the non-parenchymal cell (NPC) 199 

fraction, free of hepatocytes. The NPCs were then resuspended in 1X PBS, stained with 200 

LIVE/DEAD fixable dye (Invitrogen) at a 1:1000 dilution, incubated on ice for 15mins, washed, 201 

resuspended in FACS buffer (PBS + 2.5mM EDTA + 5% BSA) with FcR block (Miltenyi), and stained 202 

with the appropriate conjugated fluro-antibodies. For RORgt staining, cells were 203 

processed/stained using the FOXP3 Transcription Factor staining kit (BD). For intracellular 204 

staining of IL-17a, NPCs were stimulated with Leukocyte Activation Cocktail with GolgiPlug (BD) 205 

for 4hours in RPMI media, then cells were washed, FcR blocked, and stained with appropriate 206 

antibodies. Samples were run and analyzed on Symphony analyzer (BD).  207 

 208 

RNA Extraction and Quantitative PCR 209 

RNA was isolated from approximately 100mg of liver tissue using 1mL Trizol using the bead 210 

homogenizer Qiagen method, followed by addition of 200uL chloroform, resuspended samples 211 

were centrifuged for 10mins at 13krpm, 300uL clear top aqueous layer was transferred to new 212 

tube followed by the addition of 300uL 70% Ethanol. The 600uL samples were then loaded on a 213 

RNeasy Mini purification column (Qiagen) for RNA isolation. RNA quantification and purity was 214 

analyzed with NanoDrop 2000 (Thermo Scientific). 1ug of RNA was used for cDNA synthesis using 215 

Iscript First Strand cDNA kit (BioRad). cDNA templates were combined with Taqman probes 216 

(Thermo), and Taqman Universial PCR Master Mix (Thermo), and run on QuantaStudio 6 Flex 217 

(Applied Biosystems). 218 



 219 

Histology 220 

Paraffin embedded liver tissues were sectioned and stained for Hematoxylin and Eosin staining 221 

and for Trichrome staining. Automated image analysis was conducted on trichrome stained slides 222 

to access fibrosis and inflammation. Features counted towards inflammation include 223 

inflammatory cells (lobular inflammation), primarily macrophages with some neutrophils, and 224 

areas of hepatocyte injury/ductular reaction. The trichrome stain allowed for robust 225 

identification of both fibrosis and inflammatory features. 226 

 227 

Serum Biomarker and Cytokine Analysis  228 

The liver chemistry panel consists of the following assays: Alanine Transaminase (ALT), Aspartate 229 

Transaminase (AST), Alkaline Phosphatase (AP), Albumin (ALB), and Triglycerides (TRIG). All 230 

assays were performed on the Beckman Coulter Au480 chemistry analyzer using the analytical 231 

principle of spectrophotometry and potentiometry. (Beckman Coulter Inc., Brea CA). Serum 232 

cytokines were measured using Luminex bead assay (Millipore platform). 233 

  234 

Quantification and Statistical Analysis 235 

GraphPad Prism 6 was used for statistical methods using the unpaired student t-test for panels 236 

in Figure 1 and Figure 2D. All other experiments were performed using one-way ANOVA. 237 

Statistical details provided in the figure legends. 238 

 239 
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Figure Legends 373 

Figure 1. rmIL-23 administration induces RORt proliferation in liver 374 

FACS staining was performed of hepatic non-parenchymal cells (NPC) from mice administered 375 

either PBS or IL-23 by Intraperitoneal (IP) injections (A-G): Representative FACS gate, IL-23 376 

induced greater frequency of RORt+Ki67+ T Cells gated from CD3e+CD4-CD8- (A). Total 377 

RORt+Ki67+ T Cells, indication of proliferative cell, and total RORt (CD4-CD3-) T Cells quantified 378 

in the liver (B-C).  Percentage quantification of Ki67+ of RORt+MAITs and RORt+  T Cells (D-E). 379 

Percentage of Neutrophils and Ly6c+ monocytes from CD45+ Cells (F-G). Groups: Vehicle (PBS): 380 

n=6, IL-23 (3x 0.5ug): n=6. Data represents mean ± S.D. *p < 0.05, **p < 0.001, ****p < 0.0001, 381 

two-tailed t-test. 382 

 383 

Figure 2. IL-23 is required for WD-induced hepatic IL-17 producing cell expansion 384 

WT or Il23r-/- mice were fed a ND or WD for 20 weeks, followed by terminal analyses (A). FACS 385 

quantification of percent RORt+ from  T Cells and RORt+ from MAIT cells (CD3e+TCRb+CD4-386 

CD8-) (B-C). Percentage of IL-17A positive cells in  T cells from WD fed WT and Il23r-/- liver non-387 

parenchymal cells (NPCs) stimulated with Leukocyte Activation Cocktail with GolgiPlug (BD) for 4 388 

hours (D). Groups: ND WT n=5, ND Il23r-/- n=5, WD WT n=7, WD Il23r-/- n=7. Data represents 389 

mean ± S.D. *p < 0.05, **p < 0.005, one-way ANOVA. 390 

 391 

Figure 3. IL-23 signaling is dispensable for WD-induced hepatic inflammation 392 

Liver sectioned H&E stained images of WT and Il23r-/- mice on ND or WD (A). Liver mRNA 393 

expression of Tnf, Cd68, Ccl2, Cxcl2, and Cxcl10 (B). Liver FACS analysis of percent Ly6c+ 394 



Monocytes and Neutrophils between the groups. Luminex results for serum levels of KC (E) and 395 

IP-10 (F) chemokines.  Groups: ND WT n=5, ND Il23r-/- n=5, WD WT n=7, WD Il23r-/- n=7. Data 396 

represents mean ± S.D.  *p < 0.05, **p < 0.005, ****p < 0.00005, one-way ANOVA. C/D?????? 397 

 398 

Figure 4. IL-23 signaling does not contribute to WD-induced hepatic fibrosis 399 

Trichrome staining images of livers (A). Liver mRNA expression of Col1a1, Col1a2, and Col3a1. 400 

Groups: ND WT n=5, ND Il23r-/- n=5, WD WT n=7, WD Il23r-/- n=7. 401 

 402 

 Figure 5. IL-23 signaling does not contribute to WD-induced liver dysfunction  403 

Body weights in gram(g) (A) and percent liver weights from body weight (B). Quantification of 404 

serum liver enzymes for Alanine Aminotransferase (ALT) (C), Aspartate Aminotransferase (AST) 405 

(D), and Alkaline Phosphatase (AP) (E) measured. Serum Albumin protein (F), serum cholesterol 406 

(G) and serum triglycerides (H) quantified. Groups: ND WT n=5, ND Il23r-/- n=5, WD WT n=7, WD 407 

Il23r-/- n=7. Data represents mean ± S.D, one-way ANOVA. 408 

 409 

Figure 6. IL-23 signaling does not contribute to liver inflammation and fibrosis in the CDA-HFD 410 

NASH model. 411 

WT and Il23r-/- mice were fed CDA-HFD for 9 weeks, followed by liver analysis (A). Percent 412 

quantification of hepatic RORt in  T Cells (B) and MAITs (C). Trichrome staining images and 413 

quantification of Inflammation (E) and Trichrome Collagen content (F). Liver mRNA expression of 414 

Tnf, Cd68, Ccl2, Cxcl2, Col1a1, Col1a2, and Col3a1 (G). Groups: ND WT n=3, ND Il23r-/- n=3, CDA-415 

HFD WT n=6, CDA-HFD Il23r-/- n=6. Data represents mean ± S.D.  ***p < 0.0005, one-way ANOVA. 416 



 417 

Figure 7. IL-23 signaling does not contribute to CDA-HFD-induced liver dysfunction.  418 

Body weights in gram (g) (A) and percent liver weights from body weight (B). Quantification of 419 

serum liver enzymes for Alanine Aminotransferase (ALT) (C), Aspartate Aminotransferase (AST) 420 

(D), and Alkaline Phosphatase (AP) (E) measured. Serum Albumin protein (F), serum cholesterol 421 

(G) and serum triglycerides (H) quantified. Groups: ND WT n=3, ND Il23r-/- n=3, CDA-HFD WT 422 

n=6, CDA-HFD Il23r-/- n=6. Data represents mean ± S.D. 423 

 424 
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