

S1 Appendix. Schematic representation of the tree structures

Figure 1: Tree structured networks mapping $x \in \{0, 1\}^d$, where $d \in \{8, 9, 10, 11, 12\}$, to binary output labels $y \in \{0, 1\}$

In the above figure, some examples of the tree structure networks used for generating synthetic data are presented. All tree structures have 2 layers of black-box modules with binary inputs $x \in \{0,1\}^d$, $d \in \{8,9,10,11,12\}$, three black-box modules in the first layer, an output black-box modules in the second layer, and binary output labels $y \in \{0,1\}$. Each structure was randomly constructed in a way that each first-layer black-box module operates on 2–6 separate input entries and forwards the partial results to the black-box output module. For each input dimension, 6 different network structures had been created resulting in 30 tree structures in total. The table below shows the details of the connections of all the tree generated tree structures.

Table 1: The connections between the input layer and the 3 black-box modules in the first layer
of the structured hybrid models, named as n_1 , n_2 , and n_3 .

$n_1, n_2, and n_3$.				
Input Data Dimension	n_1	n_2	n_3	
	2	2	4	
	2	3	3	
8	2	4	2	
	3	2	3	
	3	3	2	
	4	2	2	
9	2	2	5	
	2	3	4	
	2	4	3	
	2	5	2	
	3	2	4	
	3	3	3	
10	2	2	6	
	2	3	5	
	2	4	4	
	2	5	3	
	3	3	4	
	3	4	3	
11	2	3	6	
	4	3	4	
	2	4	5	
	3	3	5	
	3	4	4	
	4	4	3	
12	2	4	6	
	5	3	4	
	2	5	5	
	3	3	6	
	4	4	4	
	3	5	4	