S2 Appendix. COVID-19 data binarization

Converting the clinical and physiological COVID-19 patient features to binary variables.

Step-1: Decision tree classifier

We studied biometric information and physiological parameters of the COVID-19 patients for the first 7-
days of ICU stay. Figure 1 illustrates the results of a decision tree classifier for classifying patients according
to their vital status. The decision tree classifier was implemented in Python using the open-source library
Scikit-learn [1], and it was set to minimum-samples-split of 6 and minimum-impurity-decrease of 0.03 to

avoid overfitting.
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Figure 1: Decision tree classification on the vital status of the COVID-19 patients. 63 critically
ill COVID-19 patients in which 27 were labeled as non-survivals were classified by a decision tree classifier
using gini impurity criterion. The value quantities in the above figure represent [# survivals, # non-survivals]
within the related sample size.

Step-2: Binarization

First, we binarized the five most important COVID-19 patient features using the critical values in the
decision tree classifier. Then, a hybrid network with two different modules acting separately on the biometric
information (Age, BMI) and the physiological parameters (PaOs/FiO2, Urine-output) was reconstructed,
which maps 5-d binary input information to binary mortality status. Next, we labeled 5-d binarized COVID-

19 patient clinical information based on a 75% cutoff on the mortality rates for the associated decimal repre-



sentation. As shown in Table 1, the information of 63 patients was embedded into 20 decimal configurations

out of the possible 32.

Table 1: Binary representation of COVID-19 patients features.
BMI-1 | BMI-2 | Acc.(PaO3/FiOs) | Acc.(Urine-output) | Decimal | Vital Status*
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* Vital Status of 70” and ”1” states survivals and non-survivals, respectively.
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