
S3 Appendix. Hyperparameter optimization results

Here we show the optimized hyperparameters of the examined supervised learning ML classifiers, namely

namely Deep Neural Network (DNN), Support vector Machine (SVM), Random Forest (RF), and Logistic

Regression (LR), which is done by a grid search cross-validation object [1]. We employed 5-fold Stratified

cross-validation on shuffled training data. The performances of the selected hyperparameters and trained

model were then measured on a dedicated evaluation set that was not used during the model selection step.

1 Support Vector Machine

Table 1: The optimized hyperparameter of SVM for each input dimension of the synthetic data.
Input Data Dimension C∗ Kernel Gamma∗∗

8 10 rbf† 0.5
9 10 rbf 0.1
10 100 rbf 0.1
11 100 rbf 0.1
12 1000 rbf 0.1

∗ Regularization parameter
∗∗ Kernel coefficient
† Radial basis function Radial basis function

2 Random Forests

Table 2: The optimized hyperparameter of RF for each input dimension of the synthetic data.
Input Data Dimension Bootstrap Max. depth Max. features Min. samples leaf/split # estimators

8 True 10 Auto 1/2 200
9 False 10 Auto 1/2 300
10 True 10 Auto 2/2 300
11 True 50 Auto 1/2 200
12 False 20 sqrt∗ 1/5 200

∗ Square-root of the number of features (here input data dimension)

1

3 Logistic Regression

Table 3: The optimized hyperparameter of LR for each input dimension of the synthetic data.
Input Data Dimension C∗ Penalty Solver

8 0.001 none Newton-cg
9 1 L1 liblinear
10 1 L2 Newton-cg
11 0.001 none Newton-cg
12 0.1 L1 liblinear

∗ Inverse of regularization strength

4 Deep Neural Networks

For DNNs, we used Keras Tuner [2] hyperparameter optimization framework to optimize the hyperparameters

of DNNs for each data dimensions. Here, we present the network summery of the networks related to each

synthetic data input dimension.

For all different synthetic data input dimensions, we employed DNN classifiers with fully connected hidden

layers. To compute the binary output of the network, we used a Softmax activation function. For training

the DNN, we minimized the sparse categorical cross-entropy loss function of the predictions by the Adam’s

adaptive learning-rate optimization algorithm using the TensorFlow library [3].

Table 4: The network summery of the DNN employed for 8-dimensional synthetic data.
Layer type Output shape Activation function # parameters

Dense (None,48) ReLu 432
Dense (None,64) Sigmoid 3136
Dense (None,2) Softmax 130

hidden layers = 1
Learning rate = 0.01
Total # trainable parameters = 3698

Table 5: The network summery of the DNN employed for 9-dimensional synthetic data.
Layer type Output shape Activation function # parameters

Dense (None,32) ReLu 320
Dense (None,48) ReLu 1584
Dense (None,2) Softmax 98

hidden layers = 1
Learning rate = 0.001
Total # trainable parameters = 2002

2

Table 6: The network summery of the DNN employed for 10-dimensional synthetic data.
Layer type Output shape Activation function # parameters

Dense (None,48) Tanh 528
Dense (None,48) Sigmoid 2352
Dense (None,64) Sigmoid 3136
Dense (None,16) Sigmoid 1040
Dense (None,2) Softmax 34

hidden layers = 3
Learning rate = 0.001
Total # trainable parameters = 7090

Table 7: The network summery of the DNN employed for 11-dimensional synthetic data.
Layer type Output shape Activation function # parameters

Dense (None,32) Tanh 384
Dense (None,48) Tanh 1584
Dense (None,48) Tanh 2352
Dense (None,32) Tanh 1568
Dense (None,2) Softmax 66

hidden layers = 3
Learning rate = 0.01
Total # trainable parameters = 5954

Table 8: The network summery of the DNN employed for 12-dimensional synthetic data.
Layer type Output shape Activation function # parameters

Dense (None,48) Tanh 624
Dense (None,32) Tanh 1568
Dense (None,16) Tanh 528
Dense (None,2) Softmax 34

hidden layers = 2
Learning rate = 0.01
Total # trainable parameters = 2754

References

[1] Scikit-learn: Machine Learning in Python, Pedregosa et al., JMLR 12, pp. 2825-2830, 2011.

[2] O’Malley T, Bursztein E, Long J, Chollet, F, Jin, H, Invernizzi, L. others: Keras Tuner. 2019,

github.com/keras-team/keras-tuner.

[3] Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, et al. . Tensorflow: large-scale machine learning

on heterogeneous distributed systems (2016). arXiv preprint arXiv:1603.04467. 2015;52.

3

