1	PNAS
2	
2 3 4 5 6	
5 6	
7 8	Supplementary Information for
9 10	Topological Crossing in the Misfolded Tetrahymena Ribozyme Resolved by Cryo-EM
11	Shanshan Li ^{1,2} , Michael Z. Palo ³ , Greg Pintilie ² , Xiaojing Zhang ¹ , Zhaoming Su ^{2,4} , Kalli Kappel ³
12	Wah Chiu ^{2,5*} , Kaiming Zhang ^{1,2*} , Rhiju Das ^{3,6*}
13	
14	¹ MOE Key Laboratory for Cellular Dynamics and Division of Life Sciences and Medicine
15	University of Science and Technology of China, Hefei 230027, China
16	² Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
17	³ Department of Biochemistry, Stanford University, Stanford, CA 94305, USA
18	⁴ The State Key Laboratory of Biotherapy, Department of Geriatrics and National Clinical Research
19	Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610044, China
20	⁵ CryoEM and Bioimaging Division, Stanford Synchrotron Radiation Lightsource, SLAC National
21	Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, USA
22	⁶ Department of Physics, Stanford University, Stanford, CA 94305, USA
23 24	*Corresponding author.
25 26 27 28	Emails: wahc@stanford.edu, kmzhang@ustc.edu.cn, rhiju@stanford.edu
29	This PDF file includes:
30 31 32 33 34	Figures S1 to S6 Table S1 Legends for Movies S1 to S3
35	Other supplementary materials for this manuscript include the following:
36 37	Movies S1 to S3
38	14104168 21 10 23
39	
40	

Fig. S1. Single-particle cryo-EM analysis of Tetrahymena ribozyme. A. Representative motion-corrected cryo-EM micrograph. B. Reference-free 2D class averages.

Fig. S2. Workflow of the single-particle cryo-EM data processing. A total of 42,382 movie stacks were collected on a 300 kV Titan Krios cryo-electron microscope. cryoSPARC was used to resolve structural heterogeneity and four conformations were obtained. Detailed data processing procedures are described in "Materials and methods".

Fig. S3. Resolutions of four states of Tetrahymena ribozyme. A. Gold standard FSC plots calculated in cryoSPARC. B. Zoom-in views show examples of atomic models fitted to cryo-EM densities in the catalytic core.

Fig. S4. Model building of the M substates and the N state. A. Convergence of models built by DRRAFTER. The top 10 models produced by DRRAFTER were well-converged for P7, P3, J7/3, and J8/7 regions, with RMSD labeled. B. Model validation using Q-scores. The black line represents the expected Q-score at respective resolution based on the correlation between Q-scores and map resolution. Colored models of ribozyme based on Q-score per backbone are shown on the right panel.

Fig. S5. Comparison of M with N at the enzyme core. A. The enzyme core consists of eight paired and single-stranded regions shown in distinct colors. Zoom-in view illustrates the topological cross between J7/3 and J8/7. B. Overlaying cryo-EM models of M and N states reveals extensive native core with local rearrangements at the catalytic core.

Fig. S6. Comparison of M with N at the peripheral region. Overlaying these models reveals extensive native peripheral structure.

Table S1. Cryo-EM data collection, processing, and model validation

Table S1. Cryo-EM data collection, p			ation		
	Tetrahyme	Tetrahymena ribozyme			
Data collection and processing		•			
Microscope	Titan Krios G3i				
Voltage (kV)	300	300			
Camera	a Gatan K3				
Grids Type	R2/1 Quanti	R2/1 Quantifoil copper grid (200 mesh)			
Sample concentration	~25 µM	~25 µM			
Magnification	105,000×				
C2 aperture size (µm)	70	70			
Objective aperture size (µm)	100	100			
Pixel size (Å)	0.82				
Total exposure (e-/Å ²)	51.3	51.3			
Exposure time (s)	3	3			
Number of frames per exposure	30	30			
Energy filter slit width (eV)	20				
Data collection software	ection software EPU 2.7				
Number of exposures per hole	4	4			
Defocus range (μm)	-1.22.8				
Number of micrographs collected	42,382	42,382			
Sumber of micrographs used 35,045					
Number of initial particles	10,314,332	10,314,332			
Conformations	M1	M2	M3	N	
Symmetry	C1	C1	C1	C1	
Number of final particles	837,297	431,156	184,233	601,732	
Resolution (0.143 gold standard FSC, Å)	3.53	3.84	4.01	3.01	
Atomic model refinement					
Software	phenix	phenix	phenix	phenix	
Clashscore, all atoms	6.98	8.02	6.98	10.45	
MolProbity score	2.53	2.59	2.53	2.69	
Bad bonds (%)	0	0	0	0	
Bad angles (%)	0	0	0	0.01	

Legends for Movies S1 to S3

Movie S1. The topological difference between M and N.

Movie S2. The similarity of three M substates including M1, M2, and M3.

Movie S3. A possible M-to-N refolding pathway.