
Supplementary material for LanceOtron: a deep
learning peak caller for genome sequencing
experiments

S1 Training data acquisition and processing

S1.1 Selecting ENCODE experiments
To generate a complete list of experiments which met our specifications we used ENCODE’s
REST API (scripts and outputs available on GitHub). We filtered the results to samples
which were “released” status at the time of search inquiry and aligned to human reference
genome hg38 as BAM files; for H3K27ac, H3K4me3, and transcription factor ChIP-seq
experiments, the availability of a corresponding control track was also required. While
infrequent, samples were excluded if ENCODE metadata did not include information on
single-end versus paired-end sequencing. The number of samples meeting these criteria
was 3,902 (74 ATAC, 911 DNase, 305 H2K27ac, 463 H3K4me3, 2,149 transcription factor
samples).

From this 10 paired-end datasets were sampled at random from each experiment type,
except in H3K4me3 experiments where only 6 samples available were paired-end, and so 4
single end experiments were included.

S1.2 Data processing
Each BAM file was downloaded directly from ENCODE, along with the corresponding control
BAMs for H3K27ac, H3K4me3, and transcription factor ChIP-seq experiments. If multiple
replicates of the control experiments existed, only the first listed in ENCODE’s database was
used for analysis. BAM files were sorted and indexed using Samtools(Li et al., 2009) 1.3
(samtools sort filename.bam and samtools index filename.bam.sorted commands
respectively). Bigwig file coverage maps were created from the BAM files using
deepTools(Ramírez et al., 2014) version 3.0.1 commands: bamCoverage --bam

filename.bam.sorted -o filename.bw --extendReads -bs 1 --normalizeUsing

RPKM for paired-end sequenced experiments. For single-end sequenced experiments the
average fragment length was obtained from ENCODE and used with the --extendReads flag,
making the command: bamCoverage --bam filename.bam.sorted -o filename.bw

--extendReads averageFragmentLength -bs 1 --normalizeUsing RPKM.

S1.3 Combining datasets
The choice of dataset structure is closely linked to the model used to interpret the data. It
was decided for our purposes that combining datasets from ATAC-seq, ChIP-seq, and
DNase-seq would better benefit our model design. Deep learning requires very large
datasets, which are used to establish the properties of the inputs. By giving the model
ATAC-seq, ChIP-seq, and DNase-seq the model has a greater breadth and quantity of



examples to understand the input space. This is in contrast to creating individual models for
each experiment type, which would still learn roughly the same features, but would have
fewer samples to train from. In addition, experiments may have a mix of peak shapes, with
some types appearing more frequently than others, and combining datasets also allows for
reduction in misclassifying rare peak types.

S1.4 Randomly selecting regions to label
Putative peak calls were carried out on all datasets, followed by classification as either peak
or noise based on visual inspection. Coordinates for the regions being assessed were
determined three ways. The MACS2 peak caller was used on default settings, macs2

callpeak -t filename.bam.sorted -c control_filename.bam.sorted -n

sample_label -f BAM -g hs -B -q 0.01 for H3K27ac, H3K4me3, and transcription
factor ChIP-seq datasets. For ATAC-seq and DNase-seq, which lack control tracks, the
following command was used: macs2 callpeak -t filename.bam.sorted -n

sample_label -f BAM -g hs -B -q 0.01. The second and third peak call methods
focused on labeling regions based on their fold enrichment compared to the mean signal.
Coverage maps of sequenced reads were first smoothed by applying a rolling average of a
given window size. If this smoothed signal was greater than the mean multiplied by a fold
enrichment threshold, the coordinate was marked as enriched; adjacent enriched regions
were then merged. Methods two and three used five smoothing windows at different base
pair (bp) resolutions (100 bp, 200 bp, 400 bp, 800 bp, 1600 bp) as well as five different
enrichment thresholds (1, 2, 4, 8, 16). Method two compared the smoothed signal to the
mean of chromosome-wide signal multiplied by fold enrichment. Method three was similar
except the smoothed signal was compared to either the mean of the chromosome,
surrounding 5 kb, or surrounding 10 kb, whichever value was highest (i.e. max[chromosome
mean, 5 kb mean, 10 kb mean]) multiplied by fold enrichment.

From each dataset a 1 Mb continuous region was selected at random for each chromosome
for autosomes and sex chromosomes only. If the start of the randomly selected region was
near the end of the chromosome, the area considered was from that point to the
chromosome end, then from the chromosome start extending out until a full 1 Mb was
covered. Peaks called from all 3 methods which started within the random region were made
available for labeling. For both of the mean-based methods, a peak call was made for each
permutation of the smoothing window and enrichment threshold parameters, and all 25 calls
were combined - this meant the presence of multiple overlapping candidate peaks in some
cases. A python implementation of BEDTools(Quinlan and Hall, 2010) (pybedtools) was
used to find overlapping peaks, and only one selected at random was considered for visual
inspection.

S1.5 Data labeling
Only candidate regions which were obviously peaks or noise were labeled as such. Visual
inspection was carried out using MLV (Sergeant et al., 2021), with control tracks overlaid
when available. Regions were inspected one at a time, until either 100 verified peaks were
found for the dataset or all of the regions were assessed. Entire 1 Mb regions were
assessed (no early stopping), with the order of chromosomes randomized. A total of
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736,753 regions were labeled this way (5,016 peaks and 731,737 noise regions) covering
499 Mb. A subsample of these labeled data, alongside algorithmically labeled data
(described below), were used for training the first phase of the model. Afterwards the training
data was scored with the preliminarily trained model to identify any mislabeled data or
misclassifications; from this process 24 peaks and 1,187 noise regions were added to the
dataset. Ultimately 16,990 regions were used for training: 8,503 noise regions plus 8,463
peaks.

Additional labels were generated using an algorithm. First the raw signal was smoothed by
calculating the rolling mean for the surrounding 400 bp, and any coordinate where the signal
was 4-fold*mean-chromosome-signal was marked as enriched. Adjacent enriched regions
were combined, and if the size was between 50 bp and 2 kb it was considered a candidate
peak. Regions smaller than 50 bp were discarded, and regions above 2 kb were recursively
re-evaluated at a 1-fold higher threshold until the region size was between 50 bp and 2 kb,
or the region was greater than 20-fold enriched. If these candidate peaks intersected with
the previously labeled peaks, these regions were then also labeled peaks, resulting in an
additional 3,447 labels for a total of 8,463 peaks (ATAC-seq: 1,926; DNase-seq: 2,097;
H3K27ac ChIP-seq: 1,651; H3K4me3 ChIP-seq: 1,806; transcription factor ChIP-seq: 983).
Noise regions were down sampled with prioritization given to regions with the highest signal.
All noise regions with a max height in the 25th percentile or greater were included (3,658),
and equal numbers below the 25th percentile were randomly sampled.

Notably, the candidate peak calling algorithm LanceOtron uses closely resembles the
coordinate selection process described above. This ensures that when working with real
data, it is presented to the neural network in a similar fashion to the training data here.

S2 Deep learning model design and training
LanceOtron’s machine learning architecture is a type of wide and deep neural
network(Cheng et al., 2016), combining enrichment values, logistic regression, and a CNN.
The logistic regression model takes as inputs the enrichment values, while the CNN uses the
2 kb of signal centered on the region of interest. The outputs of these two models, along with
the 11 enrichment values, are input into a multilayer perceptron, which outputs a peak quality
metric (called Peak Score) with values ranging from 0 to 1.

The 11 enrichment values consisted of Poisson-based p-values, using maximum height and
average signal, calculated from 10kb to 100kb regions in 10kb increments as well as
chromosome-wide enrichment. While this is an internal model parameter, and not used for
significance thresholding, we opted to use the p-value because of the increased
interpretability, though numerous enrichment metrics could have been used to yield similar
results. These p-values are also returned to the user as an additional calculated
measurement; indeed the results of a traditional statistical peak caller could be mimicked by
simply using p-values as the sole filtering metric.

Because the labeling procedure included only those regions which were obviously peaks or
noise, the target values of the training data were 0 for noise, and 1 for peak. The logistic
regression model was trained separately with the same training data, and all coefficients and
model parameters saved. The wide and deep model was then trained with the logistic
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regression component locked, and with loss distributed 70:30 to
wide-and-deep-output:CNN-only-output. By penalizing the model on the CNN separately, it
actively encouraged predictions from the 2 kb of signal, i.e., the shape of the peak, to be
accurate in absence of enrichment information.

To determine the optimal structure and hyperparameters, a brute force method of building
many models with different configurations was carried out. Model per- formance was
assessed by measuring the number of correctly predicted clas- sifications of enriched
regions from data unseen to the model. This was done in two stages using the
RandomSearch function from the python package Keras Tuner. First, 5000 models were built
varying the following components: the first convolutional layer’s filter number (50-200) and
filter size (2-10), the number of convolutional blocks (1-5), number of convolutional layers
per block (1-5), convolutional filters used per hidden convolutional layer (20-100) and their
size (2-10), pooling type (max, average, or none), dropout rate (0.0-0.5), first dense layer
size (10-100), number of additional dense layers (0-3), additional dense layer size (10-100),
and learning rate (0.0001-0.01). Convolutional blocks were composed of first convolutional
layers, then batch normalization, followed by an optional pooling layer. Performance was
robust across a range of configurations. This included models with less complexity, which
required less time and computational resources. Given this, several architectural choices
were made: fixing the number of convolutional blocks to four, using one convolutional layer
per block, and using max pooling; the model used two additional dense layers. The search
process was repeated, building another 500 models which explored the following range of
component variables: the first convolutional layer’s filter number (50-150) and filter size
(2-10), convolutional filters used per hidden convolutional layer (50-200) and their size
(2-10), dropout rate (0.0-0.5), first dense layer size (10-100), additional dense layers size
(10-100), and learning rate (0.0001-0.01). The top 10 performing models were then
subjected to 5-fold cross validation, and the architecture from the top performer was used.

S3 Calculating p-value from an input control track
A standard p-value assessment based on the Poisson distribution is performed when using
LanceOtron’s Find and Score Peaks with Inputs module, which can be used in conjunction
with the peak quality metric output from LanceOtron’s deep learning model. The mean signal
expected from background, 𝜆, is determined using either the mean signal in the input control
track (𝜆input) or the mean signal in the input control track plus 1 kb (𝜆1kb), whichever is more
stringent. P-values are then computed using the average count of overlapping reads (Nave)
within the given candidate region.

where pPois is the Poisson cumulative distribution function:
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Supplementary figure 1 - Simulated data
F1 scores across peak size ranges from simulated data (A). While the lowest range had
smaller regions for the simulated reads to be mapped, resulting in undetectably low read
coverage and reduced F1 scores, the expansive regions allowed for sufficient coverage to
detect nearly all potential enrichment sites. However, when looking at regions which are
divided into multiple peaks (B), these are found much more frequently in regions larger than
1 kb.

Heatmap showing ratio of peaks found in both datasets across different replicates and
sequencing depths (C). Strong correlation was detected between replicates in a read-depth
dependent manner. At the lowest read depth (five million [5M] reads) the small number of
peaks called were found in very high percentages across all other peak calls (C, top-most
three rows), but made up a smaller percentage of the total peak calls from the higher
sequencing depth calls (C, left-most three rows). This is as expected, since at low coverage
only the strongest peaks will remain, be found in all datasets, and as coverage increases
there is an increased ability to detect sites which are less frequently bound which will be
absent at low depths.

Heatmap showing the Jaccard similarity coefficient between datasets (D). Datasets have
much weaker correlation at 5M reads, have a large improvement when increased to 10M
reads, a modest improvement when further increased to 20M reads, and plateauing effects
from there.
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Supplementary Figure 2 - Peak length distributions

(A) Fragment length distribution data per benchmarking experiment (ATAC-seq in MCF-7
cells; CTCF ChIP-seq in spleen cells; H3K27ac ChIP-seq in GM12878 cells; H3K27ac
ChIP-seq in HAP1 cells; H3K4me3 ChIP-seq in K562 cells; H3K4me3 ChIP-seq in MG63
cells; DNase-seq in A549 cells), grouped by peak caller. (B) Average peak width in base
pairs (bp) over the benchmarking datasets, and (C) the total bases covered in megabases
(Mb) .

Supplementary Figure 3 - LanceOtron performance compared
to other MACS2 parameters
Performance benchmarking measuring precision, recall/sensitivity, selectivity, and overall F1
score for LanceOtron, LanceOtron-MACS2 hybrid, MACS2, MACS2-strict, and
MACS2-broad - with and without input as available.

For LanceOtron-MACS2 and LanceOtron-MACS2 with input, the final peak call was
generated by LanceOtron via the Score Peaks module, using a peak score of 0.5 as the
threshold (consistent with all other benchmarking done). The candidate peak call was
generated using MACS2 or MACS2 with input on default settings.

The MACS2-strict peak call was generated using a q-value of 0.01, and MACS2-broad used
the broad option.
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Supplementary Figure 4 - Gene associations for peaks missed
by MACS2 but found with LanceOtron for SRF ChIP-seq in
GM12878 cells

Image generated from Reactome (Fabregat et al., 2017) showing gene enrichment, with
brighter yellow representing more significance. Regions selected for analysis were chosen
by peaks identified by LanceOtron only, and which were within 1 kb of a transcription start
site.
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Supplementary Figure 5 - Peak Score distribution across
candidate peaks

Histogram showing the total number of candidate peaks called by LanceOtron and
their associated Peak Score over all in-house datasets. LanceOtron’s deep learning
model tends to score enriched regions being either peak or noise at high
probabilities.
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Supplementary Table 1 - ENCODE datasets used for training
data and testing data

Training Data

Experiment ENCODE ID numbers

Assay Target Tissue Experiment BAM file Control BAM

ATAC-seq Open chromatin Breast
epithelium

ENCSR955JSO ENCFF656OYT

ATAC-seq Open chromatin Tibial artery ENCSR630REB ENCFF168OTV

ATAC-seq Open chromatin Foreskin
keratinocyte

ENCSR290YMN ENCFF799HAR

ATAC-seq Open chromatin Adrenal gland ENCSR113MBR ENCFF436NOT

ATAC-seq Open chromatin Foreskin
keratinocyte

ENCSR158XTU ENCFF784DSJ

ATAC-seq Open chromatin Foreskin
keratinocyte

ENCSR677MJF ENCFF764CQI

ATAC-seq Open chromatin Transverse
colon

ENCSR668VCT ENCFF377DAO

ATAC-seq Open chromatin Sigmoid colon ENCSR548QCP ENCFF482HAC

ATAC-seq Open chromatin Tibial nerve ENCSR831KAH ENCFF277DNH

ATAC-seq Open chromatin Thyroid gland ENCFF710ELD ENCSR474XFV

ChIP-seq H3K27ac RWPE1 ENCSR203KEU ENCFF708CBX ENCFF939LTT

ChIP-seq H3K27ac SKNSH ENCSR564IGJ ENCFF380OTV ENCFF959FMO

ChIP-seq H3K27ac Bipolar neuron ENCSR905TYC ENCFF751YAL ENCFF687LIL

ChIP-seq H3K27ac GM23338 ENCSR729ENO ENCFF403VXK ENCFF754UFV

ChIP-seq H3K27ac C42B ENCSR279KIX ENCFF913EZV ENCFF980IJT

ChIP-seq H3K27ac 22Rv1 ENCSR391NPE ENCFF025ZEN ENCFF769UET

ChIP-seq H3K27ac Foreskin
keratinocyte

ENCSR709ABP ENCFF085FAH ENCFF178GZR

ChIP-seq H3K27ac Foreskin
keratinocyte

ENCSR709ABP ENCFF776HMQ ENCFF178GZR

ChIP-seq H3K27ac Epithelial cell of
prostate

ENCSR910PDW ENCFF382XYO ENCFF213AZI

ChIP-seq H3K27ac RWPE2 ENCSR987PNT ENCFF245ORL ENCFF169DGZ

ChIP-seq H3K4me3 SKNSH ENCSR975GZA ENCFF027SGQ ENCFF959FMO
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ChIP-seq H3K4me3 SKNSH ENCSR975GZA ENCFF245RXP ENCFF959FMO

ChIP-seq H3K4me3 NCIH929 ENCSR082NQB ENCFF417RNS ENCFF446RUP

ChIP-seq H3K4me3 NCIH929 ENCSR082NQB ENCFF067LLV ENCFF446RUP

ChIP-seq H3K4me3 Bipolar neuron ENCSR849YFO ENCFF096QTT ENCFF687LIL

ChIP-seq H3K4me3 Bipolar neuron ENCSR849YFO ENCFF950QWN ENCFF687LIL

ChIP-seq H3K4me3 Muscle of leg ENCSR128QKM ENCFF552OGD ENCFF622XBJ

ChIP-seq H3K4me3 Heart right
ventricle

ENCSR107RDP ENCFF897OOT ENCFF246SXV

ChIP-seq H3K4me3 Gastrocnemius
medialis

ENCSR098OLN ENCFF310NMI ENCFF587DDD

ChIP-seq H3K4me3 OCILY3 ENCSR548PZS ENCFF816RLY ENCFF691EEI

ChIP-seq NR2C1 GM12878 ENCSR784VIQ ENCFF785FLS ENCFF322NTO

ChIP-seq EP300 Ovary ENCSR696LQU ENCFF405UYE ENCFF271JKY

ChIP-seq NFXL1 GM12878 ENCSR746XEG ENCFF673BXM ENCFF322NTO

ChIP-seq MXI1 Neural cell ENCSR934NHU ENCFF260PNL ENCFF056HWK

ChIP-seq ZNF318 K562 ENCSR334HSW ENCFF373YTD ENCFF790TAN

ChIP-seq CREB1 HepG2 ENCSR112ALD ENCFF011HOS ENCFF950AXC

ChIP-seq CTCF RWPE1 ENCSR303GFI ENCFF204KRO ENCFF290UZX

ChIP-seq RFX1 MCF7 ENCSR788XNX ENCFF804LEF ENCFF426RDP

ChIP-seq CTCF Ascending aorta ENCSR960MDF ENCFF353ZVY ENCFF023NJF

ChIP-seq E4F1 K562 ENCSR731LHZ ENCFF978NVP ENCFF910IKB

DNase-seq Open chromatin Left arm bone ENCSR976XOY ENCFF205JXZ

DNase-seq Open chromatin A673 ENCSR346JWH ENCFF348KWA

DNase-seq Open chromatin T-helper 1 cell ENCSR000EQC ENCFF425YMJ

DNase-seq Open chromatin Retina ENCSR820ICX ENCFF441YDL

DNase-seq Open chromatin Uterus ENCSR129BZE ENCFF759POB

DNase-seq Open chromatin NAMALWA ENCSR301OGM ENCFF554YJG

DNase-seq Open chromatin SKMEL5 ENCSR000FEK ENCFF844BZM

DNase-seq Open chromatin ELF1 ENCSR678ILN ENCFF433CFI

DNase-seq Open chromatin Myocyte ENCSR000EPD ENCFF042QTI

DNase-seq Open chromatin Pancreas ENCSR828FVZ ENCFF984FKS
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Supplementary Table 2 - ENCODE datasets used for testing
data

Testing Data

Experiment ENCODE ID numbers

Assay Target Tissue Experiment BAM file Control BAM

ATAC-seq Open chromatin MCF-7 ENCSR422SUG ENCFF346MIJ

ChIP-seq CTCF Spleen ENCSR692ILH ENCFF903NKV ENCFF376BTL

ChIP-seq H3K27ac HAP-1 ENCSR131DVD ENCFF742SZS ENCFF247DSQ

ChIP-seq H3K4me3 MG63 ENCSR579SNM ENCFF996ZSR ENCFF381RWF

DNase-seq Open chromatin A549 ENCSR000ELW ENCFF410CDT

Supplementary Table 3 - numerical listing of performance
benchmarks for all datasets

CTCF ChIP-seq in spleen

LoTron LoTron
MACS2

MACS2 MACS2
strict

MACS2
broad

LoTron
with
input

LoTron
MACS2
with
input

MACS2
with
input

MACS2
strict
with
input

MACS2
broad
with
input

Precision 0.946 0.946 0.707 0.768 0.671 0.981 1.000 0.879 0.926 0.823

Recall /
sensitivity

1.000 1.000 1.000 1.000 1.000 0.981 0.925 0.962 0.943 0.962

Selectivity 0.953 0.953 0.656 0.750 0.594 0.984 1.000 0.891 0.938 0.828

F1 score 0.972 0.972 0.828 0.869 0.803 0.981 0.961 0.919 0.935 0.887
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H3K27ac ChIP-seq in HAP-1

LoTron LoTron
MACS2

MACS2 MACS2
strict

MACS2
broad

LoTron
with
input

LoTron
MACS2
with
input

MACS2
with
input

MACS2
strict
with
input

MACS2
broad
with
input

Precision 0.981 1.000 0.75 0.854 0.692 0.981 1.000 0.864 0.907 0.779

Recall /
sensitivity

0.981 0.963 1.000 0.981 1.000 0.981 0.870 0.944 0.907 0.981

Selectivity 0.981 1.000 0.654 0.827 0.538 0.981 1.000 0.846 0.904 0.712

F1 score 0.981 0.981 0.857 0.914 0.818 0.981 0.931 0.903 0.907 0.869

H3K27ac ChIP-seq in GM12878

LoTron LoTron
MACS2

MACS2 MACS2
strict

MACS2
broad

Precision 0.937 0.925 0.833 0.862 0.781

Recall /
sensitivity

0.961 0.961 0.974 0.974 0.974

Selectivity 0.932 0.918 0.795 0.836 0.712

F1 score 0.949 0.943 0.898 0.915 0.867

H3K4me3 ChIP-seq in MG63

LoTron LoTron
MACS2

MACS2 MACS2
strict

MACS2
broad

LoTron
with
input

LoTron
MACS2
with
input

MACS2
with
input

MACS2
strict
with
input

MACS2
broad
with
input

Precision 0.969 0.974 0.880 0.920 0.848 0.992 0.992 0.946 0.968 0.906

Recall /
sensitivity

0.992 0.912 0.936 0.920 0.984 0.992 0.968 0.984 0.976 1.000

Selectivity 0.957 0.968 0.828 0.892 0.763 0.989 0.989 0.925 0.957 0.860

F1 score 0.980 0.942 0.907 0.920 0.911 0.992 0.980 0.965 0.972 0.951

H3K4me3 ChIP-seq in K562

LoTron LoTron
MACS2

MACS2 MACS2
strict

MACS2
broad

Precision 0.821 0.864 0.729 0.753 0.714

Recall /
sensitivity

0.986 1.000 1.000 1.000 1.000

Selectivity 0.773 0.833 0.606 0.652 0.576

F1 score 0.896 0.927 0.843 0.859 0.833

ATAC-seq in MCF-7
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LoTron LoTron
MACS2

MACS2 MACS2
strict

MACS2
broad

Precision 1.000 1.000 0.825 0.852 0.789

Recall /
sensitivity

0.980 0.941 0.980 0.970 1.000

Selectivity 1.000 1.000 0.779 0.821 0.716

F1 score 0.990 0.969 0.896 0.907 0.882

DNase-seq in A549

LoTron LoTron
MACS2

MACS2 MACS2
strict

MACS2
broad

Precision 0.971 1.000 0.697 0.752 0.651

Recall /
sensitivity

0.935 0.917 1.000 0.981 1.000

Selectivity 0.973 1.000 0.573 0.682 0.473

F1 score 0.953 0.957 0.821 0.851 0.788

Supplementary Table 4 - motif enrichment analysis of
transcription factors

CTCF in spleen

LanceOtron MACS2 LanceOtron with input MACS2 with input

Peaks called 19291 28953 17418 18390

Peaks called
with motifs

2639 7538 1675 1878

% Peaks with
motifs

86.3 74.0 90.4 89.79

GATA1 in primary erythroid

LanceOtron MACS2 LanceOtron with input MACS2 with input

Peaks called 3227 4587 2954 4467

Peaks called
with motifs

1446 1744 1420 1782

% Peaks with
motifs

44.8 38.0 48.1 39.9
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ATF2 in spleen

LanceOtron MACS2 LanceOtron with input MACS2 with input

Peaks called 53807 89390 53750 77469

Peaks called
with motifs

28734 39953 28734 37403

% Peaks with
motifs

53.4 44.7 53.5 48.3

REST in spleen

LanceOtron MACS2 LanceOtron with input MACS2 with input

Peaks called 51508 74803 49669 55288

Peaks called
with motifs

30516 36312 30069 30615

% Peaks with
motifs

59.2 48.5 60.5 55.4

SRF in spleen

LanceOtron MACS2 LanceOtron with input MACS2 with input

Peaks called 9766 20469 9034 7198

Peaks called
with motifs

3785 5493 3730 3634

% Peaks with
motifs

38.8 26.8 41.3 50.5

Supplementary Table 5 - Transcription start site enrichment
analysis of SRF

SRF in spleen

LanceOtron MACS2 LanceOtron with
input

MACS2 with input

Peaks called 9766 20469 9034 7198

Peaks called
intersecting
TSSs

3655 5779 3202 1498

% Peaks
intersecting
TSSs

37.4 28.2 35.4 20.4
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Functionality of LanceOtron’s user interface
LanceOtron features a rich graphical user interface, accessible using any web browser, and
allows peak calls to be made without the use of the command line. Using the web tool to
perform a peak call is demonstrated in supplementary video 1:
https://youtu.be/k8GrIp55vDg. Furthermore, exploring and filtering data is also easily carried
out with the graphical interface, demonstrated in supplementary video 2:
https://youtu.be/M5ox8XI-U4Q.
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