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SUPPLEMENTARY DISCUSSION 88 
 89 
Abiotic stress response gene repertoire in ferns  90 

Ferns are known for their tolerance of heavy metals and metalloids in both soil and 91 
freshwater1–4. Another Ceratopteris species, C. pteridoides, accumulates cadmium and is a viable 92 
candidate for phytoextraction and remediation of cadmium-contaminated ecosystems5. Although 93 
the genes directly controlling cadmium accumulation have not been identified, we discovered the 94 
expansion and functional diversification of the Natural Resistance-Associated Macrophage Protein 95 
(NRAMP) heavy metal transporter gene family, which has been shown to control cadmium uptake 96 
in Arabidopsis (Supplementary Fig. 7)6. Further analyses of heavy metal and metalloid tolerance 97 
in various fern species alongside genome-informed experimental investigations of gene function 98 
in Ceratopteris will expand understanding of molecular processes contributing to heavy metal 99 
hyperaccumulation in plants. With their abundant natural defenses and phytoremediation potential, 100 
ferns provide an important resource for genetic engineering of crop resistance and environmental 101 
restoration. 102 
 103 
Evolution of the APETALA2 gene lineage 104 

The APETALA2/ETHYLENE RESPONSIVE FACTOR (AP2/ERF) family is essential to 105 
plant development across green plants and encompasses genes known to control flower, seed, and 106 
fruit development in angiosperms7. To identify the APETALA2 and AINTEGUMENTA homologs 107 
in Ceratopteris richardii, we performed a BLAST search using homologs previously reported 108 
across land plants8,9. A total of 199 sequences was compiled and used to predict the evolutionary 109 
history of this gene lineage. Full nucleotide sequences were aligned using the online version of 110 
MAFFT10 with a gap open penalty of 3.0, offset value of 0.8, and default parameters. To find the 111 
nucleotide substitution model that best fits our data, using the Akaike Information Criterion11, we 112 
used jModelTest 212, which identified the GTRGAMMA model. RAxML v.8.0.0 was used to 113 
estimate phylogenetic relationships under a maximum likelihood (ML) framework13. The 114 
GTRGAMMA model was assigned, and a full ML search was implemented, using the autoMRE 115 
bootstrapping criterion to assess nodal support (-f a -# autoMRE option). Closely related genes 116 
from Arabidopsis - ARF3 (At2g33860); RAV1 (At1g13260); RAV2 (At1g25560); DREB1A 117 
(At4g25480); DRE1B (At4g25490) - were used as the outgroup.  118 

The AP2/ERF family is split into two major subclades, euAP2 and ANT 119 
(AINTEGUMENTA), in which three and 11 Ceratopteris genes were placed, respectively 120 
(Supplementary Fig. 2).  CerAP2 was previously found to be expressed in the inner sporangium 121 
wall, young spores, and leaf vasculature during sporogenesis, based on in situ hybridization 122 
analyses7. We found CerAP2 evenly expressed throughout the ten tissues, while the Ceratopteris 123 
euANT genes were more highly expressed in stem, root, and young sporophytes and the 124 
Ceratopteris basalANT genes were also evenly expressed throughout the different tissues 125 
(Supplementary Fig. 8). 126 
 127 
Co-evolution of LEU- and SEU-like gene families 128 
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Publicly available (ncbi.nlm.nih.gov, fernbase.org, congenie.org) LEUNIG- (LUG) and 129 
SEUSS- (SEU) like genes of Amborella trichopoda, Arabidopsis thaliana, Azolla filiculoides 130 
Chara braunii, Glycine max, Gnetum montanum, Klebsormidium nitens, Marchantia polymorpha, 131 
Nicotiana tabacum, Oryza sativa, Physcomitrium patens, Populus trichocarpa, Picea abies, Pinus 132 
pinaster, Pseudotsuga menziesii, Salvinia cucullata, Selaginella moellendorfii, Taxus baccata, 133 
Vitis vinifera, Volvox carteri f. niagaiensis and Zea mays were identified using BLAST14. 134 
Phylogenetic trees were constructed using amino acid sequences aligned with MAFFT using 135 
MEGA X, maximum likelihood, and automatic trimming (60% site coverage)15. Expression 136 
patterns of Ceratopteris LUG-like and SEU-like genes were generated using Heatmapper16. 137 

LUG- and SEU-like genes encode for transcriptional co-regulators that interact and co-138 
evolve even though they belong to different gene families. In flowering plants, these genes are 139 
essential for proper flower development, specifically in controlling petal shape and polarity. LUG-140 
like genes of seed plants fall into two subclades, the LEUNIG-HOMOLOG (LUH) clade and the 141 
LUG clade, but all non-seed land plant sequences, including a single gene, CrLUG, from 142 
Ceratopteris, are members of the LUG clade only (Supplementary Fig. 9A). SEU-like genes of 143 
seed plants also form two clades, the SEU and SEUSS-like clades. Of the three SEU-like 144 
Ceratopteris genes, two clustered with the seed plant and bryophyte SEU genes, and one, SEUSS-145 
like 3 (CrSEU3), appeared in a clade consisting only of fern sequences (Supplementary Fig. 9B). 146 
Neither the LUG nor the SEU gene families expanded or collapsed in Ceratopteris but both kept a 147 
moderate number of members during land plant evolution, suggesting that even after gene copies 148 
originating from a WGD are purged from the genome, the loss of one gene family member cannot 149 
be tolerated. SEU- and LUG-like Ceratopteris genes were expressed in sporophytic and 150 
gametophytic tissue alike, with lowest expression in sporangia and developing leaves, and highest 151 
expression in the stem, root, expanding leaf, and young sporophyte, suggesting pleiotropic 152 
functions for the members of both gene families.  153 
 154 
Evolution and selection of cell cycle gene families  155 

Homosporous plants have on average considerably higher chromosome numbers than do 156 
heterosporous plants17,18. Presumably, this is related either to mechanisms of genome doubling or 157 
of genome downsizing, and we hypothesize there could be differences in genes associated with the 158 
cell cycle in homosporous and heterosporous plants. Thus, we analyzed genes associated with 159 
cyclin-dependent kinases and cyclins, chromatin remodeling, and spindle formation and mapped 160 
significant gene copy expansions and contractions on a phylogenetic tree of land plants for which 161 
genome sequences are available (Supplementary Fig. 10).  162 

We ran Orthofinder 2.4.019 on 21 plant species representing all major clades of land plants, 163 
for which whole genomes are currently available (July 2021). We selected genes associated with 164 
cyclin-dependent kinases and cyclins20 and genes associated with spindle fiber formation and 165 
chromatin remodeling directly from The Arabidopsis Information Resource (TAIR), using the 166 
native search function in TAIR and the search terms “spindle” and “chromatin.” We selected 143 167 
orthogroups from the output of Orthofinder and examined the evolution of gene copy number. For 168 
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this we used Computational Analysis of gene Family Evolution (CAFE) v5.021, which uses a birth 169 
and death model to simulate gene family evolution. We then mapped nodes and tips that CAFE 170 
indicated had significant expansions or retractions in copy number. 171 

We aligned orthogroups with MUSCLE22 and synchronized the headers of the peptide 172 
orthogroup files to match the corresponding CDS files (https://github.com/carol-173 
rowe666/ortho_group_refile). We then used the peptide alignments to guide the CDS alignment 174 
with pal2nal (http://www.bork.embl.de/pal2nal/). Gene models in Pinus taeda were often 175 
mismatched between CDS and peptide sequences, so this species was removed from the analysis. 176 
The pal2nal-aligned CDS files were then used to generate gene trees using IQtree2 177 
(https://github.com/iqtree/iqtree2). Three of the 129 orthogroups included fewer than four 178 
sequences and could not be bootstrapped for gene tree estimation. We paired the Newick outputs 179 
generated by IQtree2 with the pal2nal-generated aligned CDS orthogroups to test for selection 180 
using the absREL model built into Hyphy (http://hyphy.org). 181 

We found no distinct patterns of changes in gene copy number in the three heterosporous 182 
lineages. However, in the lineage leading to Ceratopteris, we observed five gene expansion events: 183 
one associated with a cyclin and four associated with chromatin remodeling. Using HyPhy’s 184 
implementation of the absREL model, one orthogroup with the largest number of Ceratopteris 185 
genes under selection included six genes undergoing positive selection. This orthogroup included 186 
Arabidopsis genes known to be involved in regulation of DNA repair, DNA binding, RNA binding, 187 
and endonuclease activity.  Otherwise, most other orthogroups had no Ceratopteris genes with 188 
signs of positive selection and very few orthogroups with either one or two genes undergoing 189 
positive selection. 190 

 191 
Cytochrome P450 gene family diversity across green plants 192 
 Cytochrome P450s (CYP450s) can be found across the major lineages of life but are most 193 
diverse in green plants. These enzymes are critical to plant metabolism and have diversified to 194 
become one of the largest metabolism-related enzyme families found in Viridiplantae23. We 195 
identified CYP450 genes from 40 green plant species with multiple representatives from each 196 
major lineage, plus three red and brown algae (Rhodophyta and Phaeophyceae, respectively)  as 197 
outgroups, and classified them into previously identified CYP450 subfamilies (Supplementary 198 
Table 12). In total, we identified 11,463 CYP450 genes across these 43 species with the highest 199 
CYP450 diversity in hexaploid wheat, Triticum aestivum. On average, angiosperms contained 401 200 
CYP450 genes, although this sampling does include recent polyploids such as T. aestivum. The 201 
gymnosperms had a mean count of 344 CYP450s, ferns had 181, the single lycophyte sample 202 
Selaginella moellendorffii had 308, bryophytes had 151, charophyte algae had 31, and chlorophyte 203 
algae had 17; within ferns, the two water ferns, Azolla and Salvinia, had 155 and 80 total CYP450 204 
genes, respectively, and Ceratopteris had 309. The largest difference in CYP450 subfamily 205 
diversity between Ceratopteris and the water ferns was in CYP704B (58 in Ceratopteris, 7 in 206 
Azolla, 11 in Salvinia), which encode omega fatty acid hydroxylases, enzymes essential for spore 207 
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wall polymers24. Interestingly, this subfamily has even lower diversity in seed plants, with a mean 208 
count of 1.9 CYP704B genes.  209 

Independent of the CYP450 subfamilies, which were largely identified from angiosperm 210 
reference genes, we constructed a CYP450 phylogeny from 14 of these taxa, with representatives 211 
from each major green plant lineage (Supplementary Figure 11). While the early-diverging 212 
CYP450 clades have representative genes from diverse green plant taxa, it is clear that lineage-213 
specific subfamilies are prevalent especially in more recently diverged clades of the CYP450 214 
genes. 215 
  216 
Revitalizing the C-Fern Curriculum 217 

Ceratopteris is an exemplary model for teaching plant development and genetics because 218 
it has both independent gametophytic and sporophytic life stages, clearly demonstrating the 219 
alternation of generations25,26 typical of all land plants. Students can easily mutagenize the haploid 220 
spores using EMS or X-rays and see the resulting mutant phenotypes in the haploid 221 
gametophytes27. The ability of ferns to undergo intragametophytic selfing (egg fertilized by sperm 222 
from a single gametophyte) allows students to produce completely homozygous sporophytes in 223 
which any mutant phenotype will also be apparent in the diploid life cycle stage. In addition, true-224 
breeding mutant inbred lines can be maintained long term or can easily be crossed with other 225 
genotypes. With the ease and low costs of sequencing, undergraduate students can identify mutant 226 
phenotypes in Ceratopteris, isolate RNA, prepare libraries, send the libraries off for sequencing, 227 
and ultimately receive training in how to map RNA-seq data onto a reference genome within a 228 
semester. Ceratopteris is also capable of undergoing apogamy (a haploid sporophyte forms from 229 
gametophytic tissue without fertilization) and apospory (diploid gametophytes form from 230 
sporophytic tissue), readily producing polyploid individuals and essentially permitting virtually 231 
every means of plant reproduction with this single species28,29. The genome assembly and the 232 
sequenced doubled haploid F2 mapping population of Ceratopteris provide the resources and 233 
techniques to ensure that Ceratopteris and the C-Fern Curriculum will be an important model 234 
system for teaching plant development, genetics, genomics, breeding, physiology, and 235 
bioinformatics for years to come. 236 
  237 
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SUPPLEMENTARY FIGURES 308 
 309 
 310 

311 
Supplementary Fig. 1 Phylogeny of NRAMP metal-ion transporter gene family and 312 
Ceratopteris NRAMP gene expression. Angiosperm genes are red, gymnosperm genes are purple, 313 
fern genes are blue, lycophyte genes are orange, bryophyte genes are green, and algal genes are 314 
brown. 315 
  316 
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317 
Supplementary Fig. 2 Phylogeny of the APETALA2/ETHYLENE RESPONSIVE FACTOR 318 
(AP2/ERF) across land plants and expression in Ceratopteris. Angiosperm genes are red, 319 
gymnosperm genes are purple, fern genes are blue, and lycophyte genes are orange. 320 

 321 
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 322 
Supplementary Fig. 3 Co-evolution of transcriptional regulators. (A) Phylogeny of LEUNIG-323 
like gene family. (B) Phylogeny of SEUSS-like gene family. Angiosperm genes are red, 324 
gymnosperm genes are purple, fern genes are blue, lycophyte genes are orange, bryophyte genes 325 
are green, and algal genes are brown. (C) Gene expression patterns of LEU- and SEU-like genes 326 
in tissues/life stages of Ceratopteris.  327 
  328 
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 329 
Supplementary Fig. 4 Expansion and contraction in copy number of cell cycle-related genes 330 
across green plants. Light purple triangles indicate contractions; grey squares show expansions.  331 
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Supplementary Fig. 5 CYP450 gene diversity and evolution across green plants. The color-332 
coding of the 14 green plant taxa spaning 2,193 genes is found in the figure legend. 333 
 334 
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