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Additional details of methods 

Conditional quantiles of microbial counts 𝑌!.  

By Model (2), we model a fine sequence of conditional quantiles of 𝑊!|𝑌! > 0. Due to the 

one-to-one relationship between quantiles of 𝑊!|𝑌! > 0 and quantiles of 𝑌!|𝑌! > 01, together 

with Model (1), we have the entire conditional quantile function of 𝑌! piecewise defined, 

Q"!(𝜏|𝐗#) = I{𝜏 > 1 − 𝜋(𝛉$, 𝐗#)} ⋅ 5𝐗#%𝛉& ∘ Γ(𝜏; 𝐗#, 𝛉$) − 19, (Supp. 1) 

where 𝜋(𝛉$, 𝐗#) = P(𝑌! > 0|𝐗#) and Γ(𝜏; 𝐗#, 𝛉$): (1 − 𝜋(𝛉$, 𝐗#), 1) → (0,1) is a one-to-one 

mapping from the target quantile level 𝜏 of 𝑌! to the nominal quantile level 𝜏' of 𝑊!|𝑌! > 0 in 

Model (2). Specifically, for a 𝜏 below the change point 𝜋(𝛉$, 𝐗#), the outcome 𝑌! falls in the 

“absence range”, thus its corresponding quantile is zero. For a 𝜏 beyond the change point, 

Γ(𝜏; 𝐗#, 𝛉$) tells which quantile of 𝑊!|𝑌! > 0 determine the value of 𝑌! at 𝜏. Mathematically,  

𝛉& ∘ Γ(𝜏; 𝐗#, 𝛉$) = 𝛉&(𝜏'), 𝜏' = 	Γ(𝜏; 𝐗#, 𝛉$) =
𝜏 − {1 − 𝜋(𝛉$, 𝐗#)}

𝜋(𝛉$, 𝐗#)
, 

and the mapping is derived by 

𝜏 = PB𝑌! ≤ Q"!(𝜏|𝐗#)D𝐗#E	

			= {1 − 𝜋(𝛉$, 𝐗#)} + 𝜋(𝛉$, 𝐗#)PB𝑊! ≤ 5Q(!
(𝜏'|𝐗#, 𝑌! > 0) − 19 + 𝑈D𝐗#, 𝑌! > 0}. 

Apart from the characteristics mentioned in the manuscript, another merit of the two-

part quantile regression model is that it allows nonlinear associations between quantiles of 𝑌! 

and the covariates 𝐗#, though the logit of probability being present, and every quantile of the 

non-zero part are modelled by linear models. To give a concrete example, suppose that for 

one subject, the true likelihood of the investigated taxon being present in his gut (from Model 
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(1)) is 𝜋 = 0.8. Based on the mapping function above, the conditional median abundance of 

this taxon is determined by the 𝜏' =
).+,(.,)./)

)./
= 0.38th quantile of 𝑊!. If we change his 

assignment from placebo to treatment, how would the conditional median of the taxon 

abundance change accordingly? Suppose the true probability of having the taxon increases to 

𝜋 = 0.9 after he receives treatment. The conditional median would then be determined by the 

𝜏' =
).+,(.,).1)

).1
= 0.44th quantile of 𝑊!. The difference in conditional median is thus 

nonlinear, which is a composite effect from the two parts.  

 

Piecewise estimation strategy. 

Parameters of the two-part model (1)(2) can be readily estimated by regressing I(𝑌! > 0) on 

𝐗𝐢 using logistic regression and regressing the non-zero 𝑌! on the corresponding 𝐗# using 

linear quantile regression. As the variance of quantile regression estimate is inverse 

proportional to the local density, i.e., varB𝛉O&(𝜏)E → ∞ as 𝜏 → 0, the quantile estimate is not 

stable at the change point 1 − 𝜋(𝛉$, 𝐗#), and might blow up to a value with extraordinarily 

large magnitude. To achieve a reliable estimation of the conditional quantile function 𝑄R , we 

use a piecewise strategy: 

1. Estimate the probability of presence, 𝜋S𝛉O$, 𝐗#T = exp	(𝐗#%𝛉O$)/{1 + exp	(𝐗#%𝛉O$)} 

2. Select a constant 𝛿 ∈ (0, .
3
), divide the support of the target quantile levels (0,1) of 𝑌! 

into three sub-intervals: 

𝐴4 = B𝜏:	0 < 𝜏 < 1 − 𝜋S𝛉O$, 𝐗#TE,	

𝐵4 = B𝜏:	1 − 𝜋S𝛉O$, 𝐗#T ≤ 𝜏 ≤ 1 − 𝜋S𝛉O$, 𝐗#T + 𝑛,5E,	

𝐶4 = B𝜏:	1 − 𝜋S𝛉O$, 𝐗#T + 𝑛,5 < 𝜏 < 1E. 

3. If 𝜏 is in 𝐵4, estimate the quantile coefficients 𝛉O& at the nominal quantile level 

ΓS1 − 𝜋S𝛉O$, 𝐗#T + 𝑛,5; 𝐗#, 𝛉O$T and perform an interpolation between the quantile 

estimate and 1, which is the natural lower bound for microbial read count, at the 

change point 1 − 𝜋S𝛉O$, 𝐗#T. Pick the interpolated value at 𝜏. If 𝜏 is in 𝐶4, estimate the 

𝛉O& at ΓS𝜏; 𝐗#, 𝛉O$T directly. If linear interpolation is used, the estimation of 𝑄R  is shown 

as Supp. Fig. 1, and mathematically is 
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𝑄R = 0 ⋅ I(𝜏 ∈ 𝐴4)	

+ ^{𝐗#%𝛉O& ∘ ΓS1 − 𝜋S𝛉O$, 𝐗#T + 𝑛,5; 𝐗#, 𝛉O$T − 1} ⋅
𝜏 − B1 − 𝜋S𝛉O$, 𝐗#TE

𝑛,5
_ ⋅ I(𝜏 ∈ 𝐵4)	

+	5𝐗#%𝛉O& ∘ ΓS𝜏; 𝐗#, 𝛉O$T − 19 ⋅ I(𝜏 ∈ 𝐶4)																																																																(Supp. 2) 

Intuitively, the buffer zone 𝐵4 avoids the need to estimate the minimal quantiles of the 

non-zero part, preventing an explosive estimate around the zero-positive change point. The 

width of 𝐵4, 𝑛,5, is designed to converge more slowly than the logistic estimates, so the 

buffer will work and 𝑄R  is bounded and reliable almost surely. The consistency of 𝑄R  can be 

found elsewhere2. Other smooth methods can be used instead of the linear interpolation, to 

further control the estimate around the change point. There is a tradeoff when determining the 

width of 𝐵4. A wider 𝐵4 controls the estimates well but the longer interpolation introduces 

more biases. While if 𝐵4 is too narrow, the estimates close to the change point might not be 

properly controlled. Practically, when the sample size is reasonably large, we use a value 

approaching .
3
 as 𝛿, such as 0.499. As a complement to Fig. 1b, the matching process on the 

piecewise estimated conditional quantile functions is depicted in Supp. Fig. 2.  

However, when the sample size is severely limited, we might opt to omit the buffer 

zone 𝐵4 in estimation. A small sample size leads to a wide 𝐵4, then the interpolation in 𝐵4 

will induce substantial biases. In such extreme cases, reducing the biases is our primary goal, 

instead of controlling the explosive estimates that might occur.  
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Figures and tables 

 

Supp. Fig. 1 | Piecewise estimation of conditional quantile function. 

 

  

Supp. Fig. 2 | Correction with conditional quantile functions. a, Converting a non-zero 

count to the corrected non-zero count at the same quantile level. b, Converting a zero count to 

a non-zero count when the batch-free distribution is less sparse. Rounded average of all 

matched quantiles in the batch-free distribution is taken as the adjusted read count.  

a b 
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I. Simulate Metadata Batch, Condition ∼ Joint Bernoulli ("!"#$%, "&'()*#*'(, OR)

Starting Data, #

Input: Observed Vector of Taxa Read Counts #+ 	of Sample iII. Simulate Taxa Read Counts

Batch Condition
Taxa, j = 1, …, J 
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#+,- 	 = Dirichlet (#+ + 0.5) × libsize+

If Condition = 1:

For j ∈ Negatively Associated : -+.,-/ = -+.,- ÷ Condition FC
For j ∈ Positively Associated : -+.,-/ = -+.,- 	× Condition FC*/
For j ∉ DA : -+.,-/ = -+.,-

Note:
1. DA = ∪ { Negatively Associated, Positively Associated }
2. Total Taxa Pool = ∪ { DA, non-DA }
3. Condition FC*/ is computed s.t. libsize* is maintained

If Batch = 1:

For j ∈ Decreased in Batch 1 : -+.,-// = -+.,-/ ÷ Batch FC
For j ∈ Increased in Batch 1 : -+.,-// = -+.,-/ 	× Batch FC*/

Note:
1. Total Taxa Pool = ∪ { Decreased and Increased in Batch 1 }
2. Batch FC*/ is computed s.t. libsize* is maintained

Zero Rate of 20 Chosen Differentially Abundant Taxa
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Supp. Fig. 3 | Simulation setting, workflow, and visualization of simulated data. a, 

Workflow of generating simulated data based on the starting data. Specification of fold 

change (FC) and odds ratio (OR) are provided in Results – Evaluation on simulated data. 

Rounded 𝑌!6,899  is the simulated (bootstrapped) count of the j-th taxon in the i-th sample. The 

starting data only comprises the subset of MOMS-PI with body_site = vaginal and visit = 4, 

and with samples having less than 4000 library size and rare taxa presenting in less than 5% 

samples filtered out. b, Zero rates of the 20 chosen DA taxa in the starting data. The most 

abundant 5 taxa in the 20 are set to be negatively associated with Condition, because if they 

are set to be positively associated, their multiplied counts will be too large to maintain 
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libsize. c, PCoA plots of one simulated data for each of the six scenarios. In either Bray-

Curtis or Aitchison dissimilarly, the visualization and PERMANOVA R3 clearly show the 

three patterns, Null (Scenario A), Condition Effect > Batch Effect (Scenario B), and 

Condition Effect < Batch Effect (Scenario C). Scenario D, E, and F show similar patterns, 

respectively, with increased Batch Effect incorporating library size variability.  

 

 

 

Supp. Fig. 4 | False discovery rate (FDR) and sensitivity of association analysis between 

taxa relative abundance and Condition, with additional nominal FDR cutoffs. In the 

plots, the scenarios are arranged on the x-axis with the order A, D, B, E, C, F because the two 
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Nulls are allocated together, followed by Condition Effect > Batch Effect, and then Condition 

Effect < Batch Effect. Color and the name of the corresponding method are shown on the 

right within the graph. The solid line is FDR and the dashed line is sensitivity. Approaches 

with FDR attained around the nominal level 0.01 or 0.1 are valid, then among the valid 

approaches, the higher sensitivity is preferred.        
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Supp. Fig. 5 | PCoA plots of CARDIA data clustered by batch ID on taxa with different 

prevalence. Corresponding colors of the batches are shown at the bottom within the graph. a, 

by Bray-Curtis dissimilarity on raw counts of taxa with prevalence >0.75, 0.5-0.75, 0.25-0.5, 

0.1-0.25, 0.05-0.1, <0.05. Each point represents a sample with non-zero abundance for the 

taxa (note that fewer samples will have non-zero abundance for rarer taxa). Each ellipse 

represents a batch with the centroid indicating the mean. As an ellipse connects the 95% 

percentile of points for each batch, the size of the ellipse indicates the dispersion, and the 

angle indicates higher-order features of the batch. The more alignment of the ellipses is 

preferred. b, by Aitchison dissimilarity on the corresponding relative abundance of taxa with 

prevalence >0.75, 0.5-0.75, 0.25-0.5, 0.1-0.25, 0.05-0.1, <0.05. c, by GUniFrac dissimilarity 
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on the corresponding relative abundance of taxa with prevalence >0.75, 0.5-0.75, 0.25-0.5, 

0.1-0.25, 0.05-0.1, <0.05. 
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Supp. Fig. 6 | PCoA plots of HIVRC data clustered by study ID on taxa with different 

prevalence. Corresponding colors of the studies are shown at the bottom within the graph. a, 

by Bray-Curtis dissimilarity on raw counts of taxa with prevalence >0.75, 0.5-0.75, 0.25-0.5, 

0.1-0.25, 0.05-0.1, <0.05. Each point represents a sample with non-zero abundance for the 

taxa (note that fewer samples will have non-zero abundance for rarer taxa). Each ellipse 

represents a batch with the centroid indicating the mean. As an ellipse connects the 95% 

percentile of points for each batch, the size of the ellipse indicates the dispersion, and the 

angle indicates higher-order features of the batch. The more alignment of the ellipses is 

preferred. b, by Aitchison dissimilarity on the corresponding relative abundance of taxa with 

prevalence >0.75, 0.5-0.75, 0.25-0.5, 0.1-0.25, 0.05-0.1, <0.05.  
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Supp. Fig. 7 | PCoA plots of MOUTH data clustered by batch ID on taxa with different 

prevalence. Corresponding colors of the batches are shown at the bottom within the graph. a, 

by Bray-Curtis dissimilarity on raw counts of taxa with prevalence >0.75, 0.5-0.75, 0.25-0.5, 

0.1-0.25, 0.05-0.1, <0.05. Each point represents a sample with non-zero abundance for the 

taxa (note that fewer samples will have non-zero abundance for rarer taxa). Each ellipse 

represents a batch with the centroid indicating the mean. As an ellipse connects the 95% 

percentile of points for each batch, the size of the ellipse indicates the dispersion, and the 

angle indicates higher-order features of the batch. The more alignment of the ellipses is 

preferred. b, by Aitchison dissimilarity on the corresponding relative abundance of taxa with 

prevalence >0.75, 0.5-0.75, 0.25-0.5, 0.1-0.25, 0.05-0.1, <0.05. c, by GUniFrac dissimilarity 
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on the corresponding relative abundance of taxa with prevalence >0.75, 0.5-0.75, 0.25-0.5, 

0.1-0.25, 0.05-0.1, <0.05. 

 

 

Supp. Fig. 8 | PCoA plots of corrected data by standard ConQuR and ConQuR-libsize 

without fine-tuning. Corresponding colors of the batches/studies are shown at the bottom 

within the graph. a, CARDIA data, by Bray-Curtis dissimilarity on raw counts, Aitchison and 

GUniFrac dissimilarities on the corresponding relative abundance. Each point represents a 

sample, and each ellipse represents a batch with the centroid indicating the mean. As an 

ellipse connects the 95% percentile of points for each batch, the size of the ellipse indicates 

the dispersion, and the angle indicates higher-order features of the batch. The more alignment 

of the ellipses is preferred. b, HIVRC data, by Bray-Curtis dissimilarity on raw counts, 

Aitchison dissimilarity on the corresponding relative abundance. c, MOUTH data, by Bray-

Curtis dissimilarity on raw counts, Aitchison and GUniFrac dissimilarities on the 

corresponding relative abundance.  
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Supp. Tab. 1 | Summary of the 7 runs’ microbial profiles and metadata of the CARDIA dataset.  

Batch 

ID 

Sample size Library size  # Genera SBP 

(mean (SD)) 

Gender 

= 1 (%) 

Race 

= 1 (%) 

0 96 67716-139803 258 118.00 (16.99) 48 (50.0) 60 (62.5)       

1 89 53287-117222 241 117.82 (13.59) 52 (58.4)       61 (68.5)       

2 90 61703-112177 237 121.11 (15.70) 47 (52.2)       44 (48.9)       

3 82 69760-124721  262 119.21 (14.37) 42 (51.2)       47 (57.3)       

4 94 84358-193182  259 119.55 (17.21) 48 (51.1)       46 (48.9)       

5 94 90841-224737  280 121.35 (17.02) 56 (59.6)       46 (48.9)       

6 88 71850-253856 277 117.94 (17.17) 57 (64.8)    45 (51.1)    

   Shared: 183 p-value=0.585    p-value=0.329 p-value=0.034      

Note: One-way ANOVA test and Pearson's Chi-squared test were used to detect whether there are significant differences in continuous (SBP) 

and categorial (Gender, Race) metadata, respectively, among the 7 runs.  
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Supp. Tab. 2 | Summary of the 10 sub-studies’ microbial profiles and metadata of the HIVRC dataset.  

Study 

ID 

Author Sample size Library size  # Genera HIV status  

= 1 (%) 

Age  

(mean (SD)) 

Gender 

= 1 (%) 

BMI 

(mean (SD)) 

0 Dillon3 31 20000 235 18 (58.1) 35.94 (10.63) 10 (32.3)       25.18 (4.44)   

1 Dinh4 36 3500 157 21 (58.3)      47.66 (7.80)   8 (22.2)       25.45 (3.15)   

2 Lozupone5               37 5500 262 24 (64.9)      36.21 (10.72) 8 (21.6)      25.61 (4.84)   

3 Monaco6 110 194-10000 280 73 (66.4)     39.57 (9.77)   63 (57.3)      24.33 (4.48)   

4 Noguera-Julian7        137 10000 295 122 (89.1)      43.28 (10.12) 30 (21.9)       24.15 (3.02)   

5 Pinto-Cardoso8 42 15500 225 33 (78.6)      40.19 (10.14) 8 (19.0)       24.29 (4.09)   

6 Serrano-Villar9          43 185-1000 143 34 (79.1)      41.79 (10.55) 7 (16.3)      24.32 (3.11)   

7 Vesterbacka10 62 4000 268 47 (75.8)      46.94 (9.61)   31 (50.0)      26.45 (4.32)   

8 Villanueva-Millan11        50 20000 351 30 (60.0)      47.38 (9.49)   17 (34.0)       25.73 (5.12)   

9 Villar-Garcia12  24 5000 148 24 (100.0)   45.92 (9.34)   3 (12.5) 23.58 (3.74) 

    Shared: 65 p-value<0.001      p-value<0.001      p-value<0.001      p-value=0.004      

Note: One-way ANOVA test and Pearson's Chi-squared test were used to detect whether there are significant differences in continuous (Age, 

BMI) and categorial (HIV status, Gender) metadata, respectively, among the 10 sub-studies.  
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Supp. Tab. 3 | Summary of the 7 runs’ microbial profiles and metadata of the MOUTH dataset. 

Batch ID Sample size Library size  # Genera HPV status  

= 1 (%) 

Race  

= 0 (%)              1 (%)              2 (%) 

Sexual orientation 

= 0 (%)              1 (%)              2 (%) 

0 42 6721-15931 156 6 (14.3)          34 (81.0) 5 (11.9)           3 (7.1)            36 (85.7)          3 (7.1)            3 (7.1)           

1 46 5340-14342 141 10 (21.7)           38 (82.6) 6 (13.0)          2 (4.3)           41 (89.1)          1 (2.2)           4 (8.7)           

2 56 7267-16694 150 8 (14.3)           41 (73.2) 10 (17.9)           5 (8.9)           49 (87.5)          3 (5.4)           4 (7.1)           

3 77 5418-13520 152 6 (7.8)           63 (81.8) 9 (11.7)           5 (6.5)           71 (92.2)          4 (5.2)           2 (2.6)           

4 89 7232-18607 179 9 (10.1) 76 (85.4) 9 (10.1)          4 (4.5)          83 (93.3)          3 (3.4)           3 (3.4)          

5 89 2670-18610 187 14 (15.7)          50 (56.2)          28 (31.5)          11 (12.4)           68 (76.4)          8 (9.0)           13 (14.6)           

6 87 6534-21761 174 13 (14.9) 64 (73.6)                     20 (23.0)                     3 (3.4)                     74 (85.1)                     8 (9.2)                     5 (5.7)                     

   Shared: 112 p-value=0.396      p-value=0.003      p-value=0.104      

Note: One-way ANOVA test and Pearson's Chi-squared test were used to detect whether there are significant differences in the categorial (HPV 

status, Race, Sexual orientation, Smoking status) metadata among the 7 runs.  
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Supp. Tab. 3 (cont.) | Summary of the 7 runs’ microbial profiles and metadata of the MOUTH dataset. 

Batch ID Sample 

size 

Smoking status 

= 0 (%)                      1 (%)                      2 (%) 

0 42 24 (57.1)          14 (33.3)          4 (9.5)           

1 46 29 (63.0)          12 (26.1)          5 (10.9)           

2 56 31 (55.4)          20 (35.7)          5 (8.9)           

3 77 46 (59.7)          25 (32.5)          6 (7.8)           

4 89 55 (61.8)          25 (28.1)          9 (10.1)          

5 89 50 (56.2)          23 (25.8)          16 (18.0)          

6 87 45 (51.7)                     27 (31.0)                     15 (17.2)                 

  p-value=0.661 

Note: One-way ANOVA test and Pearson's Chi-squared test were used to detect whether there are significant differences in the categorial (HPV 

status, Race, Sexual orientation, Smoking status) metadata among the 7 runs.  
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Supp. Tab. 4 | Fitting strategies selected for taxa with different prevalence by fine-tuned ConQuR and ConQuR-libsize on the CARDIA 

data. 

 0 – 0.1 0.1 – 0.2 0.2 – 0.3 0.3 – 0.4 0.4 – 0.5 0.5 – 0.6 0.6 – 0.7 0.7 – 0.8 0.8 – 0.9 0.9 - 1 

Original X          

QQ        X X X 

Logistic 

Lasso 

 X X X X      

Quantile type  Lasso Lasso Lasso Lasso Lasso Lasso    

Lambda  2p/n 2p/n 2p/n 2p/n 2p/n 2p/n    

Interpolation     X X X    

Note: To interpret the model, e.g., for taxa with prevalence < 0.1 in CARDIA, the optimal choice is to keep the original data; for taxa with 0.1 < 

prevalence < 0.2, ConQuR / ConQuR-libsize with logistic-LASSO, quantile-LASSO (with 𝜆 = 3:
4

), without interpolation in the piece-wise 

estimation strategy is selected; for taxa with 0.5 < prevalence < 0.6, ConQuR / ConQuR-libsize with standard logistic, quantile-LASSO (with 

𝜆 = 3:
4

), with interpolation in the piece-wise estimation strategy is selected; for taxa with 0.7 < prevalence < 0.8, ConQuR / ConQuR-libsize with 

simple quantile-quantile matching is selected. 
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Supp. Tab. 5 | Fitting strategies selected for taxa with different prevalence by fine-tuned ConQuR and ConQuR-libsize on the HIVRC 

data. 

 0 – 0.1 0.1 – 0.2 0.2 – 0.3 0.3 – 0.4 0.4 – 0.5 0.5 – 0.6 0.6 – 0.7 0.7 – 0.8 0.8 – 0.9 0.9 - 1 

Original X          

QQ          X 

Logistic 

Lasso 

 X X X X  X X   

Quantile type  Lasso composite composite Lasso Lasso Lasso Lasso Lasso  

Lambda  2p/log(n) 2p/log(n) 2p/n 2p/log(n) 2p/n 2p/log(n) 2p/n 2p/n  

Interpolation        X   

Note: To interpret the model, e.g., for taxa with prevalence < 0.1 in HIVRC, the optimal choice is to keep the original data; for taxa with 0.1 < 

prevalence < 0.2, ConQuR / ConQuR-libsize with logistic-LASSO, quantile-LASSO (with 𝜆 = 3:
;<=4

), without interpolation in the piece-wise 

estimation strategy is selected; for taxa with 0.2 < prevalence < 0.3, ConQuR / ConQuR-libsize with logistic-LASSO, composite quantile (with 

𝜆 = 3:
;<=4

), without interpolation in the piece-wise estimation strategy is selected; similarly for the remaining intervals of prevalence. 
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Supp. Tab. 6 | Fitting strategies selected for taxa with different prevalence by fine-tuned ConQuR and ConQuR-libsize on the MOUTH 

data. 

 0 – 0.1 0.1 – 0.2 0.2 – 0.3 0.3 – 0.4 0.4 – 0.5 0.5 – 0.6 0.6 – 0.7 0.7 – 0.8 0.8 – 0.9 0.9 - 1 

Original           

QQ         X X 

Logistic 

Lasso 

 X X    X    

Quantile type Lasso Lasso Lasso Lasso Lasso Lasso Lasso Lasso   

Lambda 2p/n 2p/log(n) 2p/n 2p/log(n) 2p/n 2p/log(n) 2p/log(n) 2p/n   

Interpolation   X   X X X   

Note: To interpret the model, e.g., for taxa with prevalence < 0.1 in MOUTH, ConQuR / ConQuR-libsize with standard logistic, quantile-

LASSO (with 𝜆 = 3:
4

), without interpolation in the piece-wise estimation strategy is selected; for taxa with 0.1 < prevalence < 0.2, ConQuR / 

ConQuR-libsize with logistic-LASSO, quantile-LASSO (with 𝜆 = 3:
;<=4

), without interpolation in the piece-wise estimation strategy is selected; 

for taxa with 0.2 < prevalence < 0.3, ConQuR / ConQuR-libsize with logistic-LASSO, quantile-LASSO (with 𝜆 = 3:
4

), with interpolation in the 

piece-wise estimation strategy is selected; similarly for the remaining intervals of prevalence. 
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