The complement C3-complement factor D-C3a receptor signalling axis regulates cardiac remodelling in right ventricular failure

Shogo Ito^{1,2}, Hisayuki Hashimoto^{1,3}, Hiroyuki Yamakawa^{1,3}, Dai Kusumoto^{1,3}, Yohei Akiba¹,
Takahiro Nakamura¹, Mizuki Momoi¹, Jin Komuro¹, Toshiomi Katsuki¹, Mai Kimura¹, Yoshikazu Kishino¹, Shin Kashimura¹, Akira Kunitomi¹, Mark Lachmann¹, Masaya Shimojima¹, Gakuto Yozu¹, Chikaaki Motoda¹, Tomohisa Seki^{1,4}, Tsunehisa Yamamoto¹, Yoshiki Shinya¹, Takahiro Hiraide¹, Masaharu Kataoka^{1, 5}, Takashi Kawakami¹, Kunimichi Suzuki⁶, Kei Ito⁷, Hirotaka Yada^{7,8},
Manabu Abe⁹, Mizuko Osaka¹⁰, Hiromi Tsuru¹⁰, Masayuki Yoshida¹⁰, Kenji Sakimura⁹, Yoshihiro Fukumoto², Michisuke Yuzaki⁶, Keiichi Fukuda¹, Shinsuke Yuasa¹

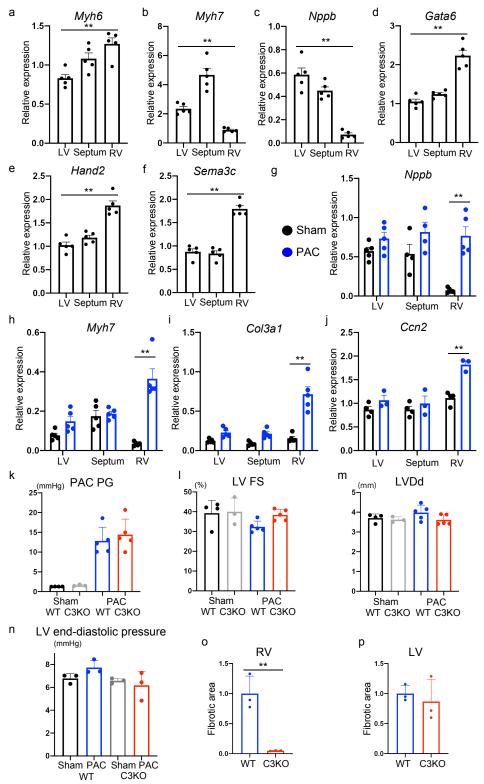
¹Department of Cardiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan

²Division of Cardio-Vascular Medicine, Department of Internal Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka 830-0011, Japan

³Center for Preventive Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjukuku, Tokyo 160-8582, Japan

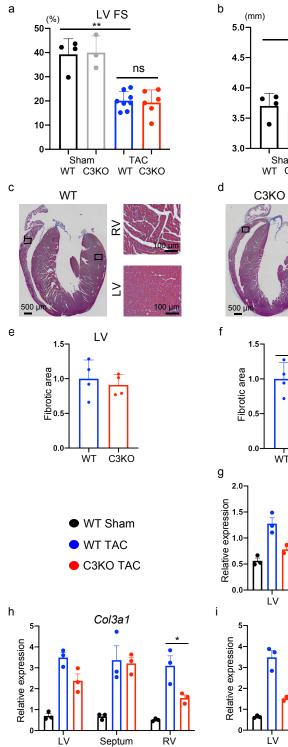
⁴Department of Healthcare Information Management, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan

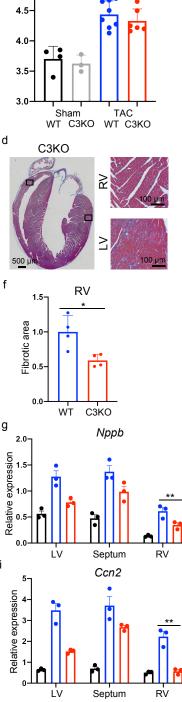
⁵Second Department of Internal Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka 807-8555, Japan


⁶Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan

⁷Department of Cardiology, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan

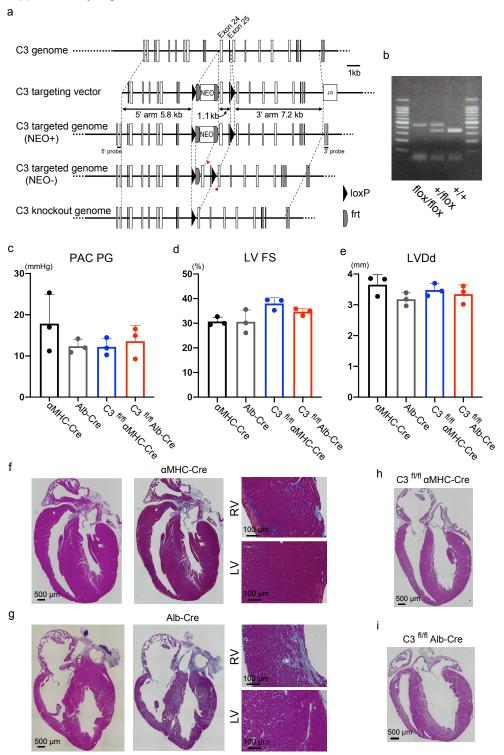
⁸Department of Cardiology, International University of Health and Welfare, Mita Hospital, 1-4-3 Mita Minatoku, Tokyo 108-8329, Japan


⁹Department of Animal Model Development, Brain Research Institute, Niigata University, 1-757 Asahimachi-Dori, Chuo-ku, Niigata 951-8585, Japan


¹⁰Department of Life Sciences and Bioethics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan

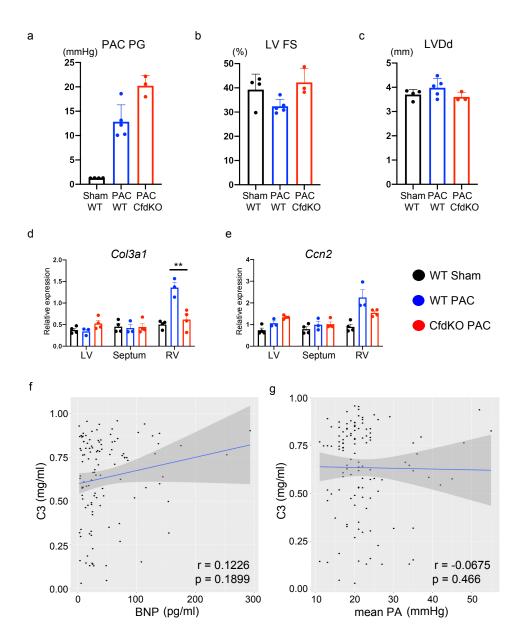
Supplementary Fig. 1: Differential gene expression patterns among different cardiac regions.

a-f, Gene expression of several cardiac markers, including *Myh6*, *Myh7*, *Nppb*, *Gata6*, *Hand2*, and *Sema3c*, were measured by qRT-PCR analysis in the left ventricle (LV), ventricular septum, and right ventricle (RV) of wild type (WT) mice (n = 5, p = 0.0029, p < 0.0001, p <0.0001, p < 0.0001, p = 0.0002, p = 0.0018). Data are presented as mean \pm standard error of the mean (SEM). g-i, Gene expression of several heart failure (*Nppb* and *Myh7*) and fibrotic (Col3al and Ccn2) markers were measured by qRT-PCR analysis in the LV, ventricular septum and RV after pulmonary artery constriction (PAC) (n = 5, p = 0.0003, p = 0.0002, p= 0.0004, p = 0.001). Data are presented as mean \pm SEM. In qRT-PCR analysis, expression of target genes was normalised to that of *Gapdh*. k-m, Measured values obtained from the echocardiogram in sham and PAC models of WT and C3 knockout (C3KO) mice. The pressure gradient in PAC site (PAC PG), LV contractile function (left ventricular fractional shortening [LV FS]), and LV size (left ventricular end-diastolic diameter [LVDd]) were evaluated (n = 3-5). Data are presented as mean \pm standard deviation. **n**, Measured values obtained from the catheter analysis in sham and PAC models of WT and C3KO mice (n = 3). LV end-diastolic pressure was evaluated. Data are presented as mean \pm SD. **o-p**, Quantified fibrotic area of the RV and LV in WT and C3KO PAC model mice (n = 3, p = 0.0049). Data are presented as mean \pm SD. Significance was assessed using a two-tailed unpaired Student's *t*-test. *p < 0.05; **p < 0.01.

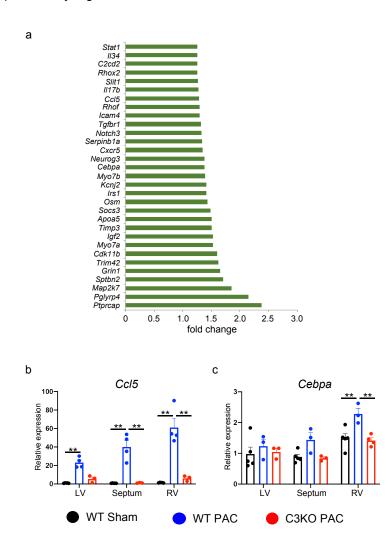

LVDd

**

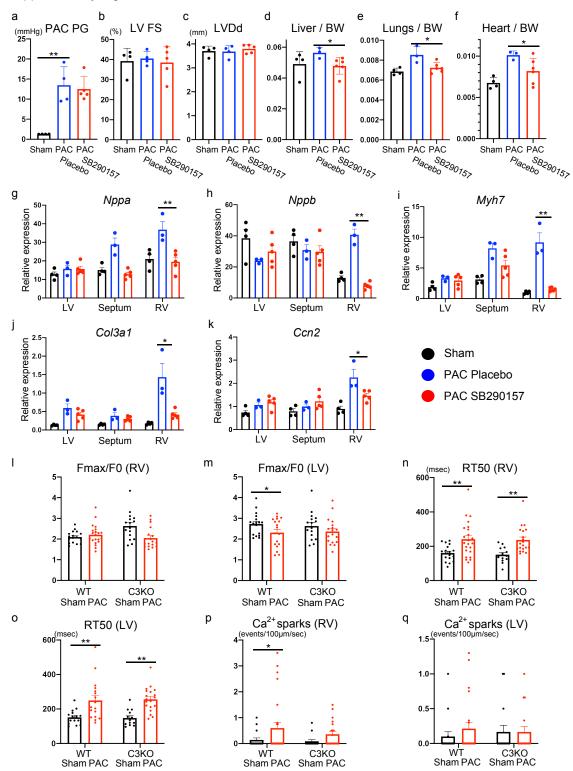
ns


Supplementary Fig. 2: C3 deficiency does not affect left ventricular (LV) functioning in transverse aortic constriction (TAC) mouse model.

a-b, Measured values obtained from the echocardiogram of sham and TAC models in wild type (WT) and *C3* knockout (C3KO) mice (n = 4, 3, 8, 6, a; p<0.0001, p = 0.762, b; p = 0.003, p = 0.370). The LV contractile function (left ventricular fractional shortening [LV FS]) and LV size (left ventricular end-diastolic diameter [LVDd]) were evaluated. Data are presented as mean \pm standard error of the mean (SEM). **c-d**, Representative images of Azan staining of the heart in WT TAC and C3KO TAC mice (n = 4). RV, right ventricle. **e**, **f**, Quantified fibrotic area of the LV and RV in WT TAC and C3KO TAC mice (n = 4, p = 0.0169). Data are presented as mean \pm SEM. **g-i**, Gene expression of several heart failure (*Nppb*) and fibrotic markers (*Col3a1* and *Ccn2*) markers were measured by qRT-PCR analysis in the LV, ventricular septum, and RV of WT sham, WT TAC, and C3KO TAC mice (n = 3, p = 0.008, p = 0.035, p = 0.003). Data are presented as mean \pm SEM. In qRT-PCR analysis, expression of target genes was normalised to that of *Gapdh*. Significance was assessed using a two-tailed unpaired Student's *t*-test. *p < 0.05; **p < 0.01; ns, non-significant.


Supplementary Fig. 3: Generation of conditional C3 knockout mice.

a, Schematic illustration of the C3 genomic DNA, targeting vector, targeted genome, targeted genome after FLP-mediated recombination, and knockout genome after Cre-mediated recombination. Open boxes indicate exons. Two frt sequences (grey semicircles) were attached to remove the neomycin resistance gene (Neo). The black triangles indicate the loxP sequences. The red arrowheads indicate the primer used for genotyping. **b**, Genotyping PCR for the detection of C3 flox/flox, +/flox, or +/+ mice (n = 3). c-e, Measured values obtained from the echocardiogram in a-myosin heavy chain promoter-driven Cre (aMHC-Cre) pulmonary artery constriction (PAC), and albumin promoter-driven Cre (Alb-Cre) PAC, C3 floxed aMHC-Cre (C3^{fl/fl} aMHC-Cre), and C3 floxed Alb-Cre (C3^{fl/fl} Alb-Cre) PAC mice (n = 3). The pressure gradient in PAC site (PAC PG), left ventricle (LV) contractile function (left ventricular fractional shortening [LV FS]), and LV size (left ventricular end-diastolic diameter [LVDd]) were evaluated. Data are presented as mean ± standard deviation. f-g, Representative images of hematoxylin-eosin staining and Azan staining of the heart in α MHC-Cre and Alb-Cre PAC model mice (n = 3). h-i, Representative images of hematoxylin-eosin staining of the heart in C3^{fl/fl} aMHC-Cre and C3^{fl/fl} Alb-Cre PAC model mice (n = 3).


Supplementary Fig. 4: Complement factor D (Cfd) plays an important role in right ventricular (RV) failure.

a-c, Measured values obtained from the echocardiogram of wild type (WT) sham, WT pulmonary artery constriction (PAC), and Cfd knockout (CfdKO) PAC model mice (n = 4, 5, 3). The pressure gradient in PAC site (PAC PG), left ventricle (LV) contractile function (left ventricular fractional shortening [LV FS]), and LV size (left ventricular end-diastolic diameter [LVDd]) were evaluated. Data are presented as mean \pm standard deviation. **d-e**, Gene expression of fibrotic (Col3a1 and Ccn2) markers were measured by qRT-PCR analysis in the LV, ventricular septum, and RV of WT sham, WT PAC, and CfdKO PAC mice (n = 4, 3, 4, d; p = 0.007). Data are presented as mean \pm standard error of the mean. In qRT-PCR analysis, expression of target genes was normalised to that of Gapdh. Significance was assessed using a two-tailed unpaired Student's *t*-test. *p < 0.05. **f**, Scatter plots showing the correlation between the C3 concentration and B-type natriuretic peptide (BNP) concentration in the overall cohort (n = 116; mean age = 66.7 ± 15.3 years; 70.7% women). Spearman correlation coefficient and two-tailed p-value are shown. Linear regression line (blue line) with 95% confidence intervals (gray area) is represented. g, Scatter plots showing the correlation between the C3 concentration and mean pulmonary artery (PA) pressure in the overall cohort (n = 119; mean age = 66.3 ± 15.5 years; 71.4% women). Spearman correlation coefficient and two-tailed p-value are shown. Linear regression line with 95% confidence intervals is represented.

Supplementary Fig. 5: Regulation of heart failure-specific gene expression by C3a *in vitro* and *in vivo*.

a, Upregulated genes identified by global gene expression analysis of neonatal rat ventricular cardiomyocytes (NRVCs) by addition of recombinant C3a protein. **b-c**, Expression of genes upregulated *in vitro* (*Ccl5* and *Cebpa*) was measured by qRT-PCR analysis in the left ventricle (LV) ventricular septum, and right ventricle (RV) of wild type (WT) sham, WT pulmonary artery constriction (PAC), and *C3* knockout (C3KO) PAC model mice (n = 3-5, b; p < 0.0001, p = 0.0003, p = 0.0051, p = 0.0002, p = 0.0055, c; p = 0.0017, p = 0.0029). Data are presented as mean \pm standard error of the mean. In qRT-PCR analysis, expression of target genes was normalised to that of *Gapdh*. Significance was assessed using a two-tailed unpaired Student's *t*-test. **p < 0.01.

Supplementary Fig. 6: C3a receptor (C3aR) antagonist SB290157 improves right ventricular (RV) functioning after pulmonary artery constriction (PAC).

a-c, Measured values obtained from the echocardiogram in wild type (WT) sham mice, WT PAC mice under placebo, and WT PAC mice treated with SB290157 (n = 4, 4, 5, a; p =0.0018). The pressure gradient in PAC site (PAC PG), left ventricle (LV) contractile function (left ventricular fractional shortening [LV FS]), and LV size (left ventricular end-diastolic diameter [LVDd]) were evaluated. Data are presented as mean \pm standard deviation. **d-f**, Organ weight/body weight (BW) ratios in WT sham mice, WT PAC mice under placebo, and WT PAC mice treated with SB290157 (n = 4, 3, 5, d; p = 0.0440, e; p = 0.0212, f; p = 0.0143). Data are presented as mean \pm standard error of the mean (SEM). g-k, Gene expression of several heart failure (Nppa, Nppb, and Myh7) and fibrotic (Col3a1 and Ccn2) markers were measured by qRT-PCR analysis in the LV, ventricular septum, and RV of WT sham mice, WT PAC mice under placebo, and WT PAC mice treated with SB290157 (n = 5, 3, 5, p =0.008, p < 0.001, p = 0.005, p = 0.011, p = 0.03). Data are presented as mean \pm SEM. In qRT-PCR analysis, expression of target genes was normalised to that of *Gapdh*. l-q, Measured values obtained from Ca²⁺ transients in singled cardiomyocytes from RV and LV of sham and PAC models of WT and C3KO mice (n = 16, 15, 26, 20, m; p = 0.028, n; p = 0.001, p = 0.0010.001, o; p = 0.002, p < 0.0001, p; p = 0.027). Fmax/F0, RT50, and Ca²⁺ spark frequency were evaluated. Data are presented as mean \pm standard error of the mean. Significance was assessed using a two-tailed unpaired Student's *t*-test. *p < 0.05; **p < 0.01.

Table. S1| Primers for genotyping by PCR

СЗКО	oIMR 1355: ATC TTG AGT GCA CCA AGC C				
	oIMR 1356: GGT TGC AGC AGT CTA TGA AGG				
	oIMR 7415: GCC AGA GGC CAC TTG TGT AG				
	$Mutant = \sim 500 bp$				
	Heterozygte = \sim 500 bp and 350 bp				
	Wild type = 350 bp				
C3 ^{flox/flox}	C3flox-F CTCGTCCCACCTCACATAGA				
	C3flox-R GCCGCATAAAGCTGGTGCTT				
	WT: 341bp, floxed: 448bp				
Cfd KO	F: ATGGGGTGGAGGGTGTTACT				
	R: ACAACAGTCCTGGGTACAGC				
	WT: ~2000bp, KO: 600bp				

Table. S2| Primers for qRT-PCR

Mouse

Gapdh	F: CCAATGTGTCCGTCGTGGATCT
	R: GTTGAAGTCGCAGGAGACAACC
С3	F: GAGCGAAGAGACCATCGTACT
	R: TCTTTAGGAAGTCTTGCACAGTG
C3ar1	F: CTCACTTGTCTATTGGGACTGC
	R: ATGGAGGAACCAGACTGTGTT
Cfd	F: CTACAAGCGATGGTATGATGTGC
	R: GGACCCAACGAGGCATTCT
Nppa	F: CACAGATCTGATGGATTTCAAGA
	R: CCTCATCTTCTACCGGCATC
Nppb	F: AGTCCTTCGGTCTCAAGGCA
	R: CCGATCCGGTCTATCTTGTGC
Col3a1	F: CCTGGCTCAAATGGCTCAC
	R: CAGGACTGCCGTTATTCCCG
Ccn2	F: GGGCCTCTTCTGCGATTTC
	R: ATCCAGGCAAGTGCATTGGTA
Myh6	F: GCAGAACAGTAAAATTGAGGACG
	R: CGCAGCTTCTCCACCTTAG
Myh7	F: GCCCTTTGACCTCAAGAAAG
	R: CTTCACAGTCACCGTCTTGC
Ccl5	F: TGCTCCAATCTTGCAGTCGT
	R: TCTTCTCTGGGTTGGCACAC
Cebpa	F: CAAGAACAGCAACGAGTACCG
	R: GTCACTGGTCAACTCCAGCAC
Hand2	F: GCAGGACTCAGAGCATCAACA
	R: AGGTAGGCGATGTATCTGGTG
Sema3c	F: GCCAGCATCAACAATCAAAGTT
	R: TCTGAATCACCCGGACGAAAT
Gata6	F: CATCACCATCACCCGACCTAC
	R: GGCCCTGTAAGCTGTGGAG

Human		
GAPDH	F: ACAACTTTGGTATCGTGGAAGG	
	R: GCCATCACGCCACAGTTTC	
<i>C3</i>	F: CTGTCCACGACTTCCCAGG	
	R: CCCCTTTTCTGACTTGAACTCC	
CFD	F: GACACCATCGACCACGACC	
	R: GCCACGTCGCAGAGAGTTC	
C3AR1	F: CCCTACGGCAGGTTCCTATG	
	R: GACAGCGATCCAGGCTAATGG	

Table. S3| Lists of antibodies

Reagent	Source	Identifier
Mouse anti-C3d	Creative BioLabs	TAB-1360CL
Rabbit anti-p44/42 MAPK	Cell Signaling technology	4695
Rabbit anti-Phospho-p44/42 MAPK	Cell Signaling technology	4370
Rabbit anti-Phospho-p38	Cell Signaling technology	9211
Rabbit anti-p38	Cell Signaling technology	9212
Rabbit anti-SAPK/JNK	Cell Signaling technology	9252
Rabbit anti-phospho-SAPK/JNK	Cell Signaling technology	9251

Reagent	Source	Identifier
Recombinant Mouse Complement	R&D Systems	8085-C3-025
Component C3a		
SB290157	Sigma Aldrich	SML1192-25MG
Endthelin 1	Sigma Aldrich	E7764-1MG
C3aR1 siRNA	Ambion	s136363 Cat:4390771

Table. S4| Lists of chemicals, recombinant proteins, and siRNA