Supplementary Material

Exploring chemical diversity in *Glycine max* cultivars: a multivariate approach in the search for bioactive compounds against *Spodoptera cosmioides*

Maria Clara Santana Aguiar¹, Marcelo Mueller de Freitas², Carlos Alessandro de Freitas², Arlindo Leal Boiça Júnior², Renato Lajarim Carneiro³, Maria Fátima das Graças Fernandes da Silva¹, João Batista Fernandes¹, Moacir Rossi Forim^{1*}

¹Laboratory of Natural Products, Department of Chemistry, Universidade Federal de São Carlos, São Carlos, Brazil

²Laboratory of Plant Resistance to Insects, Department of Agricultural Sciences, Universidade do Estado de São Paulo, Jaboticabal, Brazil

³Laboratory of Applied Chemometrics, Department of Chemistry, Universidade Federal de São Carlos, São Carlos, Brazil

* Correspondence: Corresponding Author *mrforim@ufscar.br*

T (C	Codel	leve	ls	Response variables				
lest		р	C	р	Number of	of $\sum(\text{peak area/internal standard area})$		andard area)	Dg
n°	А	В	C	D	compounds	(1-5 min)	(5-10 min)	(10-15 min)	
1	1	1	1	1	52	11.4	44.1	15.5	0.93
2	-1	1	1	1	41	10.4	37.4	10.2	0.45
3	1	-1	1	1	41	11.4	37.6	10.3	0.52
4	-1	-1	1	1	41	11.8	37.4	10.7	0.56
5	1	1	-1	1	39	12.3	43.5	10.0	0.64
6	-1	1	-1	1	40	9.8	32.1	7.5	0.24
7	1	-1	-1	1	45	10.6	34.8	8.6	0.44
8	-1	-1	-1	1	48	10.1	37.8	10.1	0.54
9	1	1	1	-1	39	11.5	43.1	11.2	0.61
10	-1	1	1	-1	37	10.3	29.8	8.1	0.20
11	1	-1	1	-1	43	11.4	31.9	8.4	0.41
12	-1	-1	1	-1	35	11.3	29.0	7.2	0.21
13	1	1	-1	-1	41	12.1	41.5	10.8	0.65
14	-1	1	-1	-1	44	11.4	29.3	8.0	0.37
15	1	-1	-1	-1	45	12.5	30.0	8.9	0.49
16	-1	-1	-1	-1	43	10.8	28.7	6.2	0.26
17	0	0	0	0	49	10.5	29.3	10.5	0.45
18	0	0	0	0	48	10.7	37.6	9.1	0.55
19	0	0	0	0	48	8.7	41.1	10.7	0.51

Supplementary Table 1. Matrix representation of the factorial design and the response obtained for solid-liquid extraction.

A: temperature (25, 50 e 70°C); B: extractor mixture - methanol solution (50:50, 30:70 and 10:90% v v⁻¹); C: time (5, 20 e 35 min); D: number of extractions (1, 2 and 3); -1: lower level; + 1: higher level; Dg: Global desirability.

T 4	Coo	del le	vels	Response variables					
Test	st		C	Number of	Σ (peak are	Σ (peak area/internal standard area)			
n ²	A	В	C	compounds	(1-5 min)	(5-10 min)	(10-15 min)		
1	1	1	1	39	7.29	29.6	7.71	0.53	
2	-1	1	1	39	10.1	39.1	10.7	0.83	
3	1	-1	1	45	10.1	25.9	9.04	0.71	
4	-1	-1	1	44	12.4	40.9	7.18	0.89	
5	1	1	-1	31	7.62	24.4	6.07	0.37	
6	-1	1	-1	19	6.49	14.2	2.29	0.00	
7	1	-1	-1	41	10.2	28.2	5.88	0.61	
8	-1	-1	-1	39	10.1	28.7	5.15	0.57	
9	0	0	0	39	9.70	31.07	5.39	0.58	
10	0	0	0	38	9.53	30.23	5.22	0.55	
11	0	0	0	39	9.27	32.53	5.53	0.58	

Supplementary Table 2. Matrix representation of the factorial design and the response obtained for solid-liquid extraction using ultrasound bath.

A: time (5, 20 and 35 min); B: extractor mixture - methanol solution (50:50, 30:70 and 10:90% v v⁻¹); C: number of extractions (1, 2 and 3); -1: lower level; + 1: higher level; Dg: Global desirability.

Supplementary Figure 1. Total ion chromatograms of nonvolatile compounds from *Glycine max* leaves using the optimized conditions of solid-liquid extraction and solid-liquid extraction assisted by an ultrasound bath.

Supplementary Figure 2. Contour curves for solid-liquid extraction (a) and solid-liquid extraction assisted by ultrasound bath (b).

Test	Codel levels		Response variables					
rest nº	٨	D	C	Number of	$\Sigma(R)$	Dg		
	A	D	C	compounds	(1-7 min)	(7-15 min)	(15-30 min)	
1	-1	-1	-1	28	75.0	12.3	12.8	0.34
2	1	-1	-1	20	80.7	16.7	2.6	0.28
3	-1	1	-1	52	58.2	37.3	4.5	0.56
4	1	1	-1	48	82.3	22.7	5.0	0.54
5	-1	-1	1	18	84.1	19.1	18.7	0.39
6	1	-1	1	20	71.5	22.6	5.9	0.30
7	-1	1	1	40	67.3	40.4	6.3	0.55
8	1	1	1	53	76.8	48.6	8.6	0.75
9	0	0	0	31	56.0	27.6	9.4	0.36
10	0	0	0	31	62.1	28.9	9.0	0.39
11	0	0	0	32	62.1	31.7	7.2	0.41

Supplementary Table 3. Matrix representation of the factorial planning and the response obtained for static headspace extraction.

A: time (5, 15 e 25); B: temperature (40, 80 e 120° C); C: saturation with glycerol (0, 0.5 e 1.0 g); -1: lower level; + 1: higher level; Dg: Global desirability.

Supplementary Figure 4. Comparison of the total ion chromatograms of nonvolatile compounds from leaves of *Glycine max* of ten cultivars using the optimized conditions of solid-liquid extraction assisted by ultrasound bath.

Supplementary Figure 5. Comparison of the total ion chromatograms of volatile compounds from leaves of *G. max* of ten cultivars using the optimized conditions of static headspace extraction.

	Compound identification		Detec	cted precurso	Molecular	Error (nnm)	
	Compound identification	fragments		(M+Na) ⁺	$(M+NH_4)^+$	formula	Error (ppin)
Caffeine (Internal Standard)		138, 123, 110	195.0873	217.0645	-	C ₈ H ₁₀ N ₄ O ₂	1.41
Indole	H	117	118.0646	140.0497	-	C ₈ H ₇ N	3.29
Trigonelline		136, 123, 110	138.0548	-	-	C7H7NO2	0.57

Supplementary Table 4. Nonvolatile compounds were detected in *Glycine max* leaves extract (Cavaliere et al., 2007; Ho et al., 2002; Jeon et al., 2012; Klejdus et al., 2005; Salerno et al., 2017; Song et al., 2014; Zanzarin et al., 2019).

Tuberonic acid glucoside	OH OH OH OH OH OH OH	367, 209	-	411.1619	-	C ₁₈ H ₂₈ O ₉	2.00
Tetradecanoic acid		229, 209	-	-	246.2427	$C_{14}H_{28}O_2$	-0.11
16-Hydroxy hexadecanoic acid		274, 258	-	-	290.2686	$C_{16}H_{32}O_3$	1.26
Palmitic amide	NH_2 O 14	212	256.2634	-	-	C ₁₆ H ₃₃ NO	0.21

 $287 594.1577 617.1472 - C_{27}H_{30}O_{15} 1.16$

Kaempferol glycoside	287	-	471.0884	-	$C_{21}H_{20}O_{11}$	3.42
Isorhamnetin glycoside	317	-	501.0984	-	$C_{22}H_{22}O_{12}$	3.76
Isorhamnetin glycoside	317	-	501.0989	-	$C_{22}H_{22}O_{12}$	3.37
Isorhamnetin glycoside	317	_	617.1463	-	$C_{27}H_{30}O_{15}$	3.52
Isorhamnetin glycoside	317	-	647.1564	-	C ₂₈ H ₃₂ O ₁₆	2.8
Isorhamnetin glycoside	317	-	647.1580	-	$C_{28}H_{32}O_{16}$	0.27
Isorhamnetin glycoside	317	_	647.1592	-	$C_{28}H_{32}O_{16}$	-1.86

- Cavaliere, C., Cucci, F., Foglia, P., Guarino, C., Samperi, R., Laganà, A., 2007. Flavonoid profile in soybeans by high-performance liquid chromatography/tandem mass spectrometry. Rapid Commun. Mass Spectrom. 21, 2177–2187. https://doi.org/10.1002/rcm.3049
- Ho, H.M., Chen, R.Y., Leung, L.K., Chan, F.L., Huang, Y., Chen, Z.Y., 2002. Difference in flavonoid and isoflavone profile between soybean and soy leaf. Biomed. Pharmacother. 56, 289–295. https://doi.org/10.1016/S0753-3322(02)00191-9
- Jeon, H.Y., Seo, D.B., Shin, H.J., Lee, S.J., 2012. Effect of Aspergillus oryzae -challenged germination on soybean isoflavone content and antioxidant activity. J. Agric. Food Chem. 60, 2807–2814. https://doi.org/10.1021/jf204708n
- Klejdus, B., Mikelová, R., Petrlová, J., Potěšil, D., Adam, V., Stiborová, M., Hodek, P., Vacek, J., Kizek, R., Kubáň, V., 2005. Evaluation of isoflavone aglycon and glycoside distribution in soy plants and soybeans by fast column high-performance liquid chromatography coupled with a diode-array detector. J. Agric. Food Chem. 53, 5848–5852. https://doi.org/10.1021/jf0502754
- Salerno, G., Frati, F., Marino, G., Ederli, L., Pasqualini, S., Loreto, F., Colazza, S., Centritto, M., 2017. Effects of water stress on emission of volatile organic compounds by Vicia faba, and consequences for attraction of the egg parasitoid Trissolcus basalis. J. Pest Sci. (2004). 90, 635–647. https://doi.org/10.1007/s10340-016-0830-z
- Song, H.H., Ryu, H.W., Lee, K.J., Jeong, I.Y., Kim, D.S., Oh, S.R., 2014. Metabolomics investigation of flavonoid synthesis in soybean leaves depending on the growth stage. Metabolomics 10, 833–841. https://doi.org/10.1007/s11306-014-0640-3
- Zanzarin, D.M., Hernandes, C.P., Leme, L.M., Silva, E., Porto, C., Martin do Prado, R., Meyer, M.C., Favoreto, L., Nunes, E. de O., Pilau, E.J., 2019. Metabolomics of soybean green stem and foliar retention (GSFR) disease using mass spectrometry and molecular networking. Rapid Commun. Mass Spectrom. 1–8. https://doi.org/10.1002/rcm.8655

Compound identification		Molecular formula	Main fragments
Menthol (Internal Standard)	OH ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	C ₁₀ H ₂₀ O	81(100), 71(95), 95(83), 91(77), 55(52), 41(47), 67(45), 82(42), 43(37), 123(34)
Acetaldehyde		C ₂ H ₄ O	44(100), 43(53), 42(16)
Propanal	0	C ₃ H ₆ O	58(100), 57(50)
2-Propenal		C ₃ H ₄ O	56(100), 55(74)
Butanal		C ₄ H ₈ O	43(100), 44(98), 41(83), 72(53), 57(33), 82(18), 53(12), 42(11), 81(10)
2-methyl-Butanal	0	C5H10O	41(100), 57(89), 58(63), 43(10)
3-methyl-Butanal	0	C5H10O	44(100), 41(99), 43(71), 58(61), 57(28), 71(21), 42(17), 45(12)

Supplementary Table 5. Volatile compounds detected in *Glycine max* leaves.

Hexanal		C ₆ H ₁₂ O	44(100), 56(91), 41(72), 57(61), 43(59), 72(21), 45(20), 55(17), 82(17), 67(15), 71(10), 58(10)
trans-2-Pentenal		C₅H ₈ O	55(100), 83(71), 41(42), 84(27), 56(26), 53(19), 69(10)
Hex-3-enal	0	C ₆ H ₁₀ O	41(100), 69(31), 55(28), 70(15), 80(14), 83(11)
Pentanal		C5H10O	44(100), 70(76), 43(74), 41(55), 55(54), 57(47)
trans-Hex-2-enal		C ₆ H ₁₀ O	41(100), 55(96), 69(79), 83(68), 42(62), 57(46), 70(28), 43(27), 56(23), 80(16), 97(14), 53(14), 54(11), 40(10), 79(10)
Octanal		C ₈ H ₁₆ O	41(100), 57(97), 43(91), 44(75), 55(74), 56(68), 84(61), 82(47), 69(46), 42(43),
Nonanal		C9H18O	57(100), 41(83), 56(74), 55(59), 43(53), 70(45), 44(36), 95(35), 68(34),67(33), 81(32), 69(29), 82(27), 98(23),45(19), 42(17), 71(15), 96(14), 83(11)
trans,trans-Hexa-2,4-dienal		C ₆ H ₈ O	81(100), 53(34), 41(34), 96(28), 67(25, 82(20)
trans,trans-Hepta-2,4-dienal		C7H10O	81(100), 53(19), 41(16), 79(13), 110(13), 67(11)

Heptadecanal	0 15	C ₁₇ H ₃₄ O	43(100), 57(85), 55(78), 82(78), 41(70), 67(54),81(51), 83(50), 96(46), 68(46), 71(44), 95(40), 69(36), 85(31), 70(30), 97(25), 56(23), 110(18), 84(18), 44(18)
1-Penten-3-ol	OH	C5H10O	57(100), 41(6), 43(6)
1-pentanol	ОН	C5H12O	42(100), 55(89), 41(59), 70(36)
cis-2-Penten-1-ol	ОН	C5H10O	57(100), 44(22), 41(21), 43(18), 68(16), 67(15), 55(13), 53(10)
1-Hexanol	ОН	C ₆ H ₁₄ O	56(100), 43(59), 55(49), 41(43), 42(37), 69(35)
trans-3-Hexenol	ОН	C ₆ H ₁₂ O	41(100), 67(91), 55(44), 82(42), 69(28), 42(23),53(16), 57(14), 54(12)
trans-2-Hexen-1-ol	ОН	C ₆ H ₁₂ O	57(100), 41(57), 67(23), 82(21), 43(16), 44(14), 56(13), 55(12), 71(11)
1-Octen-3-ol	OH OH	C ₈ H ₁₆ O	57(100), 43(22), 72(13), 41(12), 55(11)
1-Octanol	ОН	C8H18O	56(100), 55(82), 41(54), 42(53), 57(44), 70(41), 69(36), 84(35), 43(29), 83(20), 59(16), 85(13),

3,4-Dimethylcyclohexanol	OH	C8H16O	71(100), 43(71), 95(70), 57(33), 58(30), 41(24), 110(21), 85(18))
3,5,5-Trimethyl-hex-2-ene		C ₉ H ₁₈	100(57), 38(70), 55(32), 41(27), 69(17), 42(10), 109(10)
2-Ethylfuran		C ₆ H ₈ O	81(100), 96(41), 53(31),
2-pentyl-Furan		C ₉ H ₁₄ O	81(100), 82(24), 138(20), 53(13)
Furfural		$C_5H_4O_2$	95(100), 96(99), 67(13)
2-Butanone		C ₄ H ₈ O	43(100), 72(31), 57(12)

D-Limonene		$C_{10}H_{16}$	68(100), 67(99), 93(95), 94(44),79(39), 92(32), 91(30), 121(27), 107(25), 53(23), 77(20), 41(17), 80(15), 136(12), 81(11)
β-Cymene		C ₁₀ H ₁₄	119(100), 91(30), 134(28), 94(25), 117(21), 66(11), 115(11)
Acetol	ОН	$C_3H_6O_2$	43(100), 74(9)
Benzaldehyde	0	C7H6O	105(100), 106(97), 77(93), 51(44), 50(23), 78(13)
Linalool	HO	C10H18O	71(100), 93(73), 43(51), 41(47), 55(47), 69(37), 80(34), 121(19), 92(19), 91(15), 81(14), 67(13), 83(13), 79(12). 53(12), 41(10)
1,3,4-trimethyl-Cyclohexene-1- carboxaldehyde	Contraction of the second seco	$C_{10}H_{16}O$	81(100), 109(81), 137(74), 123(74), 91(69), 152(64), 95(48), 41(47)
Benzeneacetaldehyde		C ₈ H ₈ O	91(100), 92(30), 65(20), 120(15)

Supplementary Figure 6. Leaf consumption (cm^2) in *Glycine max* leaves of ten cultivars in an *in vivo* bioassay. The data are based on ten replicas. Standard errors are displayed.

