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Supplementary Information Text

Sl Materials and Methods

Cloning, Expression, and purification of T-plastins

Sequences for the WT, full-length human T-plastin (1-630), as well as T-plastin mutants
F191A, W390A, R594A, R595A, and R594 R595A were inserted into a pE-SUMO vector with an
N-terminal His6-tag and a SUMO-tag. Sequence of the SUMO protease Ulp1 was inserted into a
pET vector with an N-terminal His6-tag. All T-plastin constructs and the SUMO protease Ulp1
were expressed in Rosetta2(DE3) E. coli cells (Novagen) grown in LB media at 37°C to an optical
density of 0.8-1.0 and induced with 0.7 mM IPTG. After induction, the cells were grown for 16
hours at 16°C, then cell pellets were collected and stored at -80°C until use. Cell pellets were
resuspended in Lysis Buffer (50 mM Tris-Cl pH 8.0, 150 mM NaCl, 5% v/v glycerol, 2 mM §-
mercaptoethanol, 20 mM imidazole) and lysed with an Avestin Emulsiflex C5 homogenizer, after
which the lysate was clarified at 15,000 g for 30 minutes. Cleared lysate was incubated with Ni-
NTA resin (Qiagen) for 1 hour on a rotator at 4°C, after which the flow-through was discarded and
the resin was washed with 5 bed volumes of lysis buffer. Proteins were subsequently eluted in
Elution Buffer (50 mM Tris-Cl pH 8.0, 150 mM NaCl, 5% v/v glycerol, 2 mM B-mercaptoethanol,
300 mM imidazole). Purified His-tagged SUMO protease Ulp1 was then added at 0.05 mg / ml
working concentration into the protein solutions of SUMO-tagged proteins, then the protein
solution was dialyzed against Dialysis Buffer (20 mM Tris-Cl pH 8.0, 300 mM NaCl, 5% v/v
glycerol, 2 mM B-mercaptoethanol) for 16 hours. The protein solution was then reapplied to Ni-
NTA resin, and the flow-through was collected. Protein was then sequentially purified by a
HiTrapQ HP anion exchange column (GE Healthcare) followed by size exclusion chromatography
on a Superdex 200 Increase column (GE Healthcare) in Gel Filtration Buffer (20 mM Tris-Cl pH
8.0, 150 mM NaCl, 5% v/v glycerol, 2 mM B-mercaptoethanol) supplemented with 10% v/v

glycerol, then snap-frozen in liquid Nitrogen and stored at -80°C.



Cryo-EM sample preparation and data collection

Filamentous actin (F-actin) was polymerized in G-Mg (2 mM Tris-Cl pH 8.0, 0.5 mM DTT,
0.2 M ATP, 0.01% NaNs, 0.1 mM MgClz) and KMEI (50 mM KCI, 1 mM MgClz, 1 mM EGTA, 10
mM imidazole pH 7.0, 1mM DTT) buffers as described previously (7) from 5uM globular actin (G-
actin) monomers at room temperature for 1 hr, then diluted to 0.6 uM in KMEI prior to use. Full-
length human T-plastin was buffer exchanged into KMEI or Ca-KMEI (KMEI buffer + 2mM CacClz)
by desalting column (GE PD SpinTrap G-25) and was maintained at a concentration of 20 uM. All
KMEI buffers were supplemented with 1 mM DTT and 0.05% NP-40.

Immediately prior to sample preparation, CF-1.2/1.3-3Au 300-mesh gold C-flat holey
carbon cryo-TEM grids (Protochips) were plasma cleaned with a Hydrogen / Oxygen mixture for 5
seconds in a Gatan Solarus. Actin solution (3 pl) was first applied to the grid in the humidified
chamber of a Leica EM GP plunge freezer and incubated for 60 s at 25°C. T-plastin solution (3 pl)
was then applied and incubated for 30 s. Solution (3 ul) was then removed and an additional 3 pl
of T-plastin solution was applied. After an additional 30 s, the grid was back-blotted for 5 s,
plunge-frozen in ethane slush, and stored in liquid Nitrogen until imaging.

Cryo-EM data for the T-plastin—actin (—-Ca?*) complex were recorded on a Titan Krios
(ThermoFisher / FEI) at the Rockefeller University operated at 300 kV equipped with a Gatan K2
Summit camera. SerialEM (2) was used for automated data collection. Movies were collected at a
nominal magnification of 29,000X in super-resolution mode resulting with a calibrated pixel size of
1.03 A/ pixel (super-resolution pixel size of 0.515 A / pixel), over a defocus range of -1.5 to -3.5
pm. 40 frames were recorded over 10 s of exposure at a dose rate of 6 electrons per pixel per
second (1.5 electrons per A2 per second) for a cumulative dose of 60 electrons per A2 The T-
plastin—actin (+Ca?") dataset was recorded at the New York Structural Biology Center (NYSBC)
on a Titan Krios operated at 300 kV also equipped with a Gatan K2 Summit camera. Movies were
collected in counting mode resulting in a calibrated pixel size of 1.06 A / pixel, over a defocus
range of -1.5 to -3.5 ym. 50 frames were recorded over 10 s of exposure at a dose rate of 1.34
electrons per pixel per second (1.42 electrons per A2 per second) for a cumulative dose of 71.02

electrons per A2,



High-resolution cryo-EM image processing

Unless otherwise noted, all image processing was performed within the RELION-3.0
package (3), following a recently described procedure (4). Movie frames were aligned and
summed with 2 x 2 binning for the —Ca?* dataset, and no binning for the +Ca?* dataset, using the
MotionCor2 algorithm (5) implemented in RELION (6) with 5 x 5 patches. The contrast transfer
function (CTF) was estimated from non-doseweighted summed images with CTFFIND4 (7).
Bimodal angular searches with psi angle priors were used in all subsequent 2D and 3D alignment
/ classification procedures. Approximately 2,000 segments were initially manually picked,
extracted, and subjected to 2D classification to generate templates for auto-picking. Helical auto-
picking was then performed with a step-size of 3 asymmetric units corresponding to a 27 A helical
rise. Segments were extracted from dose-weighted (8) sum images in 512 x 512 pixel boxes
without down-sampling, followed by a second round of 2D classification and auto-picking with
featureful class averages. Auto-picked segments were then extracted and subjected to 2D
classification using a 200 A tube diameter and 300 A mask diameter. Segments that contributed
to featureful class averages were selected for 3D analysis.

All subsequent 3D analysis steps were primed with estimates of helical rise and twist of
27.0 A and -167.0°, respectively, utilizing an initial reference low-pass filtered to 35 A resolution,
with the outer tube diameter set to 200 A, inner tube diameter set to -1, and the mask diameter
set to 300 A. The first round of 3D classification into 3 classes was performed with bare actin
filament reconstruction (EMBD-7115) as the initial reference. A second iteration was then
performed with a class featuring clear ABP density from the first round as the initial reference. For
the T-plastin—actin (—Ca?*) dataset, this second round of 3D classification yielded two classes
with helical parameters similar to the initial estimates and well-resolved 3D features, and one junk
class with aberrant helical parameters and distorted features. For T-plastin—actin (+Ca?*) dataset,
all three classes were good, featureful 3D classes, indicating the high quality of this dataset.
Segments contributing to the selected classes were then pooled for 3D auto-refinement.

The first round of auto-refinement was then performed using one good 3D class as the

initial reference. All masks for subsequent post-processing steps were calculated with O pixel



extension and a 6 pixel soft edge from the corresponding converged reconstruction, low-pass
filtered to 15 A and thresholded to fully encompass the density. First-round post-processing was
performed with a 50 % z length mask, followed by CTF refinement without beam-tilt estimation
and Bayesian polishing (6). A second round of auto-refinement was then performed, followed by
post-processing with a 30 % z length mask, then a second round of CTF refinement with beam-tilt
estimation and Bayesian polishing. Final auto-refinement was then performed, once again
employing a 30 % z length mask for post processing.

The final reconstructions converged with helical rise of 27.0 A and twist of -166.8° for the
T-plastin—F-actin ABD-F-actin complex (—Ca?*), and a helical rise of 27.4 A and twist of -166.8°
for the T-plastin—F-actin ABD-F-actin complex (+Ca?*), consistent with our finding that actin
rearrangements evoked by T-plastin are minimal (S/ Appendix, Fig. S3B). Global resolution
estimates were 3.4 A for the full-length T-plastin—F-actin complex (-Ca?*), and 2.6 A for the full-
length T-plastin—F-actin complex (+Ca?*), by the gold-standard Fourier shell correlation (FSC)
0.143 criterion. The B-factors estimated during post-processing were then used to generate
sharpened, local-resolution filtered maps with RELION. Key statistics summarizing high-

resolution cryo-EM image processing are reported in S/ Appendix, Table S1.

T-plastin pre-bundling state cryo-EM image processing

The weak signal in Class | of the —Ca?* condition (S/ Appendix, Fig. S2) suggested that in
a subset of the particle images, signal from an additional CH domain was consistently present in
a defined region. To isolate and refine those particles, symmetry expansion and subsequent
rounds of focused 3D classification were used to generate a set of 322,743 segment images (S/
Appendix, Fig. S6A). Using the asymmetric unit and helical parameters from 3D auto-refinement,
particles were symmetry expanded. These particles were then re-extracted with recentering of 2D
shifts with a box size of 128 pixels at a down-sampled pixel size of 4.12 A and subjected to a
consensus 3D auto-refinement. After this consensus refinement, a mask containing only density
for the bound ABD and the additional density was used for an initial round of 3D classification

with 14 classes and no image alignment. Classes with consistent density were selected and



subjected to 3D auto-refinement. The resultant map was used as an updated reference for
another round of 3D classification of the original 322,743 segment images with 6 classes, using
an updated mask. After selecting 147,851 segment images from two classes with similarly placed
density, a local 3D auto-refinement was performed, which showed substantially increased density
in the masked region beyond the bound ABD. Using an updated mask, another round of 3D
classification was run with 3 classes and no image alignment. One class, composed of 50,077
particles, with good density was selected. These particles were re-extracted at a box size of 384
pixels without down-sampling and locally refined using a 70 % z mask. These particles were then
re-extracted with the plastin molecule at the center of the box and re-refined with a 50 % z mask.
A subsequent round of 3D classification with 3 classes and no image alignment and was
performed, and the best two classes were selected with 31,413 particles. After a local 3D auto-
refinement, the particles were re-centered on the actin filament to optimize CTF refinement and
Bayesian Polishing performance for two rounds. During the second round of particle polishing,
the particles were once again re-centered on the bound T-plastin protein. Polished particles were
subjected to a final 3D auto-refinement, which yielded a map assessed at 4.4 A resolution. A
final, local 3D auto-refinement was performed by masking only the plastin and two actin
protomers to give the final map at 6.9 A resolution (S/ Appendix, Fig. S6) within this masked

region.

Measurement of inter-filament distances

To provide reasonable inter-filament distances for the synthetic particles used to train the
neural network, the distances between obvious filament bundles lying perpendicular to the
electron beam were measured. Specifically, 98 micrographs were selected, down-sampled by 4,
and low pass—filtered to 25 A. One to four filament bundles were analyzed per micrograph (total
of 127 filament pairs), by drawing a line through the central axis of one filament and drawing a
parallel line through the axis of the other filament in the bundle using FIJI (9). The distance was
measured based on the system of equations: y1 = m*x + b1; y2 = m*x + bz ; d = |bz-b1|/ V(m? + 1),

where m is the shared slope between the two parallel lines, b1 and b2 are the intercepts for the



lines, x and y are the coordinates along the lines, and d is the distance between the two lines.
These measurements revealed an average inter-filament distance of 159 A with a standard

deviation of 24 A (SI Appendix, Fig S7B).

Synthetic dataset generation

We developed a convolutional neural network-based approach to specifically identify
bundled filaments, while excluding individual filaments. To achieve full-micrograph segmentation,
a neural network was first trained to recognize potential bundle configurations in synthetic data,
and then used to predict on real data.

We first trained a denoising autoencoder on projections of plausible in silico bundle
models and used the learned weights from this network to make a semantic segmentation
network. The precise workflow for synthetic projection generation is outlined in S/ Appendix, Fig.
S8. Briefly, projection images were generated of zero to three filament units, with each filament
unit consisting of either an individual filament or a two-filament bundle. To approximately reflect
the frequency of bundles in the actual dataset, each filament unit had a 65% chance of being a
bundle and 35% chance of being an individual filament. If the filament unit was a bundle, the
filament would be copied, and the copy would be rotated about its helical axis by a random,
uniformly sampled integer between 0° and 359°, randomly tilted by a bimodal Gaussian centered
at 0° and 90°, with standard deviations of 1.5°, and then randomly translated in the y-direction by
159 A + 24 A (empirically measured from 127 bundles in real micrographs), and uniformly
translated in the z-direction (along the helical axis) by 181 A. Subsequently, for both individual
and bundled filament units, the filament unit would be rotated about the phi and rot angles by a
random, uniformly sampled value between 0° and 359°, and the tilt by 0° with a standard
deviation of 2.5°. The filament unit was then randomly translated around the box by +250 A and
projected along the z-axis to generate a noiseless projection. The same map was used to
generate a noisy image paired with this noiseless projection, by adding pink noise in Fourier
space, as implemented in EMANZ2’s python package to generate realistic-looking synthetic data

(70). Three-channel stacks of semantic maps associated with the noisy/noiseless projection pairs



were generated by binarizing the filament unit and assigning it as a bundle or individual filament

before projection.

Network architecture and training

A denoising autoencoder (DAE) was trained using the architecture outlined in S/
Appendix, Fig. S9A. Each trainable layer had a ReLU activation function, except the final layer
which had a linear activation function. The negative of the cross-correlation coefficient was used
as the loss function. For training, the weights were initialized using the default initialization in
TensorFlow. The model was trained using the Adam optimizer version of stochastic gradient
descent with a learning rate of 0.00005 and minibatch size of 16 until the model converged (no
improvement in validation loss for 3 epochs). Upon network convergence, the weights from the
best epoch were restored. For training, 300,000 noisy / noiseless projection pairs with box sizes
of 192 x 192 were generated, 90% of which was used for training and 10% for validation. Upon
network convergence, the denoising autoencoder had an average cross-correlation coefficient of
0.984 on the validation set.

After training the model as a DAE, a semantic segmentation network was trained by
copying all layers and weights of the DAE, except for the final layer, which was replaced with a 3-
channel layer with softmax activation and default TensorFlow initialization. This semantic
segmentation network was then trained with a learning rate of 0.00001. For training, 50,000 pairs
of noisy inputs and semantically segmented targets of dimension 192 x 192 and 192 x 192 x 3,
respectively, were used with a minibatch size of 16; 90% of the synthetic data was used for
training and 10% for validation. The loss function was categorical cross-entropy, and upon
network convergence the model had a categorical cross-entropy of 0.069 on the validation set.
Example network performance on synthetic data is shown in S/ Appendix, Fig. S9A,B.

Models were trained on a single NVIDIA 2080 Ti GPU with 11 GB of VRAM. Training
required approximately 2.25 hours per epoch for the denoising autoencoder and 0.3 hours per
epoch for the semantic segmentation network. Validation loss began to plateau around the fifth

epoch for both models and then slowly improved until convergence (S/ Appendix, Fig. S9C). As a



separate estimate of the 2D denoising reconstruction’s resolution, 10,000 noiseless synthetic
particle images not used during network training or validation were compared to noisy particle
images denoised using the trained DAE, and the Fourier Ring Correlation (FRC) was computed
(SI Appendix, Fig. S9D); the average FRC curve fell below 0.5 at 12.2 A (~1.5 times Nyquist

resolution), and 100 example FRC curves are also shown.

Particle picking using neural network

To pick particles, motion-corrected micrographs down-sampled by 4 were converted into
semantic maps by extracting 192-pixel boxes across the micrograph in a raster pattern with 48
pixels of overlap and stitching back the output into a semantic map by computing a maximum
intensity projection of the overlapping regions. Only the bundle channel results were used, and
they were binarized using a fixed threshold of 0.85. After binarization, central axes of the bundles
were selected for by excluding pixels near object borders using empirically derived parameters,
and small objects were removed. The remaining binarized image was skeletonized, and non-
maximum suppression was used to ensure all particle picks were spaced at least 148 A away

from each other. These particle coordinates were used for extraction in RELION.

Comparison to other particle pickers

To assess the capabilities of commonly used particle-picking software for the purpose of
specifically picking bundles, we employed Topaz (717), crYOLO (72), and RELION’s template-
based auto-picker (3) on a subset of micrographs from the -Ca?* dataset. Specifically, 50
micrographs with combinations of single- and multi-filament F-actin instances were selected; 25
micrographs were used for manual picking to train the networks, and 25 micrographs were used
for assessment of picking quality and agreement with the neural network-based segmentation
outlined in our work. A total of 3,377 particle coordinates of two-filament bundles, precisely
centered, were hand-picked and used to train a crYOLO network using default parameters
(PhosaurusNet architecture, batch size of 4, learning rate of 0.0001, trained for 200 epochs).

After a network was trained, picking was performed on the test set of micrographs, and a



threshold of 0.25 was found to be optimal for picking performance. For Topaz training, the Topaz
auto-picking feature as integrated into RELION4.0 (73) was used with the default parameters,
except training was done for 15 epochs, instead of the default of 10, to improve results. After
training, picking was performed on the test set of micrographs, and a -0.6 figure-of-merit
threshold was found to be optimal for picking performance. Notably, in our experience, the
crYOLO results had a large range of acceptable thresholds that produced similar results.
Similarly, for our picker, a wide range of binarization thresholds applied to the semantically
segmented map yielded very similar results because of the high network confidence. Conversely,
for both Topaz and RELION’s auto-picker, changing the threshold slightly drastically changed the
number of picks, and we found the defaults had extremely high false-positive picks.

Particle picks from the various software were compared by visual inspection and
quantitative comparison to the semantic segmentation from our neural network (S/ Appendix, Fig.
S11). Picks were visually assessed for their accuracy in centering the particle picks, and ability to
discriminate single- from multi-filament bundles (S/ Appendix, Fig. S11A). To assess agreement
with our network’s semantic segmentation of micrographs in the test set, picks were categorized
based on which semantic bin the coordinate was positioned. For example, a picked coordinate
that was in the bundle semantic channel was counted as a “true positive” in this case. Whereas a
coordinate positioned on a pixel identified by the neural network as a single-filament was counted
as a single filament pick, and the remaining picks were scored as background picks. Notably, the
semantic maps are intentionally eroded to allow for good centering in our software, so many
close, but un-centered picks were marked as background in this analysis (intentionally to account

for pick centering).

Bundle processing

Visual inspection revealed that nearly all extracted particles had multiple filaments, but
reference-free 2D classification with standard parameters produced classes with one filament or
one well-resolved filament and one poorly resolved filament (SI Appendix, Fig. S7C). To prevent

alignment from refining one filament at the expense of the other, particles images were extracted

10



in a large, 256-pixel box downsampled to 4.12 A pixel size, and multiple rounds of 2D
classification were performed in cryoSPARC (74), limiting the reconstruction resolution to 45 A
and the alignment resolution to 50 A (SI Appendix, Fig. S12A). The “Align filament classes
vertically” option was used to determine in-plane rotation, and at each iteration, 2D class
averages were re-centered using a binary mask with a low threshold to maintain the bundle in the
class average center. Particles were re-extracted with shifted, re-centered coordinates and psi
angles were rotated by 90° for RELION helical conventions. With these re-centered particles, 2D
classification with small translations yielded high-quality, reference-free 2D class averages in
RELION, where obvious parallel and antiparallel 2D classes were present (S/ Appendix, Fig.
S12B). Despite exhaustive attempts at generating reasonable initial models using ab initio model
generation, models would frequently be produced with one filament centered in the box or two
poorly defined filaments.

Therefore, using the reference-free 2D class averages, initial models were generated
using a custom projection-matching scheme. The map derived from single-filament helical
analysis was rescaled and roughly positioned in the box to project onto one of the two filaments,
then EMANZ2’s e2classvsproj script (70) was used on each filament to globally search Euler
angles (with 10 degree sampling) and shifts (maximum of 84 A) for an initial projection-match to
the 2D class average. Finally, a custom projection-matching script using the EMAN2 python
package was used to perform a finer, gradient-descent-based projection matching of each
filament. While these projections had excellent correspondence to the 2D class averages, they
did not have full 3D information to properly position filaments for an initial model. To properly z-
position the filaments, a parallax-based approach using 2D classes that had clear side-views was
used, and adjustments to the relative z-positions of the oriented filament maps was performed to
maximize the cross-correlation between the side-view 2D class averages and the 3D models (S/
Appendix, Fig. S12C). These maps were then lowpass filtered to 20 A and used as initial
references for 3D classification (S/ Appendix, Fig. S12D).

3D classification required careful angular and translational searches to prevent head-on

two-filament images from shifting to side-on views of one filament. An approach similar to
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previous 3D classification schemes of large, mixed-population filamentous structures was used
(15). Briefly, the tilt prior was kept fixed at 90° and global searches of rot, local, bimodal searches
of psi, and local searches of tilt with 3.7° sampling and a 20° search range were performed, with
a translation search range of 41.2 A. After one iteration with these parameters, the 3D
classification was interrupted; the tilt prior was updated, and translations were deleted. The 3D
classification then resumed for three iterations, with global searches of rot, local, bimodal
searches of psi, and local searches of tilt with a fine 1.8° sampling and 5° search range, and a
large 123.6 A translational search range was used.

During this supervised 3D classification, there was an apparent preferred orientation for
particular rot angles (S Appendix, Fig. S13A). 2D classification of particles with rot angles of
0+15° or 180+15° revealed that some side-on view 2D class averages look similar to individual
filaments, and their constituent particle images were either bundled particles shifted to have one
filament in the box center or poorly picked individual filaments. 2D classes with one centered
filament that was much better resolved than other 2D classes were excluded and the angular
distribution improved (SI Appendix, Fig. S13A,B). After this winnowing, five more iterations of 3D
classification were performed with a smaller translational search of 20.6 A, leading to 87,980
particles sorted into the parallel class and 69,408 particles sorted into the antiparallel class (S/
Appendix, Fig. S13C). A 45% z-mask was generated for both classes, and subsequent signal
subtraction and focused 3D classification without alignment removed particles without clear
bridging plastin density. Un-subtracted particles were re-substituted, and following a consensus
3D auto-refinement, particles overlapping within the masked region were removed. A final,
asymmetric, consensus 3D auto-refinement was performed on 41,701 particles for the parallel
class, which reached 9.0 A, and 28,759 particles for the antiparallel class, which was assessed at

10.0 A (SI Appendix, Fig. S13D).

Variability analysis
During 3D auto-refinement, it became apparent that filament density quickly smeared

outside the masked region, presumably due to the relative flexibility of the complex. This
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observation, coupled with the composition of the system being two rigid bodies connected by a
flexible cross-linking protein, led us to employ multi-body refinement, as implemented in RELION,
to handle flexural heterogeneity (16). Using default 3D multi-body refinement parameters, with
masks shown in S/ Appendix, Fig. S13C, the resolution of the constituent filaments improved.
Furthermore, we reasoned we could utilize the multi-body refinement parameters to measure the
relative motions of the two filaments to each other. Specifically, volumes were generated for each
particle image using RELION’s relion_flex_analyze script (41,701 volumes for parallel, and
28,759 volumes for antiparallel), and atomic models of two separate plastin-decorated actin
filaments were procedurally rigid-body docked into each of the volumes using scripting functions
in UCSF Chimera (17). Distances and measurements between these docked models were
measured using custom scripts employing functions from the ProDy package (78). Plots were

generated with GraphPad Prism (Fig. 3E-H).

Model building and refinement

To generate homology models of the actin-binding ‘core’ (Fig. 1B) of plastin, the Robetta
server was used (79). The selected homology model for ‘prebound’ T-plastin was the model that
had the highest score. Sharpened, local-resolution-filtered maps as described above were used
for model building. The high-resolution density maps were of sufficient quality for de novo atomic
model building. As structures of components were available, initial models of actin (PDB 3j8a)
and the ‘prebound’ T-plastin homology model were fit into the density map using Rosetta (20).
Models were subsequently inspected and adjusted with Coot (271, 22), and regions that
underwent significant conformational rearrangements were manually rebuilt. The models were
then subjected to several rounds of simulated annealing followed by real-space refinement in
Phenix (23, 24) alternating with manual adjustment in Coot. A final round of real-space refinement
was performed without simulated annealing.

The pseudo-atomic models for the T-plastin prebundling state (Fig. 2) and both T-plastin
bundle configurations (Fig. 3) were generated by rigid-body docking the high-resolution

postbound T-plastin model and ABD1 fragments from the ‘prebound’ homology model, followed
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by flexible fitting with ISOLDE (25), then real-space refinement in Phenix with harmonic restraints
on the starting model enabled. Key statistics summarizing model building, refinement, and
validation are reported in S/ Appendix, Tables S1 and S2.

Structural figures and movies were prepared with ChimeraX (26). Structural
superpositions were performed with the MatchMaker function in ChimeraX. Pruned RMSD, which
excludes poorly aligning regions such as flexible loops, was calculated with the default
parameters. Per-residue RMSD analysis was performed with UCSF Chimera (17) as previously
described (27). The surface area of actin-binding interfaces was calculated with PDBePISA (28)
(EMBL-EBI). Model quality was assessed with EMRinger (29) and MolProbity (30) as

implemented in Phenix.

Sequence alignments
Protein sequences of human I-plastin (Q14651), human L-plastin (P13796), human T-

plastin (P13797) were aligned with ClustalOmega (37) (EMBL-EBI).

Actin co-sedimentation assays

Mixtures of F-actin (5 uM) and the indicated T-plastin constructs (2 uM) were incubated
at room temperature for 30 min in co-sedimentation buffer (10 mM Tris pH 7.5, 100 mM KCI, 2.5
mM MgClz, and 2 mM DTT. The samples were then spun for 30 min. at 16,000 rpm (low-speed)
in a TLA-100 rotor and polycarbonate centrifugation tubes (Beckman Coulter No. 343775). This
pellet was the ‘low-speed’ pellet. The supernatant was taken out from the centrifugation tube and
then spun in a fresh centrifugation tube for another 30 min, at 100,000 rpm (high-speed). This
pellet was the ‘high-speed’ pellet, and the supernatant was also collected. All three fractions were
subject to SDS-PAGE and Coomassie staining. The gels were scanned using LI-COR imaging
system, and subsequently quantified with ImageJ. Plots were generated with GraphPad Prism,

and statistical analysis was performed with Microsoft Excel.
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Cell culture and transfections

All experiments using HUVEC were performed with an hTERT-immortalized HUVEC line
previously described (32) and cultured in EGM-2 media (Lonza, CC-3162). Cultures were
regularly monitored for mycoplasma contamination via a PCR assay. For transient DNA
transfections, 1.5 x 10* HUVEC, were plated the day before transfection in a glass-bottom 96-well
plate (Cellvis) coated with 31 ug/mL collagen (Advanced BioMatrix, 5005-100 ML). The day of
transfection, culture medium was replaced with 80 pL of antibiotics-free culture media per well.
Then, 0.2 ug DNA encoding GFP-tagged T-Plastin (WT or mutant) and 0.25 yL
Lipofectamine2000 (Thermo Fisher Scientific), mixed in 20 yL OptiMEM (Thermo Fisher
Scientific), was added following the manufacturer’s instructions. This transfection mix was

replaced after 3 h with culture media and cells were processed for imaging after 24 h.

Fixed fluorescence imaging of cells

For fixed imaging, cells were rapidly fixed in 37 °C 4% paraformaldehyde in PBS, washed
in PBS, permeabilized in 0.2% TritonX-100 in PBS, washed again and blocked in 3% FBS in PBS
prior to primary and secondary antibody staining. Phalloidin conjugated to Alexa Fluor 568
(A12380, used at 1:500) and a secondary antibody against mouse IgG conjugated to Alexa Fluor
647 (A21235, used at 1:500) were from Thermo Fisher Scientific. The mouse monoclonal
antibody against Arp3 (A5979, used at 1:250) was from Sigma.

All images were acquired on an automated confocal system controlled by Slidebook
software (Intelligent Imaging Innovations, 3i). The system consists of an Eclipse-Ti body with
perfect focus system (Nikon Instruments), CSU-W1 spinning disc (Yokogawa), a 3i laser stack
with 405, 445, 488, 515, 561, and 640 nm lines, an environmental chamber (Haison), a 60X 1.27
NA water immersion objective, and two Zyla 4.2 sCMOS cameras (Andor) with motorized

dichroics enabling simultaneous acquisition of channels.
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FRAP assays and quantification

For live imaging, cell culture media was replaced with extracellular buffer (ECB)
consisting of 125 mM NaCl, 5 mM KCI, 1.5 mM MgClz, 1.5 mM CaClz, 20 mM HEPES,
supplemented with 10 mM D-glucose, 1% FBS, and 5 ng/mL bFGF (R&D Systems, 223-FB). To
avoid interference from lamellipodial protrusion/retraction cycles on T-Plastin recovery
measurements, HUVEC were first treated with 20 uM Y-27632 for 20 min., then a cocktail of
20 uM Y-27632, 8 uM Jasplakinolide, and 5 uM Latrunculin-B (JLY) for 30 min. to freeze actin
turnover (33). Regions representing protrusions containing GFP-tagged T-plastin were selected
for photobleaching with high intensity 488 nm laser light (Vector, Intelligent Imaging Innovations)
and imaged every second for at least 3 minutes.

Analysis regions were subsequently defined in Slidebook to exclude the ends of actin
stress fibers and focal adhesions, and the region intensities were measured to quantify their
recovery after photobleaching. Intensities were background subtracted and normalized to their
pre-bleach intensity, then analyzed in GraphPad Prism by fitting to an exponential one-phase
association model, Y = Yo + (Plateau - Yo) * (1 - eK %), Wild-type and mutant data were
compared using a two-way ANOVA with a mixed-effects model and Geisser-Greenhouse

correction (S/ Appendix, Table S3).
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Fig. S2: Cryo-EM data processing workflow for single-filament T-plastin—F-actin
complexes. Single-filament single particle helical cryo-EM processing workflow for T-plastin
decorated F-actin datasets in the absence (left) and presence (right) of calcium. Scale bars, 100
nm. Yellow circles: weak signals in 2D and 3D classes of the —Ca?* dataset targeted for
subsequent focused classification. Blue box: a representative 2-filament F-actin bundle.
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Fig. S4: Multiple sequence alignments and structural comparison of human plastin
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Fig. S5: Multiple sequence alignments and structural comparisons of actin-binding CH
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Fig. S6: Cryo-EM data processing workflow and data analysis for the prebundling state.
(A) Cryo-EM data processing / focused classification workflow to visualize the prebundling state
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after masked 3D classification. Signal beyond ABD2 is highlighted in the yellow circle. (C) Half-
map Fourier Shell Correlation (FSC) analysis of the final reconstruction. (D) Local resolution
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Fig. S7: Bundle processing workflow, manual distance measurements, and example 2D
classes. (A) Overall workflow of plastin bundle processing. (B) Top: Distance measurement
schematic drawn on representative 2-filament bundle. Scale bar, 200 A. Two parallel line
segments were traced through the filaments’ axes (yellow line with ends as circles), and the
distance between the two lines was calculated as illustrated. Bottom: Filament distance
distribution from 127 measurements. (C) Top: Example extracted bundle segments (contrast
inverted and low pass—filtered to 10 A) containing multiple filaments. Example 2D classes with
one clearly resolved filament and at least one poorly resolved filament from cryoSPARC (middle)
and RELION (bottom) default 2D classification are displayed. Scale bars, 200 A.
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Fig. S8: Generation of synthetic multi-bundle images for neural network training.

(A) Diagram of 3D volume transformations applied to two T-plastin decorated filaments to
generate plausible projection images of crosslinked actin filaments. (B) Pseudo-colored example
synthetic projections with one (top), two (middle), and three (bottom) filament units. (C) Summary
of parameter space sampled to generate synthetic datasets of plausible particle images of
varying filament and bundle number.
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example images. Mean FRC +/- 1 S.D. computed from 10,000 randomly sampled images is
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Fig. S10: Neural network performance on experimental cryo-EM data. (A) Example
micrographs featuring single filaments and bundles, highlighting “railroad track” top view (top) and
side view (bottom) of bundled filaments. Scale bar, 60 nm. (B) Network performance on top view
particle from A. Top row, left: extracted particle image; middle: denoised particle image; right:
binarized bundle channel used for particle picking. Bottom row, semantic segmentation channels
denoting background, single filaments, and bundle. Scale bar, 30 nm. (C) Network performance
on side view from A, which is not readily discriminated from single filaments by eye. Subpanels
as in B, scale bar 30 nm. (D) Picked particle featuring a three-filament bundle, upon which the
network was not explicitly trained. Scale bar, 30 nm.
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Fig. S11: Comparison of bundle detection between particle picking programs. (A) Left:
Semantic segmentation maps of one- and two-filament channels generated by the neural network
bundle picker presented in this work. Right: Picks (green circles) from indicated programs on a
representative micrograph containing both single and bundled filaments. Scale bar, 100 nm. (B)
Performance of other particle picking software compared to our bundle picker's semantic
segmentation on a curated set of 25 micrographs.
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Fig. S12: Bundle cryo-EM 2D analysis and initial 3D model generation. (A) Reference-free
2D class averages generated with limited alignment and reconstruction resolutions to resolve
both filaments. Scale bar, 30 nm. (B) Reference-free 2D class averages from high-resolution local
alignment and corresponding matched projections of paired T-plastin decorated filaments
positioned in 3D. Scale bar, 15 nm. (C) After initially positioning paired 3D volumes based on top
view, cross-correlation was calculated between projections of models from side view as one
filament is displaced in Z perpendicular to the top view plane and reference-free class averages
corresponding to side view. The maximum cross-correlation coefficient is marked with a dashed
line. (D) Initial 3D models for actin filaments bridged by T-plastin in parallel (left) and antiparallel
(right) configurations. The cross-linking bridge is highlighted in green.
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Fig. S13: Bundle cryo-EM 3D refinement workflow and resolution assessment. (A) 3D
angular distributions of particle images prior to removing misaligned particles revealed an over-
representation of side views inconsistent with their relatively low frequency in the raw data (top
left). 2D classification of particles within the indicated angular wedge without alignment recovered
true side views (bottom), as well as views with one filament centered surrounded by a misaligned
haze (white arrowheads). Removing these misaligned particles substantially improved the 3D
angular distributions (top right). (B) Multi-body refinement workflow. (C) Multibody reconstructions
are displayed in grey, with corresponding consensus reconstructions shown as outline. (D)
Resolution assessment of multi-body refinements (left) and directional Fourier Shell Correlation of
the consensus Refine3D (right). Dashed green curves represent +/- S.D. from mean of directional
FSC.
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Fig. S14: Interpretation and ABD assignment of bundle reconstructions. Results of the
indicated multi-body refinements are displayed in mesh, superimposed with the postbound
reconstruction (where only ABD2 was resolved) low pass—filtered to 9 A (transparent grey).
Cross-correlation (CC) values were calculated by docking a 9 A map simulated from the

postbound atomic model (comprising ABD2 and 3 actin protomers) using the “Fit in map” function
in UCSF Chimera.
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Fig. S15: Additional analysis of T-plastin rearrangements and mapping of disease
mutations. (A) Replotting of measurements from Fig. 3F; there is no apparent coupling between
skew and splay angles, suggesting T-plastin acts as a flexible joint within the allowable
conformational space of each bridge configuration. (B) Osteoporosis-linked T-plastin mutations
mapped onto the parallel bridge (top), the antiparallel bridge (middle), and the prebundling

(bottom) states of T-plastin.
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Fig. S16: Statistical analysis of co-sedimentation assays. Replotting of data from Fig. 4C and
Fig. S17 as individual bars for proportion of T-plastin in (A) low-speed pellet (WT / W390A: p =
0.16; WT / F191A: p = 0.008; WT / R594A: p = 0.00006; WT / R595A: p = 0.85; WT / R594A
R595A: p = 0.00005) and (B) low-speed pellet + high-speed pellet (WT / W390A: p = 0.26; WT /
F191A: p = 0.06; WT / R594A: p = 0.00006; WT / R595A: p = 0.99; WT / R594A R595A: p =
0.00005). WT: n = 7; mutants: n = 4. n.s.: not significant, **p < 0.01,****p < 0.0001, two-tailed T-

test.
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Fig. S17: Additional analysis of T-plastin mutants. (A) Fluorescence imaging of the indicated
T-plastin constructs expressed in HUVEC cells. T-plastin: eGFP; Arp2/3 (marking branched actin
at the leading edge): ARP3 immunofluorescence; F-actin: phalloidin. Scale bar, 10 pm.
Arrowheads indicate stress fiber / focal adhesion localization in R594A and R594A R595A
constructs (bottom 2 rows). (B) SDS-PAGE of low-speed / high-speed F-actin co-sedimentation
assays with the indicated constructs. S, supernatant; L, low-speed pellet; H, high-speed pellet.
(C) Quantification of B: proportion of F-actin in low-speed pellet (indicative of bundling). Error
bars represent S.D. WT: n = 7; Mutants: n = 4. WT / R594A: p = 0.03; WT / R595A: p = 0.74; WT
/ R594A R595A: p = 0.04. n.s.: not significant, *p < 0.05, two-tailed T-test. Wild-type and R594A
are replotted from Fig. 4C. (D) Quantification of B: proportions of indicated T-plastin constructs in
each fraction. Wild-type and R594A are replotted from Fig. 4D. See Fig. S16 for statistical
analysis. (E) FRAP assays of the indicated eGFP tagged T-plastin constructs.
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Table S1. High resolution cryo-EM data collection, refinement, and validation statistics.

T-Plastin ABD—F-actin (+Ca?*) T-Plastin ABD-F-actin (-Ca?")
(EMD-24323, PDB 7R94) (EMD-25496)
Data collection and processing
Microscope Titan Krios Titan Krios
Voltage (kV) 300 300
Detector K2 Summit K2 Summit
Magnification 29,000 29,000
Electron exposure (e"A?) 71 60
Exposure rate (e /pixel/s) 7.5 6
Calibrated pixel size (A) 1.06 1.03
Defocus range (um) -1.5t0-3.5 -1.5t0-3.5
C1 c1
Symmetry imposed 27.4 Arise 27.0 Arise
—166.8° twist —166.8° twist
Initial particle images (no.) 577,659 656,414
Final particle images (no.) 442,523 474,713
Map resolution (A) 2.60 3.44
FSC threshold 0.143 0.143
Refinement
Initial models (PDB ID) 7R8V, 1RT8, 1PXY
Model resolution (A) 2.52 3.39
FSC threshold 0.5 0.5
Map sharpening B factor (A?) —-42.3 -96.0

Model composition

5 actin protomers, 2 T-plastin actin-binding domains

Non-hydrogen atoms 20,247

Protein residues 2,570

Ligands 5 Mg.ADP
B factors (A?)

Protein 52.08

Ligand 35.46
R.M.S. deviations

Bond lengths (A) 0.005

Bond angles (°) 0.650
Validation
MolProbity score 1.50
Clashscore 4.98
Poor rotamers (%) 0.05
Ramachandran plot

Favored (%) 96.38

Allowed (%) 3.62

Disallowed (%) 0.00
EMRinger Score 4.65
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Table S2. Medium resolution cryo-EM data collection, refinement, and validation statistics.

T-Plastin ABD—F-actin,
prebundling
(EMD-25496, PDB 7SXA)

T-Plastin ABD—F-actin,
parallel bundle
(EMD-25494, PDB 7SX8)

T-Plastin ABD—F-actin,
antiparallel bundle
(EMD-25495, PDB 7SX9)

Data collection and processing

Microscope Titan Krios
Voltage (kV) 300
Detector K2 Summit
Magnification 29,000
Electron exposure (e"A?) 60
Exposure rate (e7/pixel/s) 6
Calibrated pixel size (A) 1.03
Defocus range (um) -1.5t0-3.5
Symmetry imposed C1
Initial particle images (no.) 322,743 87,980 69,408
Final particle images (no.) 31,413 41,701 28,759
9.04 (consensus) 9.97 (consensus)
Map resolution (A) 6.85 8.16 (body 1) 8.45 (body 1)
7.95 (body 2) 8.56 (body 2)
FSC threshold 0.143
Refinement
Initial models (PDB ID) 7R94 (this work), 1RT8, 1PXY
Map sharpening B factor (A?) -216.4 jgg ggggie{}?‘;s) 513'3‘0((?;;;?7;)3 )
Model composition 3 ac']tir_lr_prlototmers, 6 ac1tir_1r_pr|otot_mers,
plastin plastin
Non-hydrogen atoms 11,272 21,036 21,036
Protein residues 1,431 2,668 2,668
Ligands 3 Mg.ADP 6 Mg.ADP
R.M.S. deviations
Bond lengths (A) 0.007 0.002 0.004
Bond angles (°) 1.134 0.660 0.893
Validation
MolProbity score 1.82 1.91 1.54
Clashscore 9.77 13.07 4.78
Poor rotamers (%) 0.99 0.18 1.06
Ramachandran plot
Favored (%) 95.55 95.89 95.97
Allowed (%) 4.10 4.03 3.84
Disallowed (%) 0.35 0.08 0.19
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Table 3. FRAP fitting parameters and analysis.

T-plastin construct k(s') | tuz(s) | Mobile fraction (%) | P value versus wild-type
Wild-type 0.04 17.7 82 -

F191A 0.07 8.8 87 0.0001

W390A 0.02 34.6 76 0.0144

R594A 0.003 212.9 25 < 0.0001

R595A 0.02 27.9 80 0.0048

R594A R595A 0.001 515.2 34 < 0.0001

Movie S1. Interpolation along the first principal component from the multi-body refinement
of the parallel bundle. The measured splay and skew angles are displayed at each frame.

Movie S2. Interpolation along the first principal component from the multi-body refinement
of the antiparallel bundle. The measured splay and skew angles are displayed at each frame.

Movie S3. Sequence of T-plastin conformational transitions resulting in parallel bundle.
Colored as in Fig. 3A.

Movie S4. Sequence of T-plastin conformational transitions resulting in antiparallel
bundle. Colored as in Fig. 3A.
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