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Abstract

This supplementary document provides further details and validation of the sJIVE method.
In Section 1, we confirm the uniqueness of the solution under orthogonality. In Section 2, we
give additional details on the cross-validation approach for rank selection. In Section 3, we give
additional details on how the simulation data was generated. In Section 4, we describe how we
reduce dimensionality to increase computational efficiency.

1 Proof of Theorem 1

Here, we provide a proof for Theorem 1 of the main article. It follows from Lemma 1 of Feng et
al. (2018) [1], which is analogous to Theorem 1.1 of Lock et al. (2013) [2], that a decomposition
satisfying conditions 1., 2., and 3. of Theorem 1 exists and is unique for {X1, . . . ,X: }. Further,
because ỹ ∈ row(X̃) ⊂ (row(�) + row(�)) it follows that y = jH + aH where jH ∈ row(�) and
aH ∈ row(A) (condition 4.), and because row(�) ⊥ row(�) jH and aH are uniquely defined.

2 Cross-Validation Rank Selection Algorithm

sJIVE selects ranks using a forward selection 5-fold CV algorithm. In the pseudocode below,
each time the algorithm instructs to run 5-fold CV, the data was split into 5 folds and sJIVE
was fit to 4 of them. The fitted model was then used to predict the outcome for the left-out
fold, and the MSE is recorded by comparing the estimated and true y values. This is repeated
for each of the 5 folds.
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Pseudocode for sJIVE rank selection

1. Initialize A� and A8 ∀8 = 1, . . . , : to 0

2. Run 5-fold CV. Record the average test MSE of each fold and label it "(�14BC

3. Let A� = A� + 1 and run 5-fold CV, recording the average test MSE of each fold

4. Return A� back to A� − 1

5. For 8 = 1, . . . ,  

(a) Let A8 = A8 + 1 and run 5-fold CV, recording the average test MSE of each fold

(b) Return A8 back to A8 − 1

6. Determine which rank increase led to the largest reduction of test MSE. Permanently
increase that rank by 1, and set "(�14BC to its new lower value.

7. Repeat steps 3-6 until all rank increases lead to higher "(�14BC values

3 Generating Simulated Datasets

In this section, we will describe how the datasets were simulated. Our function for generating
data allowed us to input the following: the number of datasets, :; the number of predictors in
each dataset, ? = (?1, · · · , ?: ); the number of observations, =; the joint and individual ranks,
A� and A� = (A�1

, · · · , A�: ); the weight of the joint and individual signals, F� and F�; the
proportion of variance in X8 , 8 = 1, · · · , : that contributes to error, -4AA ; the proportion of y
variance contributed to error, .4AA ; and the proportion of the ranks that are predictive of y,
A?A>?.

Define the following:

• U8 =
[
AD=8 5 (0.5, 1)

]
{?8×A� }

• )1 =
[
AD=8 5 (0.5, 1) 0

]
{1×A� } with the first A?A>? × A� values being non-zero

• take QR decomposition of


U1

.

.

.

U:
)1

 {∑ ?8+1×A� }

for new U8 and )1 values

• S� = diag(F� ){A�×A� }
[
A=>A<(0, 1)

]
{A�×=}

for each dataset 8 = 1, ...,  

• W8 =
[
AD=8 5 (0.5, 1)

]
{?8×A�8 }

• )28 =
[
AD=8 5 (0.5, 1) 0

]
{1×A�8 }

with the first A?A>? × A�8 values being non-zero

• take QR decomposition of

[
W8

)28

]
{?8+1×A�8 }

for new W8 and )28 values

• S8 = diag(F�){A�8×A�8 }
[
A=>A<(0, 1)

]
{A�8×=}

·
(
�{=×=} − %S�

)
– where %S� = S)

�
(S�S)� )

−1S� to force orthogonality between S� and S8
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We then can calculate X and y

• X8 = U8S� +W8S8 + E8 where E8 is normal with variance s.t. E0A (E8)/E0A (X8) = -4AA
• y = )1S� +

∑
8 )28S8 + E. where E. is normal with variance s.t. E0A (E. )/E0A (y) = .4AA

• Scale X and y to have variance=1

• Scale components to force ‖ [U) ))1 ]
) ‖2
�
= ‖ [W)

8
))28]

) ‖2
�
= 1 ∀8 = 1, . . . , : for uniqueness

Return X8 , 8 = 1, . . . , : and y.

4 Reducing dimensionality

Though computation time relies on a variety of factors, data dimensions and rank selection are
the main drivers. The computation times displayed in Table 6 of the main article were conducted
on a 2.4 GHz computer with 8 GB RAM. In high-dimensional scenarios, JIVE maps the data
into a lower dimension space before running its optimization function in increase efficiency.

sJIVE uses this same technique. Consider a high-dimensional scenario when ?8 >> = for the
8th dataset. Then let X8 be the ?8 × = data matrix. Prior to running the optimization function,
map X8 to an = × = space using SVD, i.e.,

(+� (X8) = *�+)

X⊥8 = �+)

This transformation preserves covariance and Euclidean distance between columns in X8 . By
implementing this reduction in dimensionality, computation time can significantly decrease. For
example in our COPDGene application, sJIVE took 52.6 hours to run without data reduction,
but only 66 minutes after utilizing this transformation.

After optimizing the function and obtaining estimates for each of the joint and individual
components, X⊥

8
can be mapped back to the original space by multiplying the left singular

vectors, *, by the estimated loadings, U⊥
8

and W⊥
8
8 = 1, . . . , :. The scores, S� and S8 , and the

) coefficients do not require any transformation.

References

[1] Q. Feng, M. Jiang, J. Hannig, J. Marron, Angle-based joint and individual variation ex-
plained, Journal of multivariate analysis 166 (2018) 241–265. doi:10.1016/j.jmva.2018.03.008.

[2] E. F. Lock, K. A. Hoadley, J. S. Marron, A. B. Nobel, Joint and individual variation ex-
plained (JIVE) for integrated analysis of multiple data types., The annals of applied statistics
7 (1) (2013) 523–542. doi:10.1214/12-AOAS597.

3


